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Abstract  
      In this paper, we give new results and proofs that include the notion of norm 

attainment set of bounded linear operators on a smooth Banach spaces and using 

these results to characterize a bounded linear operators on smooth Banach spaces 

that preserve of approximate  -  -orthogonality. Noting that this work takes brief 

sidetrack in terms of approximate  -  -orthogonality relations characterizations of 

a smooth Banach spaces.   
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مجسهعة تحريل السعيار للسذغلات الخطية السقيدة على فزاءات بشاخ السلداء حهلبعض الشتائج   
  

, بثيشة عبد الحدن أحسد *سعيد عبد الكاظم جهني  

 قدم الرياضيات, كلية العلهم, جامعة بغداد, بغداد العراق
 الخلاصة

 الخطية للسذغلاتفي هذا البحث، نقدم نتائج جديدة وإثباتات تذسل مفههم مجسهعة التحريل السعياري       
السعرفة الخطية السقيدة  السذغلاتواستخدام هذه الشتائج لتهصيف  السلداء فزاءات بشاخعلى  السقيدة السعرفة

مع ملاحظة أن هذا العسل يأخذ مدارًا التقريبي.   -  -تعامدالتي تحافظ على  السلداء فزاءات بشاخ على 
 .السلداء لفزاءات بشاخ التقريبي   -  -تعامد علاقاتجانبيًا مهجزًا من حيث تهصيفات 

    
1. Introduction: 

     There are various notions of orthogonality in a normed space, which are in general different, if the 

norm is not induced by an inner product. Among all notions of orthogonality, Robert orthogonality [1] 

and Birkhoff-James orthogonality [2],  plays a very important role in the study of geometry of normed 

spaces.  In [3, 4, 5, 6, 7, 8, 9], James elaborated how the notions Like reflexivity, strict convexity and 

smoothness of Banach spaces can be studied using Birkhoff-James orthogonality. Recently, Paul et al. 

[10], obtained a sufficient condition for the smoothness of bounded linear operators using Birkhoff-

James orthogonality of bounded linear operator on a Banach spaces. Due to the importance of  

Birkhoff-James orthogonality it has been generalized by Dragomir [11] and  Chmielinski [12] and is 

known as approximate  -Birkhoff-James orthogonality. In [13], Chmielinski et al. characterized 

approximate  -Birkhoff-James orthogonality of bounded linear operator on a finite and infinite 

dimensional Banach spaces respectively.  

     A part form [14, 15, 16], some results on the characterization of bounded linear operators were also 

obtained.  Very recently, Saied J. and  Buthainah A. [17], introduced a complete characterization for 
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the norm attainment set of a bounded linear operators on a real Banach spaces at a vector in the unit 

sphere by using approximate  -Birkhoff-James orthogonality techniques.  

Throughout this paper, we only consider Banach spaces           are reserved for real Banach spaces 

if there is no explanation. Without further ado, let us discuss the notions and the terminologies relevant 

to our study. Let                    and                    be the unite ball and 

unite sphere  of    , respectively. A normed space           is smooth, if for any vector   in   , there 

exists  a unique hyperplane     supporting    at  , [18].    is hyperspace of    if and only if 

    is hyperplane. A normed space           is strictly convex, if for any two vectors   and   in 

  , the triangle inequality gives          , [19]. We write         (       ),  for the Banach 

space of bounded (compact) linear operators from           into           equipped with the 

supermom norm, [20].  
1
 

Specifically, if    is a real field ,         is the dual space of    and it is denoted by    . A 

hyperspace   of   is closed if and only if it is a kernel of         , [21]. For any vector   in a 

normed space          , let      denote the (non-empty) set of its supporting functionals: 

                                         , [18]. 

A Banach space           is reflexive, if it coincides with bi-dual space.  More specifically, if we 

denote the dual space of   by   , and the bi-dual space by    ; consider for any vector   in   there 

exists  a linear operator          given by        , for any      such that    is an isometric 

isomorphism of normed spaces, [21]. A Banach space           is reflexive if and only if for every 

          attain its norm, where           any Banach space, [22].  

Let          ,   is said to be attains norm at a vector   in   , if                   and let    

denote the set of all vectors   in    at which   attains norm, [10]. i.e. 
                              . 

