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Abstract 
     In this article, an efficient reliable method, which is the residual power series 

method (RPSM), is used in order to investigate the approximate solutions of 

conformable time fractional nonlinear evolution equations with conformable 

derivatives under initial conditions. In particular, two types of equations are 

considered, which are time coupled diffusion-reaction equations (CD-REs) and 

MKdv equations coupled with conformable fractional time derivative of order α. 

The attitude of RPSM and the influence of different values of α are shown 

graphically. 
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الخلاصة 
من أجل إيجاد  (RPSM)في هذه المقالة ، استخدمت طريقة فعالة تسمى طريقة سمسمة الطاقة المتبقية      

المطابقة في ظل الشروط ذات رتبة الزمن الكسرية الحمول التقريبية لمعادلات التطور غير الخطية الجزئية 
الفيزياء مع مشتق زمني كسري مطابق من الرتبة  بصورة خاصة ، تم أخذ نوعين من المسائل في. الابتدائية

α. عرض سموك طريقة(RPSM) وتأثيرها ولقيم  α ًمختمفة وقد تم استعراض ذلك بيانياا. 
1. Introduction 

     Recently, the subject of fractional calculus has been gaining a considerable attention from various 

authors due to its important role in many applications. Fractional derivatives can be considered as a 

generalization of integer derivatives that have been widely used in characterizing the biological and 

physical phenomena[1-4]. There are many definitions for the fractional order derivatives, such as 

those reported by Riemann-Liouville, Caputo, and Grunwald-Letnikov, etc.[5- 7]. Khalil et al.[8, 9] 

were the first who proposed a new fractional derivative, viz. the conformable fractional derivative 

(CFD) to take control of the remarkable problem that had occurred in the Riemann-Liouville and 

Caputo fractional derivatives, which is the inheritance of the nonlocal properties from the integral. 

Consequently, various numerical or semi numerical methods, for example the Adomain decomposition 

method [10], generalized Mittag-Leffler function method and Sumudu transform method [11], 

                   ISSN: 0067-2904 
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homotopy perturbation method [12], and variational iteration method [13], were discovered to provide 

the approximate solutions of FDEs. The RPSM  was used successfully to produce a series of solutions 

for tumor models[14]. RPSM was used to investigate a numerical solution for the fractional Burger 

equation[15]. The exact analytical solution of the time-fractional Schrodinger equation was found in 

another work [16]. The main aim of this paper is to employ RPSM for two models of nonlinear FDEs 

of special interest physically, in terms of the convergent fractional power series. The rest of this article 

is arranged as follows: In section 2 some preliminaries are given. In section 3 we describe the RPSM. 

The models of the proposed study are described in sections 4 and 5. Numerical simulations are drawn 

in section 6. Finally, the conclusions are presented in section 7.  

2. Preliminaries 

Definition 2.1[8]: Given a function :[0, )y   , then the conformable fractional derivative of 

order α of y is defined by 

                       

1

0

( ) ( )
( )( ) lim , 0, (0,1]t

y t t y t
CD y t t















 
                                         (1)  

And the conformable integral of order α is defined by 

                       

1( )( ) ( ) , 0

t

tCI y t y x x dx 



                                                                    (2) 

Theorem 2.2 [8]: Let α ϵ (0, 1] and f, g be α-differentiable at a point t > 0. then 

                     

1. ( ) ( ) ( ), ,

2. ( ) , ,

t t t

p p

t
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CD t pt p

  

 

    

  




                                      (3) 

                      3. CDt
α
(λ)=0, for all constant function  f(t)=λ 

                     
2

4. ( ) ( ) ( )

5. ( / ) ( )

t t t

t

CD fg f CD g g CD f

CD f g g f g

  



 

 
 

                      6. If, in addition, f is differentiable, then 
1( )( ) ( ).t

df
CD f t t t

dt

   

3. An Overview of CRPSM  

     We consider the following fundamental concept of RPSM operator: 

                        
( , ) ( ) ( ).CD u x t N u R u                                                                 (4)                                                                                                                                  

Where N(u) and R(u) are nonlinear and linear terms, respectively, with an initial condition (IC): 

                        u( ,0) ( ).x f x                                                                                  (5) 

 The RPSM suggests the solution for Eqs.(4) as a fractional power series (FPS) about the  (IC)t=0 as: 

                          

( , ) ( ) , 0 1, , 0 .
( 1)

n

n

n o

t
u x t f x x t R

n










        
 

         (6) 

Truncating the infinite series (6) after k
th 

terms implies: 

                          

( , ) ( ) .
( 1)

nk

k n

n o

t
u x t f x

n






 

                                                            (7) 

For the convergence of the FBS, refer for instance to a previous work [17]. 

