Iraqi Journal of Science, 2021, Vol. 62, No. 7, pp: 2357-2361 DOI: 10.24996/ijs.2021.62.7.24

ISSN: 0067-2904

Semi-*T*-Hollow Modules and Semi-*T*-Lifting Modules

Alaa A. Elewi

College of Science, University of Baghdad, Baghdad, Iraq

Received: 16/8/2020

Accepted: 29/9/2020

Abstract

Let *R* be an associative ring with identity and let *W* be a unitary left *R*-module. Let *T* be a non-zero submodule of *W*.We say that *W* is a semi-*T*- hollow module if for every submodule *K* of *W* such that $T \nsubseteq K$ is a semi-*T*- small submodule $(K \ll_{S-T} W)$. In addition, we say that *W* is a semi-*T*- lifting module if for every submodule *X* of *W*, there exists a direct summand *F* of *W* and $H \ll_{S-T} W$ such that X = F + H.

The main purpose of this work was to develop the properties of these classes of module.

Keywords: Small submodules, *T*- small submodules, *T*- hollow modules, *T*- lifting modules.2010. **Mathematics Subject Classification**: 16D99, 16L99.

مقاسات شبه المجوفة من النمط -T ومقاسات شبه الرفع من النمط – T

الاء عباس عليوي

قسم الرياضيات ، كلية العلوم ، جامعة بغداد ، بغداد ، العراق

الخلاصة

لتكن R حلقة تجميعيه ذات عنصر محايد وليكن Wمقاس احادي ايسر و Tمقاس جزئي غير صفري من W.نقول عن W انه مقاس شبه اجوف من النمط Tاذا كان لكل مقاس جزئي كلمن W بحيث aturarcolor Tكيكون مقاس جزئي شبه صغير من النمط T. بالاضافه الى هذا نقول عن W هو مقاس شبه رفع من النمط T اذا كان لكل مقاس جزئي من W يوجد جمع مباشر F من Wو W $_{T-S}$ بحيث ان K + H = X. الغرض الرئيسي من هذا العمل هو تطوير خصائص هذين الصنفين من المقاسات.

1.INTRODUCTION

In this work, *R* is a ring with identity and every *R*- module is a unitary left *R*- module. Recall that a submodule *N* of *W* is *T*- small in an *R*- module *W* denoted by $N \ll_T W$, in case for any submodule *X* of *W*, $T \subseteq X + N$ implies that $T \subseteq X [1]$. AL-Redeeni and AL-Bahrani [2] introduced the concepts of *T*-hollow and *T*- Lifting modules as: Let *T* be a submodule of a non-zero module *W*, we say that *W* is a *T*-hollow module, if for every submodule *K* of *W* such that $T \nsubseteq K$, is a *T*-small submodule of *W*. *W* is said to be *T* lifting module (where *T* is a submodule of *W*), if for each submodule *X* of *W*, there exists a direct summand *F* of *W* and $H \ll_T W$ such that X = F + H. Elewi [3] introduced the concept of semi-*T*-small:

^{*}Email: alaa.abbas.math@gmail.com

Let T be a submodule of a module W. A submodule N of a module W is called semi-T-small in W, denoted by $N \ll_{S-T} W$, in case for any submodule X of W, $T \subseteq X + N$ implies that $T \subseteq X + Rad(W)$.

In this work we introduce the following concepts:

Let *W* be a non-zero module and let *T* be a submodule *W*. We say that *W* is semi-*T*-hollow module if every submodule *K* of *W* such that $T \not\subseteq K$ is a semi-*T*-small submodule of *W*. We say that *W* a is semi-*T*- lifting module, if for each submodule *X* of *W*, there exists a direct summand *F* of *W* and $H \ll_{S-T} W$ such that X = F + H.

The main goal of this work is to develop the properties of these concepts.

2. Semi-*T*-Hollow modules

In this section, we present the concept semi-T-hollow modules as a generalization of T-hollow modules.

Definition 2.1:

Let W be a non-zero module and T be a submodule of W. We say that W is a semi-T-hollow module if every submodule K of W such that $T \nsubseteq K$ is a semi-T- small submodule of W.

