

ISSN: 0067-2904

On the Direct Product of Intuitionistic Fuzzy Topological d-algebra

Ali Khalid Hasan
Directorate General of Education in Karbala province, Ministry of Education, Iraq

Received: 27/7/2020
Accepted: 8/10/2020

Abstract

We applied the direct product concept on the notation of intuitionistic fuzzy semi d-ideals of d-algebra with the investigation of some theorems. Also, we studied the notation of direct product of intuitionistic fuzzy topological d-algebra, with the notation of relatively intuitionistic continuous mapping, on the direct product of intuitionistic fuzzy topological d-algebra.

Keywords: direct product, topological d-algebra, semi d-ideal, intuitionistic set, d algebra.

الخلاصة
d -طبتا في هذه الورقة مفهوم الضرب المباشر للمجموعات الحدسية الضبابية على مفهوم شبه مثالي
الضبابي الحدسي في جبر - d مع دراسة بعض النظريات، وكذلك درسنا مفهوم الضرب المباشر الحدسي
الضبابي على التوبولوجي الحدسي الضبابي في جبر - d ، وكذلك درسنا مفهوم الدالة الضبابية المستمرة نسبيا
d - على التوبولوجي الحدسي الضبابي في جبر

1. Introduction

A d-algebra is the classes of abstract algebra introduced by Negger and Kim [1] as a useful generalization of BCK-algebra. While the idea of fuzzy set, introduced by Zadeh [2] and Atanassov [3] generalized it to the concept of intuitionistic fuzzy set. Jun et al. [4] applied this notion on dalgebra. In another line, Abdullah and Hassan [5] studied the concept of semi d -ideal on d-algebra. After that, Hasan [6] introduced the concept of intuitionistic fuzzy semi d-ideals. Here, we applied the direct product concept on the notation of intuitionistic fuzzy semi d-ideals of d-algebra, with several interesting results. We also studied the notation of the direct product of intuitionistic fuzzy topological d-algebra.

2. Preliminaries

We will offer here some basic concepts which we need for this study.
Definition (2.1): [1] A d-algebra is a non-empty set H with a constant 0 and a binary operation $*$ with the conditions below:
i. $\quad v * v=0$
ii. $\quad 0 * v=0$
iii. $\quad v * u=0$ and $u * v=0$, which implies that $v=u$,
such that $v, u \in H$. We will refer to $v * u$ by $v u$ and $v \leq u$ iff $v u=0$.

[^0]Every H or G will denote for a d-algebra in this paper.
Definition (2.2) : [5] We define the semi d-ideal of H as a subset $\mathrm{V} \neq \emptyset$ of H with :
I) $\quad v, u \in V$ implies $v u \in \mathrm{~V}$,
II) $\quad v u \in V$ and $u \in V$ implies $v \in V, \forall v, u \in H$

Definition (2.3): [2] A fuzzy set ω in any set with $H \neq \emptyset$ is a function ω : $H \rightarrow[0,1]$. Also, for all $t \in[0,1]$, the set $\omega_{t}=\{v \in H, \omega(v) \geq t\}$ is a level subset of ω.
Definition (2.4): [7] We define a fuzzy set ω as fuzzy d-subalgebra with the following condition: for any $v, u \in H, \omega(v u) \geq \min \{\omega(v), \omega(v)\}$.
Definition (2.5): [6] We call the fuzzy set ω as a fuzzy semi-d-ideal if these conditions hold :
$\left(F I_{1}\right) \omega(v u) \geq \min \{\omega(v), \omega(u)\}$ and $\left(F I_{2}\right) \omega(v) \geq \min \{\omega(v u), \omega(u)\}$, for all $v, u \in H$.
Definition (2.6) [3] : An object S in H is called intuitionistic fuzzy set, with the form $S=$ $\left\{<x, \alpha_{S}(v), \beta_{S}(v)>: v \in H\right\}$, such that $\alpha_{S}: H \rightarrow[0,1], \beta_{S}: H \rightarrow[0,1]$ is the membership degree $\left(\alpha_{S}(v)\right)$ and non-membership degree $\left(\beta_{S}(v)\right) \forall v \in H$ to the set S, and $0 \leq \alpha_{S}(v)+\beta_{S}(v) \leq 1$, $\forall v \in H$.

We will use $S=\left\{<\alpha_{S}, \beta_{S}>\right\}$ instead of $S=\left\{<v, \alpha_{S}(v), \beta_{S}(v)>: v \in H\right\}$ and call it IFS for short.
Definition (2.7)[8]: Let $f: H \rightarrow G$ be a mapping. If $S=\left\{<u, \alpha_{S}(u), \beta_{S}(u)>: u \in G\right\}$ is an IFS in , then $f^{-1}(S)$ is the IFS in H defined by :

$$
f^{-1}(S)=\left\{<v, f^{-1}\left(\alpha_{S}(v)\right), f^{-1}\left(\beta_{S}(v)\right)>: v \in H\right\}
$$

Also, if $D=\left\{<v, \alpha_{D}(v), \beta_{D}(v)>: v \in H\right\}$ is an $I F S$ in H, then $f(D)$ is denoted by
$f(D)=\left\{<u, f_{\text {sup }}\left(\alpha_{D}(u)\right), f_{\text {inf }}\left(\beta_{D}(u)\right)>: u \in G\right\}$, where
$f_{\text {sup }}\left(\alpha_{D}(u)\right)=\left\{\begin{array}{cc}\sup _{v \in f^{-1}(u)} \alpha_{D}(v) & \text { if } f^{-1}(u) \neq \varnothing \\ 0 & \text { otherwais }\end{array}\right.$, and
$f_{\text {inf }}\left(\beta_{D}(u)\right)=\left\{\begin{array}{cc}i n f_{v \in f^{-1}(u)} \beta_{D}(v) & \text { if } f^{-1}(u) \neq \emptyset \\ 0 & \text { otherwais }\end{array}\right.$, for each $u \in G$.
Definition (2.8) [9]: If D is an $I F S$ in H, then
(i) $\square D=\left\{<v, \alpha_{D}(v): v \in H>\right\}=\left\{<v, \alpha_{D}(v), 1-\alpha_{D}(v): v \in H>\right\}=\left\{<v, \alpha_{D}(v), \overline{\alpha_{D}}(v)>\right\}$
(ii) $\diamond D=\left\{<v, 1-\beta_{D}(v)>: v \in H\right\}=\left\{<v, 1-\beta_{D}(v), \beta_{D}(v): v \in H\right\}=\left\{<v, \overline{\beta_{D}}(v), \beta_{D}(v)>\right\}$

Definition (2.9) [3] : Let $C=<\alpha_{C}, \beta_{C}>$ and $S=<\alpha_{S}, \beta_{S}>$ are IFS of H, then the cartesian product
$C \times S=<\alpha_{C} \times \alpha_{S}, \beta_{C} \times \beta_{S}>$ of $H \times H$ is define by the following :
$\left(\alpha_{C} \times \alpha_{S}\right)(a, b)=\min \left\{\alpha_{C}(a), \alpha_{S}(b)\right\}$ and $\left(\beta_{C} \times \beta_{S}\right)(a, b)=\max \left\{\beta_{C}(a), \beta_{S}(b)\right\}$,
where $\left(\alpha_{C} \times \alpha_{S}\right)(a, b): H \times H \rightarrow[0,1]$ and $\left(\beta_{C} \times \beta_{S}\right)(a, b): H \times H \rightarrow[0,1]$.
Definition (2.10) [3]: Let $C=<\alpha_{C}, \beta_{C}>$ and $S=<\alpha_{S}, \beta_{S}>$ are $I F S$ of H, for any r, $\mathrm{t} \in[0,1]$. The set $\mathrm{U}\left(\alpha_{C} \times \alpha_{S}, \mathrm{t}\right)=\left\{(v, u) \in H \times H,\left(\alpha_{C} \times \alpha_{S}\right)(v, u) \geq \mathrm{t}\right\}$ is called the upper level of $\left(\alpha_{C} \times\right.$ $\left.\alpha_{S}\right)(v, u)$ and the set $L\left(\beta_{C} \times \beta_{S}, r\right)=\left\{(v, u) \in H \times H,\left(\beta_{C} \times \beta_{S}\right)(v, u) \geq \mathrm{r}\right\}$ is the lower level of $\left(\beta_{C} \times \beta_{S}\right)(v, u)$.
Definition (2.11) [4]: An IFS $D=<\alpha_{D}, \beta_{D}>$ in H is called intuitionistic fuzzy d-algebra with the conditions $\alpha_{D}(v u) \geq \min \left\{\alpha_{D}(v), \alpha_{D}(u)\right\}$ and $\beta_{D}(v u) \leq \max \left\{\beta_{D}(v), \beta_{D}(u)\right\}$, for all $v, u \in H$.
Definition(2.12) [10] : An intuitionistic fuzzy semi d-ideal of H, shortly $I F S d$ - ideal, is an IFS , where
$D=<\alpha_{D}, \beta_{D}>$ in H satisfies the following inequalities :
$\left(I F S d_{1}\right) \alpha_{D}(v) \geq \min \left\{\alpha_{D}(v u), \alpha_{D}(u)\right\}$ and $\left(I F S d_{2}\right) \beta_{D}(v) \leq \max \left\{\beta_{D}(v u), \beta_{D}(u)\right\}$
$\left(I F S d_{3}\right) \quad \alpha_{D}(v u) \geq \min \left\{\alpha_{D}(v), \alpha_{D}(u)\right\} \quad$ and $\quad\left(I F S d_{4}\right) \quad \beta_{D}(v u) \leq \max \left\{\beta_{D}(v), \beta_{D}(u)\right\}$, for all $v, u \in H$.
Proposition(2.13) [4]: Every IFS d-algebra (IFSd - ideal) $D=<\alpha_{D}, \beta_{D}>$ of H satisfies the inequalities $\alpha_{D}(0) \geq \alpha_{D}(v)$ and $\beta_{D}(0) \leq \beta_{D}(v), \forall v \in H$.