     The set    plays an important role in characterizing approximate  -Birkhoff-James orthogonality 

of bounded linear operators [17, 23, 24, 25]. Let   be a locally compact subset in a topological space  

      . As usual      denotes the linear space of all real continuous mappings defined on    
endowed with the supremum norm. We consider a subspace       of      :  

                                  |    |                . 
For every        , the set     is non-empty and compact,     . 

     Let      
𝜖

            
𝜖

   , [12]. Using this concept, we obtain a necessary condition for 

            to attain norm at a vector   in   , [10].         is said to be satisfy the 

Daugavet equation, if                             , where   is the identity operator on  , [26]. 

A linear operator              satisfies Daugavet equation if and only if a linear operator    

satisfies Daugavet equation for all     , [27].       

     First, we apply Theorem (3.5) in [17], to obtain various interesting properties of a bounded linear 

operator on a smooth Banach space. Also, we obtain an expression for the kernel of a non-zero 

bounded linear operator on a smooth , strictly convex of two-dimensional Banach space. Next, we 

prove that if the underlying Banach space is finite dimensional, strictly convex and smooth, then every 

non-zero linear operator satisfying  Daugavet equation, must have  an invariant subspace of co-

dimension one.  We also prove that in a finite dimensional smooth Banach space  , if the kernel of a 

non-zero linear operator          contains a non-zero,     
𝜖

-right symmetric vector, then the 

linearization of     is a proper subspace of  .  As another theorem, we prove that in a smooth Banach 

space, image of     
𝜖

-left symmetric vector under an isometry must be     
𝜖

-left symmetric. Finally, it 

is easy to observe that          preserves the approximate  -Birkhoff-James orthogonality. As 

potential application, that a non-zero compact linear operator on a smooth reflexive Banach space, 

preserves approximate  -Birkhoff-James orthogonality at some vectors   in   . Motivated by this 

characterization of isometries on a smooth Banach spaces, must be preserves approximate  -Birkhoff-

James orthogonality. 
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2. Review on some classical basic results: 

      For more details, we give necessary notions and backgrounds. We first review some various 

definitions of the orthogonality relation in normed space that are necessary in this paper for the sake of 

clarity we mention them briefly.  

 

Definition 2.1: [1, 2, 11, 12] For any two vectors   and   in a normed space          : 

i.    is said to be Roberts-orthogonal to   ( -orthogonality) and written as     , if satisfying the 

following: 

                  for all    . 

ii.   is said to be Birkhohh-James orthogonal to   (  -orthogonality) and written as      , if 

satisfying the following: 

               for all    . 

iii.    is said to be Dragomir-orthogonal to   ( -orthogonality) and written as    
𝜖

  with        , 

if satisfying the following: 

                    for all     . 

iv.   is said to be approximate  -Birkhoff-James orthogonal to   (approximate  -  -orthogonality) 

and written as      
𝜖

  with        , if satisfying the following: 

       
        

              for all    . 

 

Remark 2.2: [11, 12]  

i. If    is not approximate  - - -orthogonal to  , for short the symbol       
𝜖   . 

ii.  The notion "  " has been generalized by "   " and "   " has been generalized by "    
𝜖

". 

 

Proposition 2.3: [12] Let           be a normed space: 

i.        
𝜖

  and      
𝜖

   for any vector   in  . 

ii.       
𝜖

 , if and only if     for any vector   in  . 

iii. If      
𝜖

 , implies that       
𝜖

   for any two vectors   and   in   with      . 

iv. For any non-zero vectors   and   in  . If      
𝜖

 , then   and   are linearly independent. 

Remark 2.4: [12]  

i.  If      
𝜖

 , then need not to be      
𝜖

 . 

ii. If      
𝜖

   and     
𝜖

  , then need not to  be      
𝜖

   . 

Definition 2.5: [17] For any two vectors   and   in           with         ,        
𝜖

. The 

following two subsets    𝜖  and    𝜖  of    defined as:                                                                                                                                       

      𝜖 , if         
        

              for all    ; 

and                                                                                  

      𝜖  , if        
        

              for all    . 

 

Proposition 2.6: [17] Let           be a normed space,   and   any two vectors in  . Then the 

following statements are satisfying:                      

i.   If       𝜖   and       𝜖 , then         
𝜖

. This means that      
𝜖

    𝜖     𝜖 .   

ii.  If      𝜖  (     𝜖 ), then           𝜖  (         𝜖 ) for all       .  

iii. If      𝜖  (     𝜖 ), then      (𝜖) (        𝜖 ) and         𝜖   (         𝜖 ).  