Remarks and Examples 2.2

1. Every *T*-hollow module is semi-*T*-hollow.

2. The converse of (1) is not true, for example: consider \mathbb{Q} as \mathbb{Z} -module. Let $T = 2\mathbb{Z}$, $N = n\mathbb{Z}$ such that $n \neq 2$, thus $T \nsubseteq N$. Therefore every submodule $X = m\mathbb{Z}$ of \mathbb{Q} $(m \neq n)$ such that $T \subseteq N + X$. Since $Rad \mathbb{Q} = \mathbb{Q}$, thus $T \subseteq N + Rad(\mathbb{Q}) = N + \mathbb{Q} = \mathbb{Q}$. Thus \mathbb{Q} as \mathbb{Z} -module is semi -T-hollow. But \mathbb{Q} is not T-hollow [2, Example.(2.2.2) (1), p40].

3. If W is a non-zero R- module such that Rad (W) = W, then W is a semi-T- hollow for every submodule T of W.

4. \mathbb{Z}_{12} as \mathbb{Z} -module is not semi-*T*-hollow, since if we take $T = \langle \overline{2} \rangle$, $K = \langle \overline{4} \rangle$, it is clear that $\langle \overline{2} \rangle \not\subseteq \langle \overline{4} \rangle$. Now $T = \langle \overline{2} \rangle \subseteq \langle \overline{3} \rangle + \langle \overline{4} \rangle = \mathbb{Z}_{12}$, but $\langle \overline{3} \rangle + Rad t_{12} = \langle \overline{3} \rangle + \langle \overline{6} \rangle = \langle \overline{3} \rangle$ and hence $T \not\subseteq \overline{3} \rangle + Rad (\mathbb{Z}_{12})$. Thus \mathbb{Z}_{12} as \mathbb{Z} -module is semi-*T*-hollow.

5. Consider \mathbb{Z}_6 as \mathbb{Z} - module and let $T = \{\overline{0}, \overline{3}\}$, thus by [2, Example (2.2.2) (2), p40] \mathbb{Z}_6 is *T*-hollow module. Every semisimple module is T-hollow, and hence it is semi-T-hollow. By (1), \mathbb{Z}_6 as \mathbb{Z} - module is a semi-*T*-hollow module.

6. If *W* is an *R*- module such that Rad(W) = 0, then *W* is *T*-hollow module if and only if *W* is semi-*T*- hollow module. In fact, let *T*, $K \le W$ such that $T \nsubseteq K$ and $T \subseteq X + K$, where $X \le W$. Since *W* is semi-*T*-hollow, then $T \subseteq X + Rad(W)$. But Rad(W) = 0, thus $T \subseteq X$, i.e. *W* is *T*-hollow module.

Proposition (2.3):

Let *T* be a submodule of a non-zero module *W* with Rad(W) = 0. If *W* is a semi-*T*-hollow module, then every non-zero submodule *N* of *W* such that $T \subseteq N$ is a semi-*T*-hollow-module.

Proof: Let *N* be a submodule of *W* such that $T \subseteq N$. Let *L* be a submodule of *N* such that $T \notin L$. Since *W* is a semi -T-hollow module, thus $L \ll_{S-T} W$. Then by [3], $L \ll_{S-T} N$, therefore *N* is a semi-*T*-hollow module.

Proposition (2.4):

Let W be a semi-T- hollow module, and let $f: W \to \hat{W}$ be an epimorphism where \hat{W} is a non-zero module. Then \hat{W} is a semi-f(T)-hollow module.

Proof: Assume that W is a semi-T-hollow module and let $f: W \to \hat{W}$ be an epimorphism. Let \hat{N} be a submodule of \hat{W} such that $f(T) \not\subseteq N$. Claim that $N \ll_{S-f(T)} \hat{W}$. To show that, let $f(T) \subseteq \hat{N} + X$, for some $X \leq \hat{W}$. Then $f^{-1}(f(T)) \subseteq f^{-1}(\hat{N} + X)$. Therefore $T + Kerf \subseteq f^{-1}(\hat{N}) + f^{-1}(\hat{X})$. Thus $T \subseteq f^{-1}(\hat{N}) + f^{-1}(X)$ on $T \not\subseteq f^{-1}(\hat{N})$. But W is semi-T-hollow. Therefore $f^{-1}(\hat{N}) \ll_{S-T} W$. We can easily show that $T \subseteq f^{-1}(X) + Rad(W)$. So $f(T) \subseteq X + f(Rad(W)) \subseteq X + Rad(\hat{W})$ [4, Theorem (9.1.4), p.214]

3. Semi-*T*-lifting modules

In this section, we introduce the concept semi-*T*-hollow module and illustrate it by some examples. We also give some basic properties. We start by this definition which is given in [2, Definition (2.2.1),p40].