3. Direct product of IFS d-ideal

We apply here the notation of direct product for intuitionistic set on intuitionistic fuzzy d-algebra and intuitionistic semi d-ideal.
Proposition (3.1) : Let $C=<\alpha_{C}, \beta_{C}>$ and $S=<\alpha_{S}, \beta_{S}>$ are IFSd-ideal of H, then $C \times S=<\alpha_{C} \times \alpha_{S}, \beta_{C} \times \beta_{S}>$ is IFSd - ideal of $H \times H$.
proof: We know that for any $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in H \times H$, we have
$\left(\alpha_{C} \times \alpha_{S}\right)\left(a_{1}, b_{1}\right)=\min \left\{\alpha_{C}\left(a_{1}\right), \alpha_{S}\left(b_{1}\right)\right\} \geq \min \left\{\min \left\{\alpha_{C}\left(a_{1} a_{2}\right), \alpha_{C}\left(a_{2}\right)\right\},\left\{\min \left\{\alpha_{S}\left(b_{1} b_{2}\right), \alpha_{S}\left(b_{2}\right)\right\}\right\}\right.$

$$
=\min \left\{\min \left\{\alpha_{C}\left(a_{1} a_{2}\right), \alpha_{S}\left(b_{1} b_{2}\right)\right\},\left\{\min \left\{\alpha_{C}\left(a_{2}\right), \alpha_{S}\left(b_{2}\right)\right\}\right\}\right\}
$$

$\left.\alpha_{S}\right)\left(\left(a_{2}, b_{2}\right)\right\}$
and

$$
\begin{aligned}
\left(\beta_{C} \times \beta_{S}\right)\left(a_{1}, b_{1}\right) & =\max \left\{\beta_{C}\left(a_{1}\right), \beta_{S}\left(b_{1}\right)\right\} \\
& \leq \max \left\{\max \left\{\beta_{C}\left(a_{1} a_{2}\right), \beta_{C}\left(a_{2}\right)\right\},\left\{\max \left\{\beta_{S}\left(b_{1} b_{2}\right), \beta_{S}\left(b_{2}\right)\right\}\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
=\max \left\{\max \left\{\beta_{C}\left(a_{1} a_{2}\right), \beta_{S}\left(b_{1} b_{2}\right)\right\},\left\{\operatorname { m a x } \left\{\beta_{C}(\right.\right.\right. & \left.a_{2}\right), \\
& \left.\left.\beta_{S}\left(b_{2}\right)\right\}\right\} \\
& \max \left\{\left(\beta_{C} \times \beta_{S}\right)\left(a_{1} a_{2}, b_{1} b_{2}\right),\left(\beta_{C} \times \beta_{S}\right)\left(\left(a_{2}, b_{2}\right)\right\}\right. \\
& =\max \left\{\left(\beta_{C} \times \beta_{S}\right)\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right),\left(\beta_{C} \times\right.\right.
\end{aligned}
$$

$\left.\beta_{S}\right)\left(\left(a_{2}, b_{2}\right)\right\}$
Also, we have

$$
\begin{aligned}
\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right) & =\min \left\{\alpha_{C}\left(a_{1}, a_{2}\right), \alpha_{C}\left(b_{1}, b_{2}\right)\right\} \\
& \geq \min \left\{\min \left\{\alpha_{C}\left(a_{1}\right), \alpha_{C}\left(a_{2}\right)\right\},\left\{\min \left\{\alpha_{S}\left(b_{1}\right), \alpha_{S}\left(b_{2}\right)\right\}\right\}\right. \\
& =\min \left\{\min \left\{\alpha_{C}\left(a_{1}\right), \alpha_{S}\left(b_{1}\right)\right\},\left\{\min \left\{\alpha_{C}\left(a_{2}\right), \alpha_{S}\left(b_{2}\right)\right\}\right\}\right. \\
& =\min \left\{\left(\alpha_{C} \times \alpha_{S}\right)\left(a_{1}, b_{1}\right),\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(a_{2}, b_{2}\right)\right\}\right.
\end{aligned}
$$

and, $\left(\beta_{C} \times \beta_{S}\right)\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right)=\max \left\{\beta_{C}\left(a_{1}, a_{2}\right), \beta_{C}\left(b_{1}, b_{2}\right)\right\}$

$$
\begin{aligned}
& \leq \max \left\{\max \left\{\beta_{C}\left(a_{1}\right), \beta_{C}\left(a_{2}\right)\right\},\left\{\max \left\{\beta_{S}\left(b_{1}\right), \beta_{S}\left(b_{2}\right)\right\}\right\}\right. \\
& =\max \left\{\max \left\{\beta_{C}\left(a_{1}\right), \beta_{S}\left(b_{1}\right)\right\},\left\{\max \left\{\beta_{C}\left(a_{2}\right), \beta_{S}\left(b_{2}\right)\right\}\right\}\right. \\
& =\max \left\{\left(\beta_{C} \times \beta_{S}\right)\left(a_{1}, b_{1}\right),\left(\beta_{C} \times \beta_{S}\right)\left(\left(a_{2}, b_{2}\right)\right\}\right.
\end{aligned}
$$

Proposition (3.2) : Let $C \times S=<\alpha_{C} \times \alpha_{S}, \beta_{C} \times \beta_{S}>$ be an IFSd-ideal of $H \times H$, then $\left(\alpha_{C} \times \alpha_{S}\right)(0,0) \geq\left(\alpha_{C} \times \alpha_{S}\right)(a, b)$ and $\left(\beta_{C} \times \beta_{S}\right)(0,0) \leq\left(\beta_{C} \times \beta_{S}\right)(a, b)$.
Proof : we know that $\left(\alpha_{C} \times \alpha_{S}\right)(0,0)=\min \left\{\alpha_{C}(0), \alpha_{S}(0)\right\} \geq \min \left\{\alpha_{C}(a), \alpha_{S}(b)\right\}=\left(\alpha_{C} \times \alpha_{S}\right)(a, b)$ and $\left(\beta_{C} \times \beta_{S}\right)(0,0)=\max \left\{\beta_{C}(0), \beta_{S}(0)\right\} \leq \max \left\{\beta_{C}(a), \beta_{S}(b)\right\}=\left(\beta_{C} \times \beta_{S}\right)(a, b)$.
Proposition (3.3) : Let $C \times S=<\alpha_{C} \times \alpha_{S}, \beta_{C} \times \beta_{S}>$ be an IFSd - ideal of $H \times H$. If $(a, b) \leq$ (x, y), then $\left(\alpha_{C} \times \alpha_{S}\right)(a, b) \geq\left(\alpha_{C} \times \alpha_{S}\right)(x, y)\left(\beta_{C} \times \beta_{S}\right)(a, b) \leq\left(\beta_{C} \times \beta_{S}\right)(x, y)$.
Proof: Let $(a, b),(x, y) \in H \times H$ such that $(a, b) \leq(x, y)$. This implies that $(a, b)(x, y)=(0,0)$.
Now, $\left(\alpha_{C} \times \alpha_{S}\right)((a, b)) \geq \min \left\{\left(\alpha_{C} \times \alpha_{S}\right)(a, b)(x, y),\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(a_{2}, b_{2}\right)\right\}\right.$