Theorem 2.7: [13] For any two vectors   and   in a normed space          : 

i.      
𝜖

  if and only if there exists        with  |    |       . 

ii.      
𝜖

  if and only if there exists             with       and              . 
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Theorem 2.8: [29] A Banach space           is strictly convex if and only if   -orthogonality is left 

symmetric. 

Remark 2.9: [17] The notation     signals to the following cases      
𝜖

  and      for any two 

vectors   and   in          , which we will use in the following theorem which plays an important 

role in this work. 

Theorem 2.10: [17] Let           and           be two Banach spaces and             be such 

that there exists      with           for any vector   in  . Then:                                                                                     

i .      𝜖       
𝜖

        𝜖          
𝜖

.  

ii.      𝜖       
𝜖

        𝜖          
𝜖

. 

Theorem 2.11: [17] Let           and           be two Banach spaces with            , be 

such that there exists      such that           . Then: 

i. For any vector   in  , implies that      
𝜖

 .     

ii.             
𝜖

    
. 

Theorem 2.12: [7] A Banach space           is revlexive if and only if for any closed hyperspace   

of  , there exists a vector   in    with      .  

3. Main Results:   

       We would like to remark that such a study was initiated by Saied J. and Buthainah A. in [24], for 

bounded linear operators           between two Banach spaces. However, our study has little 

intersection with the above study,  moreover, we are also exploring the problems for bounded linear 

operators between two Banach spaces. Our first results of this section do not require the limitation 

mentioned in Theorem (3.5) of [17]. We start with the first theorem connects smoothness of           

and           with      
𝜖

 -orthogonality.   

Theorem 3.1: Let          ,           be two smooth Banach spaces and             with 

    . Then        
𝜖

          
𝜖

.        

Proof:  From smoothness of  , there exists a unique hyperplane     supporting    at  , where   is 

a subspace of   having co-dimension one. It is clear that        
𝜖

 and   divides into two closed 

half-planes whose intersection is  . Let    denote the closed half-plane containing   and    denote 

the other closed half-plane. Deduce that       𝜖  and       𝜖 . Also, every vector in   can be 

expressed by a vector from either of the sets      and     . Let 𝓊       
𝜖

 and  𝓊
 
     be a 

sequence in      with 𝓊
 

 𝓊.  

It now follows from Theorem         , that   𝓊
 
        𝜖          

𝜖

. Now, from continuity of    

and convergence of  𝓊
 
    , we must have   𝓊           𝜖          

𝜖

 . 

Also, we considering  𝓊
 
     be a sequence in      such that 𝓊

 
 𝓊. In the same manner as 

above, it yields that    𝓊           𝜖          
𝜖

 .  

From smoothness of   , we must have:                                                                                                     

  𝓊           𝜖          
𝜖

           𝜖          
𝜖

          
𝜖

. 

This proves that   𝓊          
𝜖

 for each 𝓊       
𝜖

.                               

Remark 3.2: The smoothness assumption in the above theorem is necessary condition. The following 

example to negate         
𝜖

          
𝜖

. 
Let                ,which is defined by                   and                    . It 

is clear that                                                  with              
𝜖

         , but 

               
𝜖           . 
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Remark 3.3: 

i. Theorem       can be interpreted geometrically in a new way. When           be a smooth normed 

space and         . If     , then the image of the hyperplane      
𝜖

 under   is a subset of 

the hyperplane         
𝜖

.                                                                                    

ii. In general, if         
𝜖

     for some      and             we may not obtain 

     
𝜖

 , as the example shows: 

Let               , which is defined by                 and                  . It is clear 

that                                     ,we have           with           
𝜖

      ,  

                   
𝜖            

 

 
  

 

 
 .   

iii. In fact, Theorem (2.11.i), is also true if  both           and           are smooth Banach spaces. 
iv. In particular, some information regarding    may be obtained, even without knowing the action of  

  on          . For instance, if   and   in    are such that      
𝜖

  and         
𝜖      , then ensure 

that     . 

Remark 3.4: Let us pictorially illustrate  the necessary condition for    Banach space            with 

two dimensional smooth Banach spaces of two dimension. That is  for any               

and     . Without loss of generality, we assume that             . In the following diagram, 

Theorem       states that, if      , then         
𝜖

          
𝜖

. 