Definition (3.1)

Let W be an R- module and let T be a submodule of W. We say that W is a T-lifting module if for every submodule X of W, there exists a direct summand F of W and $H \ll_{S-T} W$ such that X = F + H. We introduce the following definition:

Definition (3.2)

Let T be a submodule of an R –module W. We say that W is a semi-T-lifting module if for every submodule X of W, there exists a direct summand F of W and $H \ll_{S-T} W$ such that X = F + H.

Remarks and Example (3.3)

1. Every T-lifting module is a semi-T-lifting module. In fact, let W be a T-lifting module, where T is a submodule of W and let X be a submodule of W. Thus by assumption, there exists a direct summand F of W and $H \ll_T W$ such that X = F + H. Thus $H \ll_{S-T} W$ by [3], and W is semi-T-lifting module.

2. A semi-T-lifting module needs not to be T-lifting module, for example \mathbb{Z}_8 as Z-module is not $\{\overline{0},\overline{4}\}$ -lifting [2,Remark.and Example (2.3.3) (2),p44]. But one can easily show that \mathbb{Z}_{8} as \mathbb{Z} -module is a semi-{ $\overline{0}$, $\overline{4}$ }-lifting module, where $Rad(\mathbb{Z}_8) = {\overline{0}, \overline{4}}$.

3. A lifting module needs not be a semi-*T*-lifting module. For example \mathbb{Z}_8 as \mathbb{Z} -module is not a semi- $\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$ lifting module. To show that, assume not and let $X = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$, then there exists a direct summand F of \mathbb{Z}_8 and $H \ll_{S-X} \mathbb{Z}_8$ such that X = F + H. Since \mathbb{Z}_8 is indecomposable, thus F = 0 and $H = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$. But X is not semi- X-small in \mathbb{Z}_8 . Thus \mathbb{Z}_8 is not semi X lifting module. One can easily show that \mathbb{Z}_8 as \mathbb{Z} -module is a lifting module.

4. The converse of (1) is true if Rad(W) = 0, i.e. if W is an R- module with Rad(W) = 0, then W is T-lifting module if and only if W is semi-T-lifting module

5. On can easily show that every semisimple module W is semi-T-lifting for every submodule T of \cdot .

6. It is clear that every semi-T-hollow module is semi-T-lifting module.

Proposition (3.4)

Let W be a semi-T-lifting module. Then every submodule N of W such that $T \subseteq N$ is also semi-Tlifting module.

Proof: Assume that W is semi-T-lifting. Let N be a submodule of W such that $T \subseteq N$. Let X be a submodule of N. Since W is semi-T-lifting, then X = F + H, where F is a direct summand of W and $H \ll_{S-T} H$. Clearly, H is a direct summand of N. Since $T \subseteq N$, then $H \ll_{S-T} N$ by [3].

Recall that a submodule X of a module M is called projective invariant, if for every $P = P^2 \in$ End (M), $P(X) \leq X$ [5].

It is clear that if each submodule X of W, there exists a decomposition $W = F \oplus \hat{F}$ such that $F \subseteq X$ and $X \cap F \ll_{S-T} W$, then W is a semi-T-lifting module. It is natural to ask if the convers is true. **Proposition (3.5)**

Let T be a submodule of a module W. If W is a semi-T-lifting module, then for each submodule X of W, there exists a decomposition $W = F \oplus \hat{F}$ such that $F \subseteq X$ and $X \cap F \ll_{S-T} W$.