$$
\begin{aligned}
& \geq \min \left\{\left(\alpha_{C} \times \alpha_{S}\right)(0,0),\left(\alpha_{C} \times \alpha_{S}\right)(x, y)\right\} \\
& =\left(\alpha_{C} \times \alpha_{S}\right)(x, y)
\end{aligned}
$$

and $\left(\beta_{C} \times \beta_{S}\right)((a, b)) \leq \max \left\{\left(\beta_{C} \times \beta_{S}\right)(a, b)(x, y),\left(\beta_{C} \times \beta_{S}\right)\left(\left(a_{2}, b_{2}\right)\right\}\right.$

$$
\leq \max \left\{\left(\beta_{C} \times \beta_{S}\right)(0,0),\left(\beta_{C} \times \beta_{S}\right)(x, y)\right\}
$$

$$
=\left(\beta_{C} \times \beta_{S}\right)(x, y)
$$

Lemma (3.4) : Let $C \times S=<\alpha_{C} \times \alpha_{S}, \beta_{C} \times \beta_{S}>$ be an IFS d-ideal of $H \times H$. If $(a, b)(c, d) \leq$ (e, f) holds in $H \times H$, then $\left(\alpha_{C} \times \alpha_{S}\right)(a, b) \geq \min \left\{\left(\alpha_{C} \times \alpha_{S}\right)(c, d),\left(\alpha_{C} \times \alpha_{S}\right)(e, f)\right\}$ and

$$
\left(\beta_{C} \times \beta_{S}\right)(a, b) \leq \max \left\{\left(\beta_{C} \times \beta_{S}\right)(c, d),\left(\beta_{C} \times \beta_{S}\right)(e, f)\right\}
$$

Proof : Let $(a, b),(c, d),(e, f) \in H \times H$ with $(a, b)(c, d) \leq(e, f)$. Then, $((a, b)(c, d))(e, f)=$ $(0,0)$

```
(\alpha}\mp@subsup{\alpha}{C}{}\times\mp@subsup{\alpha}{S}{})(a,b)\geq\operatorname{min}{(\mp@subsup{\alpha}{C}{}\times\mp@subsup{\alpha}{S}{})(a,b)(c,d),(\mp@subsup{\alpha}{C}{}\times\mp@subsup{\alpha}{S}{})(c,d)
    min{min {(\mp@subsup{\alpha}{C}{}\times\mp@subsup{\alpha}{S}{})(((a,b)(c,d))(e,f)),(\mp@subsup{\alpha}{C}{}\times\mp@subsup{\alpha}{S}{})(e,f)},(\mp@subsup{\alpha}{C}{}\times\mp@subsup{\alpha}{S}{})(c,d)}
    \geqmin{min{(\mp@subsup{\alpha}{C}{}\times\mp@subsup{\alpha}{S}{})(0,0),(\mp@subsup{\alpha}{C}{}\times\mp@subsup{\alpha}{S}{})(e,f)},(\mp@subsup{\alpha}{C}{}\times\mp@subsup{\alpha}{S}{})(c,d)}
    min{(\mp@subsup{\alpha}{C}{}\times\mp@subsup{\alpha}{S}{})(e,f),(\mp@subsup{\alpha}{C}{}\times\mp@subsup{\alpha}{S}{})(c,d)}.
(\mp@subsup{\beta}{C}{}\times\mp@subsup{\beta}{S}{})(a,b)\leqmax{(\mp@subsup{\beta}{C}{}\times\mp@subsup{\beta}{S}{})(a,b)(c,d),(\mp@subsup{\beta}{C}{}\times\mp@subsup{\beta}{S}{})(c,d)}
    \leqmax{max{\mp@subsup{\beta}{C}{}\times\mp@subsup{\beta}{S}{}(((a,b)(c,d))(e,f)),\mp@subsup{\beta}{C}{}\times\mp@subsup{\beta}{S}{}(e,f)},\mp@subsup{\beta}{C}{}\times\mp@subsup{\beta}{S}{}(c,d)}
    \leqmax{max{\mp@subsup{\beta}{C}{}\times\mp@subsup{\beta}{S}{}(0,0),\mp@subsup{\beta}{C}{}\times\mp@subsup{\beta}{S}{}(e,f)},\mp@subsup{\beta}{C}{}\times\mp@subsup{\beta}{S}{}(c,d)}
    max{\mp@subsup{\beta}{C}{}\times\mp@subsup{\beta}{S}{}(e,f),\mp@subsup{\beta}{C}{}\times\mp@subsup{\beta}{S}{}(c,d)}. The proof is completed.
```