 

 
 

Figure 1-        
𝜖

          
𝜖

  in     
  .  

         

        Now, by using Theorem (3.1) we can get an expression for the kernel of a bounded linear 

operators defined on a Banach space, in terms of   . 

Theorem 3.5: Let           be a smooth and strictly convex Banach spaces of two dimension. Then 

for any           attaining norm at more than one pair of  points must be an invertible. 

Proof: Let           such that       . Claim that   

    
𝜖

   

    
𝜖

    . Let      

    
𝜖

   

    
𝜖

 , 

implies that     

    
𝜖

  and     

    
𝜖

. Now, applying Theorem         , Proposition           and 

from strict convexity of   , we can apply  Theorem       to get               , for any scalars 

   ,   . In particular,             .  This implies that      . From Proposition         , we 

must have    . 

Now, the second part proof of the theorem follows directly from Theorem       and Theorem 

         ,        

    
𝜖

   

    
𝜖

         . We note that   is an invertible.  
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Theorem 3.6: Let           be a finite dimensional smooth and strictly convex Banach space and let 

       be a spear operator. Then for every         ,    has  -invariant subspace of co-

dimension one. 

Proof: Let us assume that   satisfies Daugavet equation and deduce    satisfies Daugavet equiation, 

for any scalar    . Since   be a finite dimension, then there exists a vector    in     such that: 

 

                        . 

We claim that          . Indeed, 

                                                                           

                                                                ….    

From strict convexity of  , we must have            , for some     . On the other hand, from 

   , implies that      . This proves our claim. Thus, we have                      . This 

proves that      . Now, from smoothness of   ,   

    
𝜖

 is a subspace having co-dimension one. 

Thus,    

    
𝜖

 is a  -invarent subspace having co-dimension one. 

 

Remark 3.7: 

i.  An invariant vector    in a linear space   other than   is a linearization of an invariant subspace of 

dimension one. An invariant subspace of dimension one will be acted on   by a scalar and consists of 

invariant vectors if and only if that scalar is  . 

ii. In particular, it follows from the method used in the proof of Theorem      , that if           

satisfies Daugavet equation on a finite dimensional smooth and strictly convex Banach space, then   

has a fixed point on    . 

 

Definition 3.8: Let           be a normed space. Then:  

i. A vector   in   is said to be a     
𝜖

-left-symmetric and denoted by      
𝜖

 , if      
𝜖

 , implies 

that       
𝜖

  for any vector   in  .           

ii. A vector   in   is said to be a     
𝜖

-right-symmetric and denoted by      
𝜖

 ,  if      
𝜖

 , implies 

that      
𝜖

  for any vector   in  .    

 

Remark 3.9: Geometrically,   is an     
𝜖

-left-symmetric to  , if the line    intersects with    at  , 

(see Figure-2). Likewise, we describe   is an     
𝜖

-right-symmetric to  . 

 

 

Figure 2-      
𝜖

 , 
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Example 3.10:  

i.  In       , if         
𝜖

 (       
𝜖

), then for any vector   in   , it follows that      
𝜖

  

(     
𝜖

 ). 

ii.  In       ,                  
𝜖

, but does not satisfy            
𝜖

       . 

 

 

Figure 3- is not       
𝜖

  in       .  

 

Theorem  3.11: Let           be a finite dimensional smooth Banach space and let          

such that      contains a non-zero     
𝜖

-symmetric. Then        is a proper subspace of    . 

Proof:  Suppose on the contrary,         . Then    has a basis              of   .  Let 

        , where   is     
𝜖

-symmetric. Without loss of generality, we assume that       .   

Let   ∑     
 
   , for some scalars             . Applying Theorem       and Theorem          , 

we see that       
𝜖

 , for all            .  

Now, applying Theorem        , there exists       supporting at    with |    |          for all  

           . We must have               |    |           , a contradiction. 

    In the next theorem, we prove that in smooth Banach space, image of a     
𝜖

-symmetric vector  

under  an isometry must be a     
𝜖

-symmetric vector.  

 

Theorem 3.12: In          be a smooth Banach space with          be an isometry. If a vector 

  in   is     
𝜖

-symmetric, then      is also     
𝜖

-symmetric. 