Proof: Assume that W is semi-T-lifting module and every semi-T-small of W is projective invariant. Let X be a submodule of W, then X = F + H, where F is a direct summand of W, and $H \ll_{S-T} W$. Now, by Modular Law, $X = F \bigoplus X \cap \hat{F}$. Let $P: W \to \hat{F}$ be the projection map,

$$P(H) = P(F + H) = P\left(F \oplus (X \cap \hat{F})\right) = X \cap \hat{F}.$$

Since H is semi-T-small in W, then, by our assumption, H is projective invariant. So $P(H) = (X \cap A)$ $(\hat{F}) \leq H$. Thus $X \cap \hat{F} \ll_{S-T} W$, by [3]

Theorem (3.6)

Let T be a submodule of a module W, then the following statements are the same:

1. For each submodule N of W, there exists a decomposition $W = L \oplus \hat{L}$, where $L \leq N$ and $N \cap$ $L \ll_{S-T} W$.

2. For each submodule N of W, there exists $f \in End(W)$ such that $f^2 = f$, $f(W) \subseteq X$ and (I - I) $f(N) \ll_{S-T} W$.

Proof: (1) \Rightarrow (2): Let N be a submodule of W, thus by assumption, there exists a decomposition $W = L \oplus \hat{L}$ such that $L \leq N$ and $N \cap \hat{L} \ll_{S-T} W$. Let $f: W \to L$ be the projection map. Clearly, $f^2 = f$ and $W = f(W) \oplus (I - f)(W)$, $f(W) \subseteq N$. Now, we have $(I - f)(N) = N \cap (I - f)(N) = N \cap \hat{L} \ll_{S-T} W$. (2) \Rightarrow (1): Let N be a submodule of W, then there exists $f \in End(W)$ such that $f^2 = f$, $f(W) \subseteq N$ and $(I - f)(N) \ll_{S-T} W$. It is clear that $W = f(W) \oplus (I - f)(W)$. Suppose that L =f(W) and $\hat{L} = (I - f)(W)$. Then $N \cap \hat{L} = N \cap (I - f)(W)$. Claim that $N \cap (I - f)(W) =$

(I-f)(N). To show that, let $x = (I-f)(y) \in N \cap (I-f)(W)$. Since $(I-f)^2 = (I-f)$, then $x = (I - f^2)(y) = (I - f)(x) \in (I - f)(N)$. Now, let $x = (I - f)(y) \in (I - f)(x)$, $y \in N$, then $x \in (I - f)(W)$, $x = y - f(y) \in N$. Thus $x \in N \cap (I - f)(W)$. Now, $(I - f)(N) = N \cap (I - f)(N)$. $(I-f)(W) = N \cap \hat{L} \ll_{S-T} W.$

The following proposition gives a characterisation of a semi-T-lifting module W when every semi-T-small submodule of W is projective invariant.

From Proposition (3.5) and Theorem (3.6) we get:

Proposition (3.7):

Let T be a submodule of a module W such that every semi-T-small submodule of W is projective invariant. Then the following statements are the same:

1. *W* is a semi-*T*-lifting module.

2. For each submodule Ν of W. there decomposition exists а $W = L \oplus \hat{L}$ such that $L \leq N$ and $N \cap \hat{L} \ll_{S-T} W$.

3. For each submodule N of W, there exists $f \in End(W)$ such that $f^2 = f$, $f(W) \subseteq N$ and $(I-f)(N) \ll_{S-T} W.$

Proposition (3.8):

Let *W* be a semi-*T*-lifting module and let *A* be a submodule of *W*, such that for every direct summand *N* of *W*, $\frac{N+A}{A}$ is a direct summand of $\frac{W}{A}$. Then $\frac{W}{A}$ is a semi- $\frac{T+A}{A}$ -lifting module. **Proof** Let $\frac{X}{A}$ be a submodule of $\frac{W}{A}$. Since *W* is semi-*T*-lifting, then X = N + H, where *N* is a direct summand of *W* and $H \ll_{S-T} W$. Hence $\frac{X}{A} = \frac{N+H}{A} + \frac{H+A}{A}$. By our assumption, $\frac{N+A}{A}$ is a direct summand of $\frac{W}{A}$. To show that $\frac{H+A}{A} \ll_{S-\frac{T+A}{A}} \frac{W}{A}$, let $\frac{K}{A} \leq \frac{W}{A}$ such that $\frac{T+A}{A} \subseteq \frac{H+A+K}{A} = \frac{W+A+K}{A}$. $\frac{H+A}{A} + \frac{K}{A} = \frac{H+A+K}{A}, \text{ then } T \subseteq T + A \subseteq H + A + K. \text{ Since } H \ll_{S-T} W, \text{ thus } T \subseteq A + K + Rad(W) \text{ and}$ hence $\frac{T+A}{A} \subseteq \frac{K}{A} + \frac{Rad(W)}{A} \subseteq \frac{K}{A} + Rad\left(\frac{W}{A}\right), \text{ thus } \frac{W}{A} \text{ is semi} - \frac{T+A}{A} - \text{ lifting module.}$ Recall that W is called a distributive module if for every submodules A, B and C of W, $A + (B \cap C) =$