Theorem (3.5) : Let $C \times S=<\alpha_{C} \times \alpha_{S}, \beta_{C} \times \beta_{S}>$ be an IFSd - ideal of $H \times H$, then for any $(a, b),\left(v_{1}, u\right),\left(v_{2}, u_{2}\right) \ldots,\left(v_{n}, u_{n}\right) \in H \times H$, such that $\left(\ldots\left(\left((a, b)\left(v_{1}, u_{1}\right)\right)\left(v_{2}, u_{2}\right)\right) \ldots\right)\left(v_{n}, u_{n}\right)=$ $(0,0)$, which implies that $\left(\alpha_{C} \times \alpha_{S}\right)(a, b) \geq \min \left\{\left(\alpha_{C} \times \alpha_{S}\right)\left(v_{1}, u_{1}\right),\left(\alpha_{C} \times \alpha_{S}\right)\left(v_{2}, u_{2}\right), \ldots,\left(\alpha_{C} \times\right.\right.$ $\left.\left.\alpha_{S}\right)\left(v_{n}, u_{n}\right)\right\}$ and
$\left(\beta_{C} \times \beta_{S}\right)(a, b) \leq \max \left\{\left(\beta_{C} \times \beta_{S}\right)\left(v_{1}, u_{1}\right),\left(\beta_{C} \times \beta_{S}\right)\left(v_{2}, u_{2}\right), \ldots,\left(\beta_{C} \times \beta_{S}\right)\left(v_{n}, u_{n}\right)\right\}$.
Proof: We can obtain this directly from lemma 3.4 and theorem 3.5.
Lemma (3.6) : Let $C \times S=<\alpha_{C} \times \alpha_{S}, \beta_{C} \times \beta_{S}>$ be an IFSd - ideal of $H \times H$, then $\square(C \times S)=$ $\left\{<\alpha_{C} \times \alpha_{S}, \overline{\alpha_{C}} \times \overline{\alpha_{S}}>\right\}$ is an IFSd - ideal of $H \times H$.
Proof: We know that $\left(\alpha_{C} \times \alpha_{S}\right)(a, b)=\min \left\{\alpha_{C}(a), \alpha_{S}(b)\right\}$, therefore
$1-\left(\overline{\alpha_{C}} \times \overline{\alpha_{S}}\right)(a, b)=\min \left\{1-\overline{\alpha_{C}}(a), 1-\overline{\alpha_{S}}(b)\right\} \quad$ Thus,
$\left(\overline{\alpha_{C}} \times \overline{\alpha_{S}}\right)(a, b)=1-\min \left\{\overline{\alpha_{C}}(a), \overline{\alpha_{S}}(b)\right\}$, moreover we get $\left(\overline{\alpha_{C}} \times \overline{\alpha_{S}}\right)(a, b)=\max \left\{\overline{\alpha_{C}}(a), \overline{\alpha_{S}}(b)\right\}$
Hence, $\square(C \times S)=\left\{<\alpha_{C} \times \alpha_{S}, \overline{\alpha_{C}} \times \overline{\alpha_{S}}>\right\}$ is an IFSd - ideal of $H \times H$.
Lemma (3.7) : Let $C \times S=<\alpha_{C} \times \alpha_{S}, \beta_{C} \times \beta_{S}>$ be an IFSd - ideal of $H \times H$, then $\diamond(C \times S)=$ $\left\{<\overline{\beta_{C}} \times \overline{\beta_{S}}, \beta_{C} \times \beta_{S}>\right\}$ is an IFSd - ideal of $H \times H$.
Proof: We know that $\left(\beta_{C} \times \beta_{S}\right)(a, b)=\max \left\{\beta_{C}(a), \beta_{S}(b)\right\}$, therefore
$1-\left(\overline{\beta_{C}} \times \overline{\beta_{S}}\right)(a, b)=\max \left\{1-\overline{\beta_{C}}(a), 1-\overline{\beta_{S}}(b)\right\} \quad$ Thus,
$\left(\overline{\beta_{C}} \times \overline{\beta_{S}}\right)(a, b)=1-\max \left\{\overline{\beta_{C}}(a), \overline{\beta_{S}}(b)\right\}$. Moreover, we get $\left(\overline{\beta_{C}} \times \overline{\beta_{S}}\right)(a, b)=\min \left\{\overline{\overline{\beta_{C}}}(a), \overline{\beta_{S}}(b)\right\}$. Hence, $\diamond(C \times S)=\left\{<\overline{\beta_{C}} \times \overline{\beta_{S}}, \beta_{C} \times \beta_{S}>\right\}$ is an IFSd - ideal of $H \times H$.
From these two lemmas, it is not difficult to verify that the following theorem is valid.
Theorem (3.8) : If $C=<\alpha_{C}, \beta_{C}>$ and $S=<\alpha_{S}, \beta_{S}>$ is an IFSd $-i d e a l$ of H, then $\square(C \times S)$ and $\diamond(C \times S)$ are IFSd - ideal of $H \times H$.
Theorem (3.9) : Let $C=<\alpha_{C}, \beta_{C}>$ and $S=<\alpha_{S}, \beta_{S}>$ are IFS of H, then $C \times S$ is IFSd - ideal of $H \times H$ if and only if $\forall \mathrm{r}, \mathrm{t} \in[0,1], \mathrm{U}\left(\alpha_{C} \times \alpha_{S}, \mathrm{t}\right)$, and $\mathrm{L}\left(\beta_{C} \times \beta_{S}, \mathrm{r}\right)$ are empty or semi d-ideal of $H \times H$.
Proof : For $C \times S=<\alpha_{C} \times \alpha_{S}, \beta_{C} \times \beta_{S}>$ is an IFSd - ideal of $H \times H$ and $\mathrm{U}\left(\alpha_{C} \times \alpha_{S}, \mathrm{t}\right) \neq \emptyset$, $\mathrm{L}\left(\beta_{C} \times \beta_{S}, \mathrm{r}\right) \neq \emptyset$ for any $r, t \in[0,1]$. Let $\left(v_{1}, u_{1}\right),\left(v_{2}, u_{2}\right) \in H \times H$ such that $\left(v_{1}, u_{1}\right)\left(v_{2}, u_{2}\right) \in$ $\mathrm{U}\left(\alpha_{C} \times \alpha_{S}, \mathrm{t}\right)$ and $\left(v_{2}, u_{2}\right) \in \mathrm{U}\left(\alpha_{C} \times \alpha_{S}, \mathrm{t}\right)$, then $\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(v_{1}, u_{1}\right)\left(v_{2}, u_{2}\right)\right) \geq \mathrm{t}$ and
$\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(v_{2}, u_{2}\right)\right) \geq \mathrm{t}$, which implies that
$\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(v_{1}, u_{1}\right)\right) \geq \min \left\{\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(v_{1}, u_{1}\right)\left(v_{2}, u_{2}\right)\right),\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(v_{2}, u_{2}\right)\right)\right\} \geq t$,
so that $\left(v_{1}, u_{1}\right) \in \mathrm{U}\left(\alpha_{C} \times \alpha_{S}, \mathrm{t}\right)$. Also, let $\left(v_{1}, u_{1}\right),\left(v_{2}, u_{2}\right) \in \mathrm{U}\left(\alpha_{C} \times \alpha_{S}, \mathrm{t}\right)$.
Then $\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(v_{1}, u_{1}\right)\right) \geq \mathrm{t}$ and $\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(v_{2}, u_{2}\right)\right) \geq \mathrm{t}$,
But $\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(v_{1}, u_{1}\right)\left(v_{2}, u_{2}\right)\right) \geq \min \left\{\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(v_{1}, u_{1}\right)\right),\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(v_{2}, u_{2}\right)\right)\right\} \geq \mathrm{t}$,
so $\left(v_{1}, u_{1}\right)\left(v_{2}, u_{2}\right) \in \mathrm{U}\left(\alpha_{C} \times \alpha_{S}, \mathrm{t}\right)$. Therefore, $\mathrm{U}\left(\alpha_{C} \times \alpha_{S}, \mathrm{t}\right)$ is semi d-ideal in $H \times H$.
Let $\left(v_{1}, u_{1}\right),\left(v_{2}, u_{2}\right) \in H \times H$ such that $\left(v_{1}, u_{1}\right)\left(v_{2}, u_{2}\right) \in \mathrm{L}\left(\beta_{C} \times \beta_{S}, \mathrm{r}\right)$ and $\left(v_{2}, u_{2}\right) \in \mathrm{L}\left(\beta_{C} \times\right.$ $\left.\beta_{S}, \mathrm{r}\right)$, then $\left(\beta_{C} \times \beta_{S}\right)\left(\left(v_{1}, u_{1}\right)\left(v_{2}, u_{2}\right)\right) \leq \mathrm{r}$ and $\left(\beta_{C} \times \beta_{S}\right)\left(\left(v_{2}, u_{2}\right)\right) \leq \mathrm{r}$,
Then $\left(\beta_{C} \times \beta_{S}\right)\left(\left(v_{2}, u_{2}\right)\right) \leq \max \left\{\left(\beta_{C} \times \beta_{S}\right)\left(\left(v_{1}, u_{1}\right)\left(v_{2}, u_{2}\right)\right),\left(\beta_{C} \times \beta_{S}\right)\left(\left(v_{2}, u_{2}\right)\right)\right\} \leq r$, so that $\left(v_{1}, u_{1}\right) \in \mathrm{L}\left(\beta_{C} \times \beta_{S}, \mathrm{r}\right)$. Also, let $\left(v_{1}, u_{1}\right),\left(v_{2}, u_{2}\right) \in \mathrm{L}\left(\beta_{C} \times \beta_{S}, \mathrm{r}\right)$. Then, $\left(\beta_{C} \times\right.$ $\left.\beta_{S}\right)\left(\left(v_{1}, u_{1}\right)\right) \leq \mathrm{r}$ and $\left(\beta_{C} \times \beta_{S}\right)\left(\left(v_{2}, u_{2}\right)\right) \leq \mathrm{r}$, so
$\left(\beta_{C} \times \beta_{S}\right)\left(\left(v_{1}, u_{1}\right)\left(v_{2}, u_{2}\right)\right) \leq \max \left\{\left(\beta_{C} \times \beta_{S}\right)\left(\left(v_{1}, u_{1}\right)\right),\left(\beta_{C} \times \beta_{S}\right)\left(\left(v_{2}, u_{2}\right)\right)\right\} \leq \mathrm{r}$.
Then $\left(v_{1}, u_{1}\right)\left(v_{2}, u_{2}\right) \in \mathrm{L}\left(\beta_{C} \times \beta_{S}, \mathrm{r}\right)$. Hence, $\mathrm{L}\left(\beta_{C} \times \beta_{S}, \mathrm{r}\right)$ is semi d-ideal in $H \times H$.
In a converse way, assume that for any $r, t \in[0,1], \mathrm{U}\left(\alpha_{C} \times \alpha_{S}, \mathrm{t}\right)$ and $\mathrm{L}\left(\beta_{C} \times \beta_{S}, \mathrm{r}\right)$ are empty or semi d-ideal of $H \times H . \forall\left(v_{1}, u_{1}\right) \in H \times H$ Let $\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(v_{1}, u_{1}\right)\right)=\mathrm{t}$ and $\left(\beta_{C} \times \beta_{S}\right)\left(\left(v_{1}, u_{1}\right)\right)=r$. Then, $\left(v_{1}, u_{1}\right) \in \mathrm{U}\left(\alpha_{C} \times \alpha_{S}, \mathrm{t}\right) \cap \mathrm{L}\left(\beta_{C} \times \beta_{S}, \mathrm{r}\right)$ and so $\mathrm{U}\left(\alpha_{C} \times \alpha_{S}, \mathrm{t}\right) \neq \emptyset \neq \mathrm{L}\left(\beta_{C} \times \beta_{S}, \mathrm{r}\right)$.
Since $\mathrm{U}\left(\alpha_{C} \times \alpha_{S}, \mathrm{t}\right)$ and $\mathrm{L}\left(\beta_{C} \times \beta_{S}, \mathrm{r}\right)$ are semi d-ideal, if there exist $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right) \in H \times H$ such that $\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(p_{1}, q_{1}\right)\right)<\min \left\{\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(p_{1}, q_{1}\right)\left(p_{2}, q_{2}\right)\right),\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(p_{2}, q_{2}\right)\right)\right\}$, then by taking $t_{0}=\frac{1}{2}\left(\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(p_{1}, q_{1}\right)\right)+\min \left\{\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(p_{1}, q_{1}\right)\left(p_{2}, q_{2}\right)\right),\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(p_{2}, q_{2}\right)\right)\right\}\right)$
we have $\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(p_{1}, q_{1}\right)\right)<t_{0}<\min \left\{\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(p_{1}, q_{1}\right)\left(p_{2}, q_{2}\right)\right),\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(p_{2}, q_{2}\right)\right)\right\}$.
Hence, $\left(p_{1}, q_{1}\right) \notin \mathrm{U}\left(\alpha_{C} \times \alpha_{S}, t_{0}\right),\left(p_{1}, q_{1}\right)\left(p_{2}, q_{2}\right) \in \mathrm{U}\left(\alpha_{C} \times \alpha_{S}, t_{0}\right)$ and $\left(p_{2}, q_{2}\right) \in \mathrm{U}\left(\alpha_{C} \times \alpha_{S}, t_{0}\right)$. That is, $\mathrm{U}\left(\alpha_{C} \times \alpha_{S}, t_{0}\right)$ is not semi d-ideal, which is a contradiction.

