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Abstract 

        In the last few years, the Internet of Things (IoT) is gaining remarkable 

attention in both academic and industrial worlds. The main goal of the IoT is laying 

on describing everyday objects with different capabilities in an interconnected 

fashion to the Internet to share resources and to carry out the assigned tasks. Most of 

the IoT objects are heterogeneous in terms of the amount of energy, processing 

ability, memory storage, etc. However, one of the most important challenges facing 

the IoT networks is the energy-efficient task allocation. An efficient task allocation 

protocol in the IoT network should ensure the fair and efficient distribution of 

resources for all objects to collaborate dynamically with limited energy. The 

canonical definition for network lifetime in the IoT is to increase the period of 

cooperation between objects to carry out all the assigned tasks. The main 

contribution in this paper is to address the problem of task allocation in the IoT as an 

optimization problem with a lifetime-aware model. A genetic algorithm is proposed 

as a task allocation protocol. For the proposed algorithm, a problem-tailored 

individual representation and a modified uniform crossover are designed. Further, 

the individual initialization and perturbation operators (crossover and mutation) are 

designed so as to remedy the