 $(A+B) \cap (A+C)$ and $A \cap (B+C) = (A \cap B) + (A \cap C)$, see[6].

Corollary (3.9)

Let W be a semi-T-lifting and distributive module and A be a submodule of W. Then $\frac{W}{A}$ is a semi- $\frac{T+A}{A}$. lifting module.

Proof. Let N be a direct summand of W, then $W = N \oplus \dot{N}$, for some submodule \dot{N} of W. Thus $\frac{W}{A} = \frac{N + \dot{N}}{A} = \frac{N + \dot{A}}{A} + \frac{N + \dot{A}}{A}.$ Since W is distributive, then $(N + A) \cap (\dot{N} + A) = ((N + A) \cap \dot{N}) + (N + A) \cap (\dot{N} + A) = (N + A) \cap \dot{N}$ $((N + A) \cap A) = A$. Hence, $\frac{W}{A} = \frac{N+A}{A} \bigoplus \frac{N+A}{A}$. Therefore, by Prop (3.8), $\frac{W}{A}$ is semi- $\frac{T+A}{A}$ -lifting module. **Lemma (3.10)** [7, Lemma 5.4]

Let $W = W_1 \oplus W_2$ be an *R*-module. Then $\frac{W}{A} = \frac{W_1 + A}{A} \oplus \frac{W_2 + A}{A}$ for every fully invariant submodule A of W.

Corollary (3.11)

Let W be a semi-T-lifting module. If A is a fully invariant of W, then $\frac{W}{A}$ is a semi- $\frac{T+A}{A}$ -lifting module. **Proof:** It is clear by Proposition (3.8) and Lemma (3.10).

Proposition (3.12)

Let $W = W_1 \oplus W_2$ be a module such that $R = AnnW_1 + AnnW_2$. If W_1 is semi- T_1 -lifting and W_2 is semi- T_2 -lifting, then $W = W_1 \oplus W_2$ is a semi- $T_1 \oplus T_2$ -lifting module.

Elewi

Proof: Let *X* be a submodule of a module *W*. Since $R = AnnW_1 + AnnW_2$, then by the same way of the proof of [8, proposition 4.2, chaphter1], $X = X_1 \bigoplus X_2$, where $X_1 \le W_1$ and $W_2 \le W_2$. By W_1 is semi- T_1 -lifting and W_2 is semi- T_2 -lifting module, thus $X_1 = F_1 + H_1$, where $F_1 \le \bigoplus W_1$ and $H_1 \ll_{S-T_1} W_1$, and $X_2 = F_2 + H_2$ where $F_2 \le \bigoplus W_2$ and $H_2 \ll_{S-T_2} W_2$.

Hence $X = X_1 \oplus X_2 = (F_1 \oplus F_2) + (H_1 \oplus H_2)$. One can easily show that $(F_1 \oplus F_2)$ is a direct summand of W. By [3] we have $H_1 \oplus H_2 \ll_{S-T_1 \oplus T_2} W$. Thus $W_1 \oplus W_2$ is a semi- $T_1 \oplus T_2$ -lifting module.

Proposition (3.14):

Let $W = \bigoplus_{i \in I} W_i$ be a fully stable module and $T = \bigoplus_{i \in I} T_i$ where $T_i \leq W_i$, for every $i \in I$. If W_i is semi- T_i -lifting module, for each $i \in I$, then W is a semi- $\bigoplus_{i \in I} T$ -lifting module.