Now, suppose that $\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(p_{1}, q_{1}\right)\left(p_{2}, q_{2}\right)\right)<\min \left\{\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(p_{1}, q_{1}\right)\right),\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(p_{2}, q_{2}\right)\right)\right\}$. Then, by taking :
$t_{0}=\frac{1}{2}\left(\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(p_{1}, q_{1}\right)\left(p_{2}, q_{2}\right)\right)+\min \left\{\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(p_{1}, q_{1}\right)\right),\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(p_{2}, q_{2}\right)\right)\right\}\right)$, we have
$\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(p_{1}, q_{1}\right)\left(p_{2}, q_{2}\right)\right)<t_{0}<\min \left\{\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(p_{1}, q_{1}\right)\right),\left(\alpha_{C} \times \alpha_{S}\right)\left(\left(p_{2}, q_{2}\right)\right)\right.$.
Hence, $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right) \in \mathrm{U}\left(\alpha_{C} \times \alpha_{S}, t_{0}\right)$, but $\left(p_{1}, q_{1}\right)\left(p_{2}, q_{2}\right) \notin \mathrm{U}\left(\alpha_{C} \times \alpha_{S}, t_{0}\right)$.
That is, $\mathrm{U}\left(\alpha_{C} \times \alpha_{S}, t_{0}\right)$ is not semi d-ideal, which is a contradiction.
Now, assume that $\left(p_{1}, q_{1}\right)\left(p_{2}, q_{2}\right) \in H \times H$ such that :
$\beta_{C} \times \beta_{S}\left(\left(p_{2}, q_{2}\right)\right)>\max \left\{\beta_{C} \times \beta_{S}\left(\left(p_{1}, q_{1}\right)\left(p_{2}, q_{2}\right)\right), \beta_{C} \times \beta_{S}\left(\left(p_{2}, q_{2}\right)\right)\right\}$.
By taking $r_{0}=\frac{1}{2}\left(\beta_{C} \times \beta_{S}\left(\left(p_{1}, q_{1}\right)\right)+\max \left\{\beta_{C} \times \beta_{S}\left(\left(p_{1}, q_{1}\right)\left(p_{2}, q_{2}\right)\right), \beta_{C} \times \beta_{S}\left(\left(p_{2}, q_{2}\right)\right)\right\}\right)$,
then $\max \left\{\beta_{C} \times \beta_{S}\left(\left(p_{1}, q_{1}\right)\left(p_{2}, q_{2}\right)\right), \beta_{C} \times \beta_{S}\left(\left(p_{2}, q_{2}\right)\right)\right\}<r_{0}<\beta_{C} \times \beta_{S}\left(\left(p_{1}, q_{1}\right)\right)$ and there are
$\left(p_{1}, q_{1}\right)\left(p_{2}, q_{2}\right) \in \mathrm{L}\left(\beta_{C} \times \beta_{S}, r_{0}\right)$ and $\left(p_{2}, q_{2}\right) \in \mathrm{L}\left(\beta_{C} \times \beta_{S}, r_{0}\right)$, but $\left(p_{1}, q_{1}\right) \notin \mathrm{L}\left(\beta_{C} \times \beta_{S}, r_{0}\right)$, and this is a contradiction.
Also, if we take $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right) \in H \times H$ such that
$\beta_{C} \times \beta_{S}\left(\left(p_{1}, q_{1}\right)\left(p_{2}, q_{2}\right)\right)>\max \left\{\beta_{C} \times \beta_{S}\left(\left(p_{1}, q_{1}\right)\right), \beta_{C} \times \beta_{S}\left(\left(p_{2}, q_{2}\right)\right)\right\}$,
then, by taking $r_{0}=\frac{1}{2}\left(\beta_{C} \times \beta_{S}\left(\left(p_{1}, q_{1}\right)\left(p_{2}, q_{2}\right)\right)+\max \left\{\beta_{C} \times \beta_{S}\left(\left(p_{1}, q_{1}\right)\right), \beta_{C} \times \beta_{S}\left(\left(p_{2}, q_{2}\right)\right)\right\}\right)$,
we have $\max \left\{\beta_{C} \times \beta_{S}\left(\left(p_{1}, q_{1}\right)\right), \beta_{C} \times \beta_{S}\left(\left(p_{2}, q_{2}\right)\right)\right\}<s_{0}<\beta_{C} \times \beta_{S}\left(\left(p_{1}, q_{1}\right)\left(p_{2}, q_{2}\right)\right)$. Therefore
$\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right) \in \mathrm{L}\left(\beta_{C} \times \beta_{S}, r_{0}\right)$, but $\left(p_{1}, q_{1}\right)\left(p_{2}, q_{2}\right) \notin \mathrm{L}\left(\beta_{C} \times \beta_{S}, r_{0}\right)$, and this is a contradiction.
Theorem (3.10) : Let $C \times S=<\alpha_{C} \times \alpha_{S}, \beta_{C} \times \beta_{S}>$ be an IFSd - ideal of $H \times H$, then the sets $H_{\alpha_{C \times S}}=\left\{(a, b) \in H \times H: \alpha_{C \times S}(a, b)=\alpha_{C \times S}(0,0) \quad\right.$ and $\quad H_{\beta_{C \times S}}=\left\{(a, b) \in H \times H: \beta_{C \times S}(a, b)=\right.$ $\beta_{C \times S}(0,0)$ are semi d-ideal in $H \times H$.
Proof: If we take $(a, b),(x, y) \in H \times H$, let $(a, b)(x, y) \in H_{\alpha_{C \times S}}$ and $(x, y) \in H_{\alpha_{C \times S}}$. Then, $\alpha_{C \times S}((a, b)(x, y))=\alpha_{C \times S}(0,0)=\alpha_{C \times S}(x, y)$,
$\alpha_{C \times S}(a, b) \geq \min \left\{\alpha_{C \times S}((a, b)(x, y)), \alpha_{C \times S}(x, y)\right\}=\alpha_{C \times S}(0,0) . \quad$ Knowing \quad that $\quad \alpha_{C \times S}(a, b)=$ $\alpha_{C \times S}(0,0)$ (proposition (3.3)), thus $(a, b) \in H_{\alpha_{C \times S}}$.
Let $(a, b),(x, y) \in H_{\alpha_{C \times S}}$. Then, $\alpha_{C \times S}(a, b)=\alpha_{C \times S}(x, y)=\alpha_{C \times S}(0,0)$, so $\alpha_{C \times S}((a, b)(x, y)) \geq$ $\min \left\{\alpha_{C \times S}(a, b), \alpha_{C \times S}(x, y)\right\}=\alpha_{C \times S}(0,0)$. Knowing that $\quad \alpha_{C \times S}((a, b)(x, y))=\alpha_{C \times S}(0,0)$ (proposition (3.3)), thus $(a, b)(x, y) \in H_{\alpha_{C \times S}}$.
Also, let $(a, b)(x, y) \in H_{\beta_{C \times S}}$ and $(x, y) \in H_{\beta_{C \times S}}$. Then, $\quad \beta_{C \times S}((a, b)(x, y))=\beta_{C \times S}(x, y)=$ $\beta_{C \times S}(0,0)$, so $\quad \beta_{C \times S}(a, b) \leq \max \left\{\beta_{C \times S}((a, b)(x, y)), \beta_{C \times S}(x, y)\right\}=\beta_{C \times S}(0,0)$. Knowing that $\beta_{C \times S}(a, b)=\beta_{C \times S}(0,0) \quad$ (proposition (3.3)), so we get $\quad(a, b) \in H_{\beta_{C \times S}}$. Let $\quad(a, b),(x, y) \in H_{\beta_{C \times S}} \quad$. Then, $\quad \beta_{C \times S}(a, b)=\beta_{C \times S}(x, y)=\beta_{C \times S}(0,0)$, so $\beta_{C \times S}((a, b)(x, y)) \leq \max \left\{\beta_{C \times S}(a, b), \beta_{C \times S}(x, y)\right\}=\beta_{C \times S}(0,0)$. Hence, from proposition (3.3), we get $\beta_{C \times S}((a, b)(x, y))=\beta_{C \times S}(0,0)$. Then, $(a, b)(x, y) \in H_{\beta_{C \times S}}$. Thus, $\beta_{C \times S}$ is semi d-ideal.
The next theorems are easy to prove.
Theorem (3.11): In a d-homorphism $f: H \times H \rightarrow G \times G$, if $C \times S$ ise an IFSd - ideal of $G \times G$, then $f^{-1}(C \times S)$ is an IFSd - ideal of $H \times H$.
Theorem (3.12): Let $f: H \times H \rightarrow G \times G$ be an d-homomorphism and let $C \times S$ be a direct product of IFS C and S in $G \times G$. If $f^{-1}(C \times S)=<\alpha_{f^{-1}(C \times S)}, \beta_{f^{-1}(C \times S)}>$ is an IFSd - ideal in $H \times H$, then $C \times S=<\alpha_{C \times S}, \beta_{C \times S}>$ is an IFSd $-i d e a l$ of $G \times G$.