Using Equation (5), then Eq. (7) may be expressed as: 

                           1

( , ) ( ) ( ) , 1,2,3,
( 1)

nk

k n

n

t
u x t f x f x k

n





  
 

                            (8) 

The residual function ( RF ) for Eq.(4) is defined by: 

                           
Re ( , ) ( , ) ( ) ( ).u ts x t CD u x t N u R u                                               (9) 

Hence, the k
th
( RF ) Resu,k  is   

                           ,Re ( , ) ( , ) ( ) ( ).u k t k k ks x t CD u x t N u R u                                       (10) 
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As in an earlier work [18], Res( , )x t = 0 and lim Re ( , ) Res(x, t)


k
k

s x t . Therefore, D Res( , )n

t x t

=0, which comes from theorem  2.2, property 3, and since Dn

t


of RF coincides at t = 0, for all 

n=0,1,…,k, then, 

                          
D Re ( ,0) Re ( ,0) 0, 0,1, ,kn n

t t kC s x CD s x n                            (11) 

However, finding  1 2 3( ), ( ), ( ),f x f x f x needs to solve the algebraic equations: 

                          
( 1)

,D Re ( ,0) 0, 1,2,3,k

t u kC s x k                                                   (12) 

4. RPSM for solving CD-REs 

     The performing of the RPSM for finding the solution of the CD-REs  in terms of the FPS is 

represented in this section. 

First consider that: 

  (1 ) ,t xxCD u u u v u                                                             (13) 

                                         
,t xxCD v v uv                                                                        (14)                  

With                                 
0.5 2

( ,0) ,
[1 ]

kx

kx

e
u x

e



                                                              (15) 

 
0.5

1
v( ,0) .

[1 ]kx
x

e



                                                                 (16) 

and the exact solution when α=1 is given by a previous work [19] as: 

                                          
0.5 2

(z) ,
[1 ]

kz

kz

e
u

e



                                                                  (17) 

 
0.5

1
v(z) .

[1 ]kze



                                                                     (18) 

     where, z x ct,   k is constant, and
tCD u ,

tCD v symbolize the conformable fractional order 

derivative w.r.t. t for the functions u and v, respectively. The solution of problems (13) - (16) in a FPS 

expansion about the (IC)t = 0 is given as follows: 

 ( , ) ( ) , 0 1,
( 1)

nk

n

n o

t
u x t f x

n






  
 

                                         (19) 

 v( , ) ( ) , 0 1.
( 1)
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n

n o

t
x t g x

n






  
 

                                         (20) 

The k
th
 truncated series of u(x,t) and v(x,t) is defined by: 

 ( , ) ( ) ,
( 1)

n

k n
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t
u x t f x

n


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


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n
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n
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






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                                                       (22) 

It is obvious that 0 ( )f x and 0g ( )x can be obtained directly from  the initial conditions given by Eqs. 

(15) and (16) , hence: 

 
0 0.5 2
( ) ,

[1 ]

kx

kx

e
f x

e



                                                                     (23)        

 0 0.5

1
g ( ) .

[1 ]kx
x

e



                                                                       (24) 

Furthermore, we rewrite Eqs. (21) and (22) as : 
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1
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Let us define the RF of Eqs. (19) and (20) as follows: 

 Re ( , ) (1 ) ,u t xxs x t CD u u u v u    
                                              

  (27) 

 Re ( , ) .v t xxs x t CD v v uv  
                                                              

(28) 

Then the k
th
 residual function becomes: 

 ,Re ( , ) (1 ) ( ) ,u k t k k k k k xxs x t CD u u u v u                                      (29) 

 ,Re ( , ) ( ) .v k t k k xx k ks x t CD v v u v                                                    (30) 

It is clear that Res( , )x t = 0 and lim Re ( , ) Res(x, t)


k
k

s x t . Therefore  

CD Re ( , ) Re ( , ) 0, , ,n n

t u t vs x t CD s x t x t    see theorem ( 2.2, property 3 ). Hence  

CD Re ( ,0) Re ( ,0) 0, 0,1, , .n n

t t ks x CD s x k n       

The coefficients of
 
f ( ) and g ( ),n 1,2, .k,n nx x   respectively, can be computed by solving the 

following system: 

                                 

( 1)

,

( 1)

,

CD Re ( ,0) 0, 1,2,

Re ( ,0) 0, 1,2,





 

 





k

t u k

k

t v k

s x k

CD s x k





                                                 (31) 

By putting the obtained values of Eq. (31) in Eqs. (19) and (20) , we get the desired approximate 

solution of (CD-REs). 

 

     The numerical behaviour of the approximate solution of u(x,t) and v(x,t) of problems (13) – (16), 

obtained by RPSM) with different values of fractional time derivative of order α, are shown 

graphically in Figures- (1) - (6). 

 

 

 

 

Figure 1-Result of u of Eq.(13) when α=1                    Figure 2-Result of v of Eq.(14) when α=1 
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Figure 3-Closed form of u of Eq.(13) when α=1        Figure 4-Closed form of v of Eq.(14) when α=1 

 

Figure - 5: Result of u of Eq.(13) when α=3/4                 Figure - 6: Result of v of Eq.(14) when α=3/4 

 

 

     The below Figures- (7 and 8) represent the absolute error between the approximate solution and the 

closed form for different values of x and y=0.1. 
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Figure 7-The absolute error between the approximate solution of u(x,t) and the closed form for 

problems (13)-(16). 

 

 
Figure 8-The absolute error between the approximate solution of v(x,t) and the closed form for 

problems (13)-(16). 