Proof: Let *X* be a submodule of *W*. For each $i \in I$, one can easily show that $X = \bigoplus_{i \in I} (X \cap W_i)$. Since $X \cap W_i \subseteq W_i$ and W_i is semi- T_i -lifting, then $X \cap W_i = F_i + H_i$, where $F_i \leq \bigoplus W_i$ and $H_i \ll_{S-T_i} W_i$. Therefore $\bigoplus (X \cap W_i) = \bigoplus_{i \in I} F + \bigoplus_{i \in I} H_i$. One can easily show that $\bigoplus_{i \in I} F_i \leq \bigoplus_{i \in I} W_i$. Thus by [3], $\bigoplus H_i \ll_{S-\bigoplus T_i} W$. Therefore *W* is a semi- $\bigoplus T_i$ -lifting module.

Proposition (3.15)

Let \overline{W} be a finitely generated, faithfull and multiplication module. Then W is semi-T-lifting module if and only if R is semi-[T: W]-lifting module.

Proof: Assume that *W* is a semi-*T*-lifting module and let *I* be an ideal of *R*. Since *W* is a semi-*T*-lifting module, then there exist $F \leq \bigoplus W$ and $H \ll_{S-T} W$ such that IW = F + H. Since *W* is a multiplication module, then there exists ideals *J* and *K* of *R* such that F = JW and H = KW. Hence IW = (J + K)W. But *W* is finitely generated, faithful and multiplication module, thus by [8] *W* is a cancellation module. Therefore I = J + K. Claim that $J \leq \bigoplus R$. To show that, let $W = F \oplus F$, where $F \leq W$ such that F = JW, for some ideal f of *R*. Hence $RW = W = JW \oplus JW = (J + f)W$. But *W* is a cancellation module, therefore R = J + f.

To show that $J \cap \hat{f} = 0$, since W is a finitely generated, faithful multiplication module, then $0 = JW \cap \hat{f}W = (J \cap \hat{f})W$ and hence $J \cap \hat{f} = 0$. Thus $J \leq \bigoplus R$. By [3], $K \ll_{S-[T:W]} R$. Hence R is semi-[T:W] –lifting module.

Conversely, assume that *R* be a semi-[*T*: *W*]-lifting and let *X* be a submodule of *W*. Since *W* is multiplication module, then there exists an ideal I of *R* such that X = IW. Then there exist $J \leq \bigoplus R$ and $K \ll_{S-[T:W]} R$ such that I = J + K. Hence IW = JW + KW. Claim that $JW \leq \bigoplus W$. To show that, let $R = J \oplus \hat{J}$, for some ideal \hat{J} of *R*, hence $W = RW = (J + \hat{J})W = JW + \hat{J}W$. Since *W* is a finitely generated, faithful and multiplication module, then $JW \cap \hat{J}W = (J \cap \hat{J})W = 0W = 0$. Thus $JW \leq \bigoplus W$, by [3], and $KW \ll_{S-T} W$. Therefore *W* is a semi-*T*-lifting module.

References

- 1. Beyranvand, R and Moradi F. 2015. Small submodule with respect to an arbitrary submodule. *Journal of Algebra and Related Topics*, 3(2): 43-51.
- 2. AL-Redeeni, H.S. 2017. On $(G^* -)$ T-lifting modules and T H supplemented Module. Ms. Thesis, Department of Mathematic, college of science, Baghdad University, Iraq.
- 3. Elewi, A.A. 2020. Semi-T-small submodule, Iraqi journal of science, accepted.
- 4. Kasch.F.1982. Modules and ring. London, Academic Press.
- 5. Wisbauer, R. 1991. Foundations of module and ring theory. Philadelphia. Gordon and Brwach.
- 6. Erdogdu, V.1987. Distributive Module. Can. Math. Bull, 30: 248-254.
- 7. Orhan, N., Tutuncu, D.K. and Tribak, R. 2007. On Hollow Modules. Tutuncu, 11(20): 545-568.
- 8. Abbas, M.S. 1991. On fully stable modules. Ph.D. Thesis, Department of Mathematic, college of science, Baghdad University, Iraq.