4. Direct product of Intuitionistic fuzzy topological d-algebra

In this section, we apply the concept of direct product for intuitionistic set on the notation of intuitionistic fuzzy topological d-algebra with some theorems of continues maps.
Definition (4.1) [3] : An intuitionistic fuzzy topology (IFT shortly) on a non-empty set H is a family \mathfrak{G} of IFSs in H that satisfies :
$\left(I F T_{1}\right) 0_{\sim}, 1_{\sim} \in \mathfrak{H}$,
$\left(I F T_{2}\right) \aleph_{1} \cap \aleph_{2} \in \mathfrak{H}$ for any $\aleph_{1}, \aleph_{2} \in \mathfrak{H}$,
$\left(I F T_{1}\right) \bigcup_{i \in \Delta} \aleph_{i} \in \mathfrak{H}$ for any family $\left\{\aleph_{i}, i \in \Delta\right\} \subseteq \mathfrak{H}$.
So, we call the pair (H, \mathfrak{H}) as an intuitionistic fuzzy topological space (IFTS shortly) and the IFS in \mathfrak{H} as an intuitionistic fuzzy open (shortly IFOS).

If we have a map $f: H \rightarrow G$ such that $(H, \mathfrak{G}),(Y, \vartheta)$ are two IFTS, then f is called intuitionistic fuzzy continuous (IFC) if the inverse image for any IFS in ϑ being IFS in \mathfrak{H}. Also, if the image for any IFS in \mathfrak{H} is an IFS in ϑ, then we call f as an intuitionistic fuzzy open (IFO). [1]
Definition (4.2) [10] : For an $\operatorname{IFS} \aleph$ in an $\operatorname{IFTS}(H, \mathfrak{H})$, we say that the induced intuitionistic fuzzy topology (shortly IIFT) on \aleph is a family of IFSs in \aleph such that the intersection of it with \aleph is an IFOS in H. The IIFTS is denoted by \mathfrak{S}_{N} and $\left(\mathcal{N}_{N}\right)$ is an intuitionistic fuzzy subspace (IFS ub) of (H, \mathfrak{H}).
Definition (4.3) [10] : Take $\left(\mathbb{N}, \mathfrak{S}_{\mathcal{N}}\right)$ and $\left(\mathcal{M}, \vartheta_{\mathcal{M}}\right)$ as IFSub of IFTSs (H, \mathfrak{H}) and (G, ϑ), respectively, with the mapping $f: H \rightarrow G$ be a mapping. Then, f is a mapping κ into \mathcal{M} if $f(\aleph) \subset \mathcal{M}$. Also f is called relatively intuitionistic fuzzy continuous (RIFC) if, for any IFS $V_{\mathcal{M}}$ in $\vartheta_{\mathcal{M}}$, the intersection $f^{-1}\left(V_{\mathcal{M}}\right) \cap N$ is an IFS in $\mathfrak{S}_{\mathcal{N}}$; and f is called relatively intuitionistic fuzzy open (RIFO) if, for any IFS U_{\aleph} in \mathfrak{H}_{N}, the image $f\left(U_{\aleph}\right)$ is IFS in $\vartheta_{\mathcal{M}}$.
Proposition (4.4) : Let $\left(\mathcal{N} \times \mathcal{M}, \mathfrak{H}_{\mathrm{N} \times \mathcal{M}}\right)$ and $\left(\mathrm{F} \times \mathcal{L}, \vartheta_{\mathrm{F} \times \mathcal{L}}\right)$ be direct products of IFSub of direct product of IFTSs $(H \times H, \mathfrak{Y})$ and $(G \times G, \vartheta)$, respectively, and let $f: H \times H \rightarrow G \times G$ be an intuitionistic fuzzy continuous mapping, such that $f(\aleph \times \mathcal{M}) \subset(\mathrm{F} \times \mathcal{L})$. Then, f is RIFC mapping of $(\aleph \times \mathcal{M})$ into $(\mathrm{F} \times \mathcal{L})$.
Proof: Let $\left(U_{2} \times V_{2}\right)_{(\mathrm{F} \times \mathcal{L})}$ be IFS in $\vartheta_{(\mathrm{F} \times \mathcal{L})}$, then there exists $U \times \mathrm{V} \in \vartheta$, such that

$$
\left(U_{2} \times V_{2}\right)_{(\mathrm{F} \times \mathcal{L})}=(U \times \mathrm{V}) \cap(\mathrm{F} \times \mathcal{L})
$$

Since f is IFC, so it follows that $f^{-1}(U \times \mathrm{V})$ is an IFS in \mathfrak{G}. So

$$
\begin{aligned}
f^{-1}\left(\left(U_{2} \times V_{2}\right)_{(\mathrm{F} \times \mathcal{L})}\right) \cap(\aleph \times \mathcal{M}) & =f^{-1}((U \times \mathrm{V}) \cap(\mathrm{F} \times \mathcal{L})) \cap(\aleph \times \mathcal{M}) \\
& =f^{-1}((U \times \mathrm{V})) \cap f^{-1}((\mathrm{~F} \times \mathcal{L})) \cap(\aleph \times \mathcal{M}) \\
& =f^{-1}((U \times \mathrm{V})) \cap(\mathrm{N} \times \mathcal{M})
\end{aligned}
$$

