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Abstract 

      This paper presents a numerical solution to the inverse problem consisting 

of recovering time-dependent thermal conductivity and  heat source coefficients  

in the one-dimensional  parabolic heat equation.   This  mathematical  

formulation  ensures that the inverse problem  has a unique  solution.   

However, the problem  is still  ill-posed since small errors  in the input data 

lead to a drastic  amount  of errors in the output coefficients.  The  finite  

difference method  with  the Crank-Nicolson  scheme is adopted  as a direct  

solver of the problem in a fixed domain.   The inverse problem is solved 

subjected to both exact and noisy measurements  by using the MATLAB  

optimization  toolbox  routine  lsqnonlin , which is also applied to minimize the 

nonlinear  Tikhonov  regularization functional.  The thermal conductivity and 

heat source coefficients are reconstructed using heat flux measurements. The 

root mean squares error is used to assess the accuracy of the approximate 

solutions of the problem. A couple of  numerical  examples are presented to 

verify the accuracy and stability of the solutions. 

 

Keywords: Inverse  problem; Heat equation;  Heat  flux; Tikhonov  

regularization; Nonlinear optimization. 

 

1 Introduction  
      Inverse problems for the parabolic heat equation consisting of determining the unknown 

coefficients  and  heat source  depending  on  time or space variable,  have  recently  received  some 

attention. An example of coefficient identification problem is to determine a single unknown 

time- dependent  property,  such as heat capacity,  thermal  conductivity,  or diffusivity,  from 

additional local or non-local measurements of the main dependent variable at the boundary or 

inside the domain [1, 2, 3]. The knowledge to this physical property is important to understand  

the heat transfer  in biological tissues,  finance, groundwater  flow, and  oil recovery.  In previous 

papers [4, 5, 6], multiple time-dependent coefficient identifications were considered, while they 

were recently solved numerically.  In these studies, the unknowns were mainly coefficients 

multiplying the temperature and its partial derivatives. However, in other studies [7, 8, 9], one of 

the time-dependent  unknowns  is allowed to be in the free term  heat source.  Other  authors  [10] 

investigated  the reconstruction  of these coefficients,  as well as of the absorption coefficient, 

using the measurement of the heat moments.  The time and space-dependent unknown 

coefficients from data measurements in the one-dimensional parabolic heat equation were 

determined elsewhere [11]. 

     In a recent paper [3], the authors investigated the inverse problems of simultaneous numerical 
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reconstruction of time-dependent coefficients      (advection/convection coefficient) or d(t) 

(reaction/perfusion coefficient), together with the unknown heat source term f (t), in one-

dimensional parabolic  equations from integral over-specification conditions.   In  this  paper,  we 

focus on solving numerically  the unknown  coefficients  a(t) (thermal  conductivity)  and f(t) 

together  with  the unknown  temperature  satisfying  the inverse problem (subjected to both exact 

and noisy data), using the measurements of heat flux instead of integral conditions.  The inverse 

problems  i n v e s t i g a t e d  i n  t h i s  p a p e r  h a v e  already been proved to be locally 

uniquely solvable by Bereznyts’ka [12], but no numerical reconstruction has been attempted so 

far. It is the purpose of this paper to undertake the simultaneous numerical solution of these 

unknowns. 

The  paper  is structured as follows: In Section  2, the mathematical  formulation of the inverse 

problem is stated. The numerical finite-difference with a Crank-Nicolson discretization of the direct 

problem is described in Section 3.  In Section 4, the numerical approach  based on the 

minimization of the nonlinear Tikhonov regularization functional is introduced.  In Section 5, 

numerical results and discussion are illustrated.. Finally, conclusions of the article are given in 

Section 6. 