 

5. RPSM for solving coupled MKdv equations with a conformable fractional order 

derivative (CMKdv) 

     In this segment, the RPSM will also be considered in order to get the solution of the CD-R  as FBS, 

as follows: 
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21 3

3 3( ) 3 ,
2 2

t xxx x xx x xCD u u u u v uv u                                 (32) 

                                        
23 3 3 3 .t xxx x x x x xCD v v vv u v u v v                                     (33)                  

With
                                     

10
2

b
u( x , ) k tanh[ kx ],

k
                                                      (34) 

     1
10 1

2 2

b
v( x , ) ( ) b tanh[ kx ].


                                            (35) 

The exact solution when α=1 is given by a previous work [20], as: 

 1

2

b
u( x ,t) k tanh[ k ],

k
                                                 (36)       

 1
11

2 2

b
v( x ,t) ( ) b tanh[ k ].


                                        (37) 

     with
2

2 1

2

31 6
4 6

4 1

bk
x [ k ]t ,

b k


       where 1, 0,k b  is an arbitrary constant, ,tCD u

tCD v symbolize the conformable fractional order derivative w.r.t. t for the functions u and v, 

respectively. Then the solutions of problems (32) - (35) in a fractional power series expansion about 

the initial point t = 0 are given by Eqs. (19) and (20). Also ku (x,t) and kv (x,t) are defined by Eqs. 

(21) and (22), respectively. Clearly, for the case n = 0, we have from Eqs. (34) and (35) that: 

 

  1
0

2

b
f ( x ) k tanh[ kx ],

k
                                                          (38)        

 1
0 11

2 2

b
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
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Now, from Eqs. (38) and (39), we have: 
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n

b t
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
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1
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1
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              (41) 

We define the RF of Eqs. (32) and (33) as follows: 

 
21 3

Re ( , ) 3 3( ) 3 ,
2 2

u t xxx x xx x xs x t CD u u u u v uv u                    (42) 

 
2Re ( , ) 3 3 3 3 .v t xxx x x x x xs x t CD v v vv u v u v v                          (43) 

Then the k
th 

( RF ) becomes: 

 
2

,

1 3
Re ( , ) 3 3( ) 3 ,

2 2
u k t xxx x xx x xs x t CD u u u u v uv u                   (44) 

 
2

,Re ( , ) 3 3 3 3 .v k t xxx x x x x xs x t CD v v vv u v u v v                        (45) 

     The coefficient of the approximate solutions u and v of problems (32)-(35), which is represented by 

Eqs. (21) and (22), where f ( ) and g ( ),n 1,2, .k, n nx x may be obtained by solving the following 

algebraic system: 

                                   

( 1)

,

( 1)

,

CD Re ( ,0) 0, 1,2,

Re ( ,0) 0, 1,2,





 

 





k

t u k

k

t v k

s x k

CD s x k




 

By putting the obtained values in Eqs. (19) and (20), we get the desired approximate solution of 

CMKdv. 
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Figures.(9) - (14)  present the dynamic and attitude of the (RPSM) solutions u(x,t) and v(x,t) of 

problem (32) – (35) under the influence of the replacing in the values of fractional order α. 

 

 

 

 

Figure - 9: Result of u of Eq.(32) when α=1                 Figure - 10: Result of v of Eq.(33) when α=1 

 

 

Figure 11-Closed form of u of Eq.(32) when α=1     Figure 12- Closed form of v of Eq.(33) when α=1 
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     Figure 13-Result of u of Eq.(32) when α=1/2             Figure 14-Result of v of Eq.(33) when α=1/2 

 

 

     Below, Figures-(15-16) represent the absolute error between the approximate solution and the 

closed form for different values of x and y=0.1. 

 

 

 
Figure 15-The absolute error between the approximate solution of u(x,t) and the closed form for 

problems (32)-(35). 

 

 



Mohammed and Ahmed                     Iraqi Journal of Science, 2020, Vol. 61, No. 11, pp: 3082-3094 
 

3091 

 
Figure 16-The absolute error between the approximate solution of v(x,t) and the closed form for 

problems (32)-(35) 

 

6. Numerical Simulation 

      In the previous sections the accuracy and efficiency of the proposed method were verified. The 

actions of the approximate solution u(x,y) and v(x,y) for problems (13)-(16) and (32)-(35) for different 

values of α and x at t=0.2 are given in Figures (17)-(20). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   Figure 17-The action of u(x,t) of problems (13)-(16). 
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Figure 18-The action of v(x,t) of problems (13)-(16). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   Figure 19- The action of u(x,t) of problems (32)-(35). 
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              Figure 20-The action of v(x,t) of problems (32)-(35). 

 

 

7. Conclusions 

     In this study, RPSM was implemented to find the solutions of CD-REs and CMKdv. The 

approximate solution was given as an infinite FPS. The suggested method introduced an easy manner 

to find the coefficients of the solution, which converges quickly to the closed form. The numerical 

results demonstrate the significant feature, efficiency, and reliability of the proposed method for 

solving CD-REs and CMKdv. 
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