is IFS in $\mathfrak{G}_{\mathrm{N} \times \mathcal{M}}$. This completes the proof.
Definition (4.5) : For any H and any order pair (a, b) of $H \times H$, we define the self-map $(a, b)_{r}$ of $H \times H$ by $(a, b)_{r}((x, y))=(x, y)(a, b)$ for all $(x, y) \in H \times H$.
Definition (4.6) [10] : For an IFT \mathfrak{H} on H, if $\mathcal{\aleph}$ is an IFd-algebra with IIFT $\mathfrak{H}_{\mathrm{N}}$, then we say that \aleph intuitionistic fuzzy topological d-algebra (IFTd-algebra shortly), if for any $\hbar \in H$, the mapping $\hbar_{r}:\left(N, \mathfrak{H}_{N}\right) \rightarrow\left(N, \mathfrak{H}_{N}\right), x \rightarrow x \hbar$ is relatively intuitionistic fuzzy continuous.
Definition (4.7): For an IFT \mathfrak{H} on H, if \mathcal{K}, \mathcal{M} are IFd-algebras with IIFTs $\mathfrak{G}_{\mathcal{N}}, \mathfrak{H}_{\mathcal{M}}$, respectively. Then, $\aleph \times \mathcal{M}$ is called a direct product of IFTd-algebra if for any $(a, b) \in H \times H$ the mapping $(a, b)_{r}:(\aleph \times$ $\left.\mathcal{M}, \varphi_{\aleph \times \mathcal{M}}\right) \rightarrow\left(\mathcal{N} \times \mathcal{M}, \varphi_{\aleph \times \mathcal{M}}\right),(x, y) \rightarrow(x, y)(a, b)$ is relatively intuitionistic fuzzy continuous.
Theorem (4.8): Let $\delta: H \rightarrow G$ be a d-homorphism and \mathfrak{H}, ϑ be IFTs on H and G, respectively, such that $\mathfrak{H}=\delta^{-1}(\vartheta)$. If $\kappa \times \mathcal{M}$ is a direct product of IFTd-algebra in $G \times G$, then $\delta^{-1}(\aleph \times \mathcal{M})$ is an IFTd-algebra in $H \times H$.
Proof: Suppose that $(a, b) \in H \times H$ and let $U_{1} \times V_{1}$ be IFS in $\mathfrak{H}_{\delta^{-1}(N \times \mathcal{M})}$. We know that δ^{-1} is an IFC mapping of $(H \times H, \mathfrak{V})$ into $(G \times G, \vartheta)$, so we have from (4.4) that δ is a IRFC mapping of $\left(\delta^{-1}(\aleph \times\right.$ $\left.\mathcal{M}), \mathfrak{S}_{\delta^{-1}(\mathbb{N} \times \mathcal{M})}\right)$ into $\left(\mathbb{N} \times \mathcal{M}, \vartheta_{\aleph \times \mathcal{M}}\right)$. Note that there exists an IFS $U_{2} \times V_{2}$ in $\vartheta_{\aleph \times \mathcal{M}}$ such that $\delta^{-1}\left(U_{2} \times V_{2}\right)=U_{1} \times V_{1}$. Then

$$
\begin{aligned}
\alpha_{(a, b)_{r}^{-1}\left(\left(U_{1} \times V_{1}\right)\right)}((x, y)) & =\alpha_{U_{1} \times V_{1}}\left((a, b)_{r}((x, y))\right) \\
& =\alpha_{U_{1} \times V_{1}}((x, y)(a, b)) \\
& =\alpha_{\delta^{-1}\left(U_{2} \times V_{2}\right)}((x, y)(a, b)) \\
& =\alpha_{U_{2} \times V_{2}}(\delta((x, y)(a, b))) \\
& =\alpha_{U_{2} \times V_{2}}(\delta((x, y)) \delta((a, b)))
\end{aligned}
$$

and $\beta_{(a, b)_{r}^{-1}\left(\left(U_{1} \times V_{1}\right)\right)}((x, y))=\beta_{U_{1} \times V_{1}}\left((a, b)_{r}((x, y))\right)$

$$
=\beta_{U_{1} \times V_{1}}((x, y)(a, b))
$$

$$
=\beta_{\delta^{-1}\left(U_{2} \times V_{2}\right)}((x, y)(a, b))
$$

$$
=\beta_{U_{2} \times V_{2}}(\delta((x, y)(a, b)))
$$

$$
=\beta_{U_{2} \times V_{2}}(\delta((x, y)) \delta((a, b)))
$$

 $\left(b_{1}, b_{2}\right)_{r}:\left(\mathcal{N} \times \mathcal{M}, \vartheta_{\aleph \times \mathcal{M}}\right) \rightarrow\left(\aleph \times \mathcal{M}, \vartheta_{\aleph \times \mathcal{M}}\right),\left(y_{1}, y_{2}\right) \rightarrow\left(y_{1}, y_{2}\right)\left(b_{1}, b_{2}\right)$, for every $\left(b_{1}, b_{2}\right)$ in $G \times G$. Hence,

$$
\begin{aligned}
\alpha_{(a, b)_{r}^{-1}\left(\left(U_{1} \times V_{1}\right)\right)}((x, y)) & =\alpha_{U_{2} \times V_{2}}(\delta((x, y)) \delta((a, b))) \\
& =\alpha_{U_{2} \times V_{2}}\left(\delta(a, b)_{r}(\delta((x, y)))\right) \\
& =\alpha_{\delta\left((a, b)_{r}^{-1}\left(\left(U_{2} \times V_{2}\right)\right)\right)}(\delta((x, y))) \\
& =\alpha_{\delta^{-1}\left(\delta\left((a, b)_{r}^{-1}\left(\left(U_{2} \times V_{2}\right)\right)\right)\right)}((x, y)) .
\end{aligned}
$$

and $\beta_{(a, b)_{r}^{-1}\left(\left(U_{1} \times V_{1}\right)\right)}((x, y))=\beta_{U_{2} \times V_{2}}(\delta((x, y)) * \delta((a, b)))$

$$
\begin{aligned}
& =\beta_{U_{2} \times V_{2}}\left(\delta(a, b)_{r}(\delta((x, y)))\right) \\
& =\beta_{\delta\left((a, b)_{r}^{-1}\left(\left(U_{2} \times V_{2}\right)\right)\right)}(\delta((x, y))) \\
& =\beta_{\delta^{-1}\left(\delta\left((a, b)_{r}^{-1}\left(\left(U_{2} \times V_{2}\right)\right)\right)\right)}((x, y))
\end{aligned}
$$

Therefore, $(a, b)_{r}^{-1}\left(\left(U_{1} \times V_{1}\right)\right)=\delta^{-1}\left(\delta\left((a, b)_{r}^{-1}\left(\left(U_{2} \times V_{2}\right)\right)\right)\right)$.
So, $(a, b)_{r}^{-1}\left(\left(U_{1} \times V_{1}\right)\right) \cap \delta^{-1}(\aleph \times \mathcal{M})=\delta^{-1}\left(\delta\left((a, b)_{r}^{-1}\left(\left(U_{2} \times V_{2}\right)\right)\right)\right) \cap \delta^{-1}(\aleph \times \mathcal{M})$
is an IFS in $\varphi_{\delta^{-1}(\aleph \times \mathcal{H})}$.
Theorem (4.9): For a d-homorphism $\delta: H \rightarrow G$ and \mathfrak{H}, ϑ being IFTs on H and G, respectively, such that $(\mathfrak{H})=\vartheta$. If $D \times C$ is a direct product of IFTd-algebra in $H \times H$, then $\delta(D \times C)$ is an IFTdalgebra in $G \times G$.
Proof : We need to show that the mapping $\left(b_{1}, b_{2}\right)_{r}:\left(\delta(D \times C), \vartheta_{\delta(D \times C)}\right) \rightarrow\left(\delta(D \times C), \vartheta_{\delta(D \times C)}\right)$, $\left(y_{1}, y_{2}\right) \rightarrow\left(y_{1}, y_{2}\right)\left(b_{1}, b_{2}\right)$ is relatively intuitionistic fuzzy continuous for every $\left(b_{1}, b_{2}\right)$ in $H \times H$. Let $\left(U_{1} \times V_{1}\right)_{D \times C}$ be IFS in $\mathfrak{H}_{D \times C}$.
Then, there exists an IFS $U_{2} \times V_{2}$ in φ such that $\left(U_{1} \times V_{1}\right)_{D \times C}=(U \times V) \cap D \times C$.
Since δ is one-one, it follows that $\delta\left(\left(U_{1} \times V_{1}\right)_{D \times C}\right)=\delta((U \times V) \cap D \times C)=\delta((U \times V)) \cap$ $\delta(D \times C)$, which is an IFS in $\vartheta_{\delta(D \times C)}$. This shows that δ is RIFO.
Let $\left(U_{1} \times V_{1}\right)_{D \times C}$ be an IFS in $\vartheta_{\delta(D \times C)}$. Since δ is surjective, so we have for every $\left(b_{1}, b_{2}\right)$ in $G \times G$, there exists $\left(a_{1}, a_{2}\right)$ in $H \times H$ such that $\left(b_{1}, b_{2}\right)=\delta\left(\left(a_{1}, a_{2}\right)\right)$. Hence,