2 Mathematical formulation of inverse problem 

In the rectangular domain                       , we consider the inverse problem of 

determining the time-dependent coefficients 

(                )  ( 
 
 [   ])

 

        
 
   ̅                         [   ]   

that satisfies the one-dimensional heat equation  

                                                                                        
(1) 

subject to the initial condition  

                  [   ]                                                            (2) 

the Dirichlet non-homogeneous boundary conditions 

                                     [   ]                                                            (3) 

and the heat flux overdetermination  condition 

                                       [   ]                                                            (4) 

where           for i=1,2,3,4 are given functions satisfying compatibility conditions. The uniqueness 

of the solution of the inverse problem (1)-(4) was established earlier in [12] and reads as follows. 

Theorem 1.  (Uniqueness of the solution) 

Assume t h a t  the following conditions are satisfied: 

(i)                           
 

   ̅  ; 

(ii)      (  
                                 )        (  

                 

                )                                     [   ]               (5) 

Then the inverse problem (1)-(4) cannot have more than one solution in the domain   . 

In this problem, the Holder space  
 

 [   ] denotes the space of differentiable functions on [0,T] with 

the derivative being Holder continuous with the exponents 
 

 
  Also,        

 

   ̅   denotes the space of 

continuous functions u along with their partial derivatives           in  ̅ , with     being Holder 

continuous with exponent 
 

 
  in   [   ]  uniformly with respect to   [   ]. 

3 Direct problem  

When                                                and       are known, the direct problem is 

given by equation (1)-(3). We subdivide the solution domain                into  M and N 

subintervals of equal step lengths,    and     where    
 

 
  and    

 

 
. We denote  (     )  

       where       ,       ,  (  )      (  )      (     )       (     )        (     )  

    
,   (     )      ,  for      ̅̅ ̅̅ ̅̅ , and       ̅̅ ̅̅ ̅. We use the finite difference method (FDM) with 

Cranck-Nicolson  scheme [13], which is unconditionally stable and second order accurate in space 

and time.  Based on FDM with C-N, equation (1) can be approximated as: 

                (        )                                 (      )                
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        ))                                      (6) 

   

for          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and           ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, where  

 

     
      

      
 

       

     
         

      

     
 

       

 
       

      

      
 

       

     
  

The initial and boundary conditions in equations (2) and (3) are discretized as follows: 

                            ̅̅ ̅̅ ̅̅                                                          (7) 

       (  )              (  )                  ̅̅ ̅̅ ̅̅                                                          (8) 

At each time step       for          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, using the Dirichlet boundary conditions (8), 

the above difference equation (6) can be reformulated as a (M − 1) × (M − 1) system of 
linear equations of the form 

                                                                        (9) 

where   (                              )
 
                        

     
 

  

[
 
 
 
 
 
                                                                                                        

                                                                                                     

                                                                                                 
                                                                                   

                                                                                                ]
 
 
 
 
 

 

             (      )                           
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       )), 

              (      )              
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      )  (           
        ))    

       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 

                  (        )                                 
  

 
((         

 

       )  (             
          )). 

The expressions in (4) are calculated using the following finite  difference approximation 

formulas: 

 

  (  )  
             

     
          ̅̅ ̅̅ ̅̅                                        (10) 

  (  )  
                 

     
         ̅̅ ̅̅ ̅                               (11) 

 

4 Inverse problem  

The numerical  solution  of the inverse  problem  (1)–(4)  is obtained  by  minimizing  the 

nonlinear Tikhonov regularization function 

       ∑ [  (    )        ]
  

    ∑ [  (    )        ]
  

      ∑   
  

      ∑   
  

          (12) 

where u solves the direct problem (1)–(3) for given a(t) and     , respectively.  It is worth 

mentioning  that in (12) at the first  time  step,  i.e.    , the derivatives          and         

are obtained from the initial condition (2) via (10) and (11), as 

        
                

     
                                        (13) 

        
                    

     
                                 (14) 

where          for      ̅̅ ̅̅ ̅̅ . Also, one can  remark  that at initial  time  t = 0, the values a(0) 

and f ( 0 )  are obtained from equations (25) and (26).  The minimization of  (12) is performed 

using the MATLAB toolbox routine lsqnonlin, which does not require supplying by the user the 

gradient of the objective function [14, 15]. This routine attempts to find the minimum of a sum of 
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squares by starting from the initial guesses. The inverse problems given by (1)–(3) are solved 

subject to both exact and noisy measurements (4). The noisy data are numerically simulated as 

follows 

  

  
  (  )    (  )              

  (  )    (  )                ̅̅ ̅̅ ̅̅                                        (15) 

where     and     are random variables  generated  from a Gaussian  normal  distribution with a 

mean of zero and standard deviations     and   , respectively, given by 

          [   ]                        [   ]                                              (16) 

 

where   represents the percentage of noise. 

5 Results and discussion  

            To assess the accuracy of the approximate solutions, we introduce the root mean squares 

error (RMSE), defined as follows: 

        [
 

 
∑ (          (  )        (  ))

 
 
   ]

 

 

                                      (17) 

        [
 

 
∑ (          (  )        (  ))

 
 
   ]

 

 

                                     (18) 

Remark. During the computation processing, we need the values of a(0) and f ( 0 ) .  One can 

derive these values from the governing equation (1) with  the help of the boundary and 

overdetermination conditions (3) and (4), as follows. 

We can write equation (1) at     and     as 

                                                                                (19) 

                                                                                (20) 

Also, by differentiating equation (3) with respect to t, we obtain 

          
                    

                                                             (21) 

By using equation (21) and solving the system of equations (19) and (20) for a(t) and f (t), we 

obtain 

     
 

    
{(              

                        )        (  
                 

                   )       }      [   ]                                                                            (22) 

     
 

    
{(  

                                    )       (              
     

                   )      }      [   ]                                                                            (23) 

 

                                            [   ]                                                        (24) 

 

where                  
One can observe that       , and since the functions in (24) are continuous in [0, T ], 

we obtain that       . So, the denominator in (22) and (23) does not vanish over the time 

interval   [   ]. 
By letting     in the analogue  of expressions (22) and  (23), we obtain  values of 

a(0) and f (0) explicitly, as follows: 

 

     
 

    
{(              

                        )        (  
                 

                   )       }                                                                      (25) 

     
 

    
{(  

                                    ) 
      (              

     

                   ) 
     }                                                                                     (26) 

For simplicity, we take       in all Examples. 

5.1 Example 1  

We consider the inverse problem (1)–(4) and solve this problem with the input data 

                                         
                                                                             (27) 
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The exact solutions for the heat flux      ,       and the temperature        are given by 

                                                                         (28) 

                                                           (29) 

The analytical solution of the unknown coefficients a(t) and f (t) is given by 

                                                                     (30) 

The  graph  of the function       given by equation  (5) for Examples  1 and  2 is shown in 

Figure  1.  From  this  figure, it can be seen that this  function  never vanishes over the time  

interval    [   ] and,  hence, condition  (5) is satisfied. Consequently,  according to Theorem 1, 

the solution to the inverse problem given by equations (1)–(4) with data (27)– (30) is unique.   

Figure  2 illustrates  the absolute  error  between  the analytical  solution (29) and the numerical 

solution for the temperature       . It can be observed that the accuracy of the numerical  

solution improves as the mesh size decreases, as shown clearly in Table  1. 

 

Table 1-The RMSE values for µ3(t) and µ4(t) with various mesh sizes, M  = N    {10, 20, 40}, for the 

direct problem 

M = N 10 20 40 

rmse(µ3) 

rmse(µ4) 

0.0037 

0.0198 

8.4E-4 

0.0050 

2.0E-4 

0.0012 

 
Figure 1- The graph of the function W (t) as a function of t, given by (5) for Examples 1 and 2. 
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Figure 2- The absolute error between the numerical and analytical (29) solutions for  u(x, t) with  

various mesh sizes M  = N   {10, 20, 40}, for direct problem. 
 

First, we start the investigation for reconstructing the thermal conductivity and heat source 

coefficients a (t) and f (t), respectively, in the case when there is no noise in the input data in (4).  