Proof:  We first note that      , as   is an isometry. Let         
𝜖

  for some vector   in   . If  

    , then      
𝜖

     . Let    . Since   is an isometry. It follows that   invarent. There exists 

a vector      in  , such that        , i.e.         
𝜖

     and     . As stated in Remark 

        , it becomes clear that      
𝜖

  as   is     
𝜖

-symmetric in    with  
 

    
     and by using 

Theorem      , and using the homogeneity of      
𝜖

, we must have         
𝜖

    .      

     

     The next definition is a generalization  of the definition preserve of  Birkhoff -James orthogonality. 

Definition 3.13: Let           and           be two Banach spaces. Then             is said to 

be a preserve of     
𝜖

 -orthogonality (in short  (    
𝜖

)), if         
𝜖

     whenever      
𝜖

 , for 

any two vectors   and   in  . 
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Example 3.14:  

i.   Consider             , which is defined by: 

               and                 . 

Then                  
𝜖

, but                         
𝜖

 and hence   is  (    
𝜖

).  

ii.  A linear operator             which is defined by                             for 

any vector   in   . Let          and         , with              and            . Then  

     
𝜖

 ,  but          
𝜖     . Thus   is not  (    

𝜖
). 

Theorem 3.15: Let   and   any two vectors in a normed space          . Then      
𝜖

 , if and only 

if, there exists        and       .                  

Proof: For the proof of " if " part, we see that        
   |       |       

   for all    . 

This means,         
        

               for all    . Implies that      
𝜖

 .                                                                                                           

For "only if " part, we may assume that for any non-zero vectors   and  . Also, it is enough to show 

only for case        , we have      
𝜖

  if and only if  
 

    
    

𝜖
 . 

Now applying Theorem         , there exists             with       and              .  

From the well-known separation theorem, there exists        such that            with 

       , whose              ( i.e.       ) . Let          and         . Since 

             implies that            for some      . This shows that: 

|    |           
           

        
                ; 

Which contradicts to      
𝜖

 . 

Definition 3.16: Let           and           be two Banach spaces. Then            is said to 

be a preserve of     
𝜖

 -orthogonality at   for some vectors   in   (in short   (    
𝜖

)), if 

        
𝜖

     whenever      
𝜖

 , for any vector   in  .                                                                           

Theorem 3.17: Let           be a smooth Banach space,          and     . Then   is a 

  (    
𝜖

). 

Proof: If in addition, both   and      are smooth points in   , then for any vector   in  , we must 

have          
𝜖

    , whenever      
𝜖

 . Without any loss of generally we can assume that 

          . From smoothness of  , there exists a unique support functional      at  . Again, 

from smoothness of     , there exists a unique support functional      at     . 

Now,                                . 

It is clear that        and                          . So           . From uniqueness 

of  , we get      . Applying Theorem        as      
𝜖

 , we must have       . i.e. 

         . However, this equivalent to         
𝜖

    .                                

Remark  3.18: It is interesting to observe that the smoothness condition in the last theorem is indeed 

required. We give the next example to illustrate our point. 

Consider a linear operator             given by                 and             

 
    

 
 . It 

easy to check that           with          
𝜖

   

 
   . But      

 
       

 
   

 
              

𝜖

. 

Hence   is not a        (    
𝜖

) . 

Theorem 3.19: Let           be a reflexive and smooth Banach space. Then for any          , 

there exists   in    such that    is a  (    
𝜖

). 

Proof: Follows from Theorems       ,        and        . 
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      Recall that, in a smooth Banach space           both two types of orthognality   
𝜖
 and     

𝜖
 are 

equivalent, [13].                                                   

 

Theorem 3.20: Let           and           be two smooth Banach spaces with             be 

a  (    
𝜖

), where   is an isometry multiplied by a positive constant. Assume that             

such that                
𝜖

  𝜖
            . Then   is a  (    

𝜖
). 

Proof: For any two vectors   and   in   with      
𝜖

 . Setting                and   
𝜖  

  𝜖
   , 

we have: 

                                       ,    . 

Now, from our hypothesis, we must have                 and hence: 

|                |  |                |                     ,    . 
                                , for all    . 

 
        

     
         

        

     
 , for all    . 

Let      
𝜖

 . Then for all    , we have        
         

             . Thus: 

             
              

                
   

           
   

      

      
        

  (   )
 

       
 . 

This implies that       
𝜖

    . It follows that         
𝜖

    . i.e.   is a  (    
ϵ

). 
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