$$
\begin{aligned}
\alpha_{\delta^{-1}\left(\left(b_{1}, b_{2}\right)_{r}^{-1}\left(\left(U_{2} \times V_{2}\right)_{\delta(D \times C)}\right)\right)}((x, y)) & =\alpha_{\delta^{-1}\left(\delta\left(\left(a_{1}, a_{2}\right)\right)_{r}^{-1}\left(\left(U_{2} \times V_{2}\right)_{\delta(D \times C)}\right)\right.}((x, y)) \\
& =\alpha_{\delta\left(\left(a_{1}, a_{2}\right)\right)_{r}^{-1}\left(\left(U_{2} \times V_{2}\right)_{\delta(D \times C)}\right)}(\delta((x, y))) \\
& =\alpha_{\left(U_{2} \times V_{2}\right)_{\delta(D \times C)}}\left(\delta\left(\left(a_{1}, a_{2}\right)\right)_{r}(\delta((x, y)))\right) \\
& =\alpha_{\left(U_{2} \times V_{2}\right)_{\delta(D \times C)}}\left(\delta((x, y)) * \delta\left(\left(a_{1}, a_{2}\right)\right)\right) \\
& =\alpha_{\left(U_{2} \times V_{2}\right)_{\delta(D \times C)}}\left(\delta\left((x, y) *\left(a_{1}, a_{2}\right)\right)\right) \\
& =\alpha_{\delta^{-1}\left(\left(U_{2} \times V_{2}\right)_{\delta(D \times C)}\right)}\left((x, y) *\left(a_{1}, a_{2}\right)\right) \\
& =\alpha_{\delta^{-1}\left(\left(U_{2} \times V_{2}\right)_{\delta(D \times C)}\right)}\left(\left(a_{1}, a_{2}\right)_{r}((x, y))\right) \\
& =\alpha_{\left(a_{1}, a_{2}\right)_{r}^{-1}\left(\delta^{-1}\left(\left(U_{2} \times V_{2}\right)_{\delta(D \times C)}\right)\right)}((x, y)) \\
\text { and } \left.\beta_{\delta^{-1}\left(\left(b_{1}, b_{2}\right)_{r}^{-1}\left(\left(U_{2} \times V_{2}\right)_{\delta(D \times C)}\right)\right.}\right) & (x, y))=\beta_{\delta^{-1}\left(\delta ((a _ { 1 } , a _ { 2 })) _ { r } ^ { - 1 } \left(\left(U_{2} \times V_{2}\right)_{\delta(D \times C))}\right.\right.}((x, y)) \\
& =\beta_{\delta\left(\left(a_{1}, a_{2}\right)\right)_{r}^{-1}\left(\left(U_{2} \times V_{2}\right)_{\delta(D \times C)}\right)}(\delta((x, y))) \\
& =\beta_{\left(U_{2} \times V_{2}\right)_{\delta(D \times C)}\left(\delta\left(\left(a_{1}, a_{2}\right)\right)_{r}(\delta((x, y)))\right)}=\beta_{\left(U_{2} \times V_{2}\right)_{\delta(D \times C)}\left(\delta((x, y)) * \delta\left(\left(a_{1}, a_{2}\right)\right)\right)}=\beta_{\left(U_{2} \times V_{2}\right)_{\delta(D \times C)}\left(\delta\left((x, y) *\left(a_{1}, a_{2}\right)\right)\right)}=\beta_{\delta^{-1}\left(\left(U_{2} \times V_{2}\right)_{\delta(D \times C)}\right)}\left((x, y) *\left(a_{1}, a_{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\beta_{\delta^{-1}\left(\left(U_{2} \times V_{2}\right)_{\delta(D \times C)}\right)}\left(\left(a_{1}, a_{2}\right)_{r}((x, y))\right) \\
& =\beta_{\left.\left(a_{1}, a_{2}\right)\right)^{-1}\left(\delta^{-1}\left(\left(U_{2} \times V_{2}\right)_{\delta(D \times C)}\right)\right)}((x, y)) .
\end{aligned}
$$

Therefore, $\delta^{-1}\left(\left(b_{1}, b_{2}\right)_{r}^{-1}\left(\left(U_{2} \times V_{2}\right)_{\delta(D \times C}\right)\right)=\left(a_{1}, a_{2}\right)_{r}^{-1}\left(\delta^{-1}\left(\left(U_{2} \times V_{2}\right)_{\delta(D \times C)}\right)\right)$.
By hypothesis, the mapping $\left(a_{1}, a_{2}\right)_{r}:\left(D \times C, \mathfrak{H}_{D \times C}\right) \rightarrow\left(\delta(D \times C), \vartheta_{\delta(D \times C)}\right), \quad(x, y) \rightarrow$ $(x, y)\left(a_{1}, a_{2}\right)$ is RIFC and δ is RIFC map such that $\delta:\left(D \times C, \mathfrak{H}_{D \times C}\right) \rightarrow\left(\delta(D \times C), \vartheta_{\delta(D \times C)}\right)$. Thus,
$\delta^{-1}\left(\left(b_{1}, b_{2}\right)_{r}^{-1}\left(\left(U_{2} \times V_{2}\right)_{\delta(D \times C}\right)\right) \cap(D \times C)=\left(a_{1}, a_{2}\right)_{r}^{-1}\left(\delta^{-1}\left(\left(U_{2} \times V_{2}\right)_{\delta(D \times C)}\right)\right) \cap(D \times C)$ is an IFS in $\mathfrak{Y}_{D \times C}$.
Since δ is RIFO, then

$$
\delta\left(\delta^{-1}\left(\left(b_{1}, b_{2}\right)_{r}^{-1}\left(\left(U_{2} \times V_{2}\right)_{\delta(D \times C}\right)\right) \cap(D \times C)\right)=\left(b_{1}, b_{2}\right)_{r}^{-1}\left(\left(U_{2} \times V_{2}\right)_{\delta(D \times C}\right) \cap \delta((D \times C))
$$

is IFS in $\vartheta_{D \times C}$. This completes the proof.

Conclusions

We showed in this paper that the definition of relatively intuitionistic fuzzy continuous has led us to define the notation of the direct product of intuitionistic fuzzy topological d-algebra. We also found that the homomorphism map δ provides the notion that the primage for the direct product of intuitionistic fuzzy topological d-algebra is also a direct product of intuitionistic fuzzy topological dalgebra. Also, the image for the direct product of intuitionistic fuzzy topological d-algebra is a direct product of intuitionistic fuzzy topological d-algebra.
We believe that this work can enhance further studies in this field for the generation of direct products of finite and infinite intuitionistic fuzzy semi d-ideals on d-algebra as well as intuitionistic topological d-algebra. We hope that this work can impact upcoming research in this field or in other algebraic structures.

REFERENCES

1. Neggers J. and Kim H. S. 1999. " on d-algebra ", Math. Slovaca . 49(1): 19-26.
2. Zadeh L. A. 1965. " Fuzzy set ",Inform. And Control. 8: 338-353.
3. Atanassov K. T. 1986.) " Intuitionistic fuzzy sets", Fuzzy sets and Systems, 35: 87-96.
4. Jun Y. B., Kim H. S. and Yoo D.S. 2006. "Intuitionistic fuzzy d-algebra" , Scientiae Mathematicae Japonicae Online, e-(2006), 1289-1297.
5. Abdullah H. K., Hassan A. K. 2013. " semi d-idealin d-algebra ", journal of Kerbala Scientific, 11(3): 192-197
6. Hassan A. K. 2014. "fuzzy filter spectrum of d-algebra ", M.Sc. Thesis, Faculty of Education for Girls, University of Kufa, Iraq.
7. Akram M. , Dar K. H. 2005. " On Fuzzy d-algebras " , Journal of Mathematics, 37: 61-76.
8. Coker D. 1997. " An introduction to intuitionistic fuzzy topological spaces", Fuzzy Sets and Systems, 88: 81-89.
9. Ejegwa P. A., Akowe S.O., Otene P.M., Ikyule J.M. 2014. "An Overview On Intuitionistic Fuzzy Sets " International Journal of scientific \& technology research, 3(3): 2277-8616
10. Hasan A. K. 2017. "Intuitionistic fuzzy semi d-ideal of d-algebra ", Journal of Iraqi AL-Khwarizmi society, 1(1): 85-91.

[^0]: *Email: alimathfruit@gmail.com