The objective function (12), as a function of the number of iterations, is plotted in Figure 3. 

From this figure, it can be seen that a rapid decrease to a very low value of O(10−25) is 

achieved in about 7 to 11 iterations for Examples 1 and 2. The  corresponding  exact  and  

numerical  solutions  for a(t) and f(t) are presented  in Figure 4. From this figure, it can be seen 

that there is an excellent agreement between the exact and numerical solutions with rmse(a) = 

1.8 × 10−3 and rmse(f) = 8.5 × 10−3, respectively. 

      Next,  we investigate  the stability  of the solution  with  respect  to noise.  We include p   

{0.1%, 1%} noise to the formulated data µ3 and µ4,  as in (15). The objective function (12), as 

a function of the number of iterations with and without regularization  is plotted  in Figure 5.   

From  this  figure, it can be observed that a monotonic  decreasing convergence is achieved and 

the minimization process stops when the allowed tolerance is reached. 
 (a)                                                                            (b) 

 
Figure 3-The objective function (12), as a function of a number of iterations, with no noise and  no 

regularization for: (a) Example 1 and (b) Example 2. 

 
The numerical solutions for the unknown coefficients plotted in Figure 6 are oscillatory and 

highly unstable.  Therefore, the regularization is needed in order to restore the stability of the 

solution in the unknown coefficients.  Figure 7 displays the associated numerical results for the 

coefficients a (t) and f  (t). From this figure and Table 2, it can be seen that accurate and stable 

results are obtained for β1 = β2 = 10−3 for p = 0.1% and β1 = β2 = 10−2 for p = 1%, 

respectively. 

                            (a)                                                                                (b) 
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 Figure 4-The exact (30) and approximate solutions for: (a) thermal conductivity a(t) and (b) heat 

source f(t), no noise and no regularization, for Example 1. 

 
 
  (a)                                                                   (b) 

 
Figure 5-The objective function (12), as a function of a number of iterations, with  p   {0.1%, 1%} 

noise for : (a) without regularization and (b) with regularization, for Example 1.  

                      (a)         (b) 

 
Figure 6- The exact (30) and numerical solutions for: (a) a(t) and (b) f (t),  with  p   {0.1%, 1%} 

noise and with no regularization for Example 1. 

                            (a)                                                                                       (b) 

 
Figure 7-The exact (12) and numerical solutions for: (a) a(t) and (b) f (t) with,  p   {0.1%, 1%} noise 

and with regularization for Example 1.  
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5.2  Example 2 

      In the previous example, we inverted the unknowns of thermal conductivity a(t) = 1 + t and  

heat source f (t) = t, which are smooth  functions.   In this example, we consider a non-smooth 

test functions, as in equation (31).  We consider the inverse problem (1)–(4) with the following 

input data 
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One can notice that the conditions of Theorem 1 are satisfied and, hence, the uniqueness of the 

solution holds. With this data, the analytical solution of the inverse problem is given by 

 

        

{
 
 
 

 
 
                

 

 

  
 

 
   

 

 

  
 

 
   

 

 

        
 

 
    

                              

{
 
 
 

 
 
                

 

 

  
 

 
   

 

 

  
 

 
   

 

 

        
 

 
    

 

As we did in Example 1, we start with the case of exact input data (4), i .e.   p = 0 in (16).  

The corresponding  numerical  results  of the timewise  thermal  conductivity  a(t) and  heat source 

f (t) are  displayed  in Figure  8.   From this  figure, it can be seen that there is an excellent 

agreement between the analytical and numerical solutions with  

rmse (a) = 1.3 × 10−2 and rmse(f) = 9.3 × 10−3. 

We add p   {0.1%, 1%} noise to the simulated data µ3  and µ4 , as in (14).  Although 
not illustrated, it is reported that the decreasing monotonic convergence of the objective 

function (12), as a function of the number  of iterations, without and with regularization, is 

achieved in about 8 to 15 iterations.  The resulting thermal conductivity and heat source are 

plotted  in Figure-9 for various  levels of noise.  With  no regularization,  the numerical 

results for the unknown coefficients a(t) and  f(t) presented in Figures 9(a) and 9(b) are quite 

inaccurate with the values of  rmse(a) = 0.0583 and rmse(f) = 0.0918 for p = 0.1% and rmse(a) = 

0.3928 and rmse(f ) = 1.0143 for p = 1%, respectively.  However, when we apply the regularization 

with the parameters β1 = β2 = 10−3 for p = 0.1% and β1 = β2 = 10−1 for p = 1% to (12), we 

obtain more accurate reconstructions for a(t) and f (t) (Figures 10), with rmse(a) and rmse(f) 
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values decreasing to rmse(a,f) = {0.0381, 0.0855} and rmse(a,f) = {0.1640, 0.4903}, respectively.  

The same conclusions as those obtained for Example 1 can be drawn about the stable 

reconstructions for the unknown coefficients. 

 

 (a)                                                                                   (b) 

  
Figure 8-The exact (31) and approximate solutions for: (a) thermal conductivity a(t) and (b) heat 

source f(t), with no noise and no regularization, for Example 2.  

                                   (a)                                                                                         (b) 

 
 
Figure 9- The exact (31) and numerical solutions for: (a) a(t) and (b) f (t) with p   {0.1%, 1%} noise, 

and with no regularization for Example 2.  

                              (a)                                                                                                         (b)  

 
Figure 10-The exact (31) and numerical solutions for: (a) a(t) and (b) f (t),  with regularization  and  
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noise p = 0.1% (-    -)  and p=1% (- -),  for Example 2. 

 
 
 
Table 2-The rmse values for p   {0, 0.1%, 1%} noise, with and without regularization, for 

Examples 1 and 2. 

Example 1 rmse(a) rmse(f) 

p = 0, β1 = β2 = 0 

p = 0.1%, β1 = β2 = 0 

p = 0.1%, β1 = β2 = 10−3
 

p = 0.1%, β1 = β2 = 10−2
 

p = 1%, β1 = β2 = 0 

p = 1%, β1 = β2 = 10−3
 

p = 1%, β1 = β2 = 10−2
 

p = 1%, β1 = β2 = 10−1
 

1.8E-3 

0.0268 

0.0351 

0.0605 

0.3551 

0.2796 

0.1915 

0.1555 

8.5E-3 

0.1003 

0.0660 

0.2162 

1.0631 

0.5312 

0.3025 

0.4219 

Example 2 rmse(a) rmse(f) 

p = 0, β1 = β2 = 0 

p = 0.1%, β1 = β2 = 0 

p = 0.1%, β1 = β2 = 10−3
 

p = 0.1%, β1 = β2 = 10−2
 

p = 1%, β1 = β2 = 0 

p = 1%, β1 = β2 = 10−3
 

p = 1%, β1 = β2 = 10−2
 

p = 1%, β1 = β2 = 10−1
 

0.0013 

0.0583 

0.0381 

0.0675 

0.3928 

0.2807 

0.1935 

0.1640 

9.3E-3 

0.0918 

0.0855 

0.2799 

1.0143 

0.4997 

0.3170 

0.4903 

 
6    Conclusions 

        The inverse problem relating to the determination of the time-dependent coefficients a(t) and f(t) 

along with the temperature u(x, t) in a one-dimensional parabolic equation from over-specification 

conditions has been investigated for the  first time numerically.   The direct solver based on the Crank-

Nicolson FDM was applied. The resulting nonlinear minimization objective function problem was 

solved computationally using the MATLAB subroutine lsqnonlin. The Tikhonov regularization was 

employed in order to obtain stable and accurate solutions since the inverse problem is ill-posed and 

sensitive to noise.  The numerical results for the inverse problem show that stable and accurate 

approximate results have been obtained.  Finally, the generalization of the proposed method for 

determining the time-dependent coefficients in a two-dimensional heat equation is an interesting topic 

for future research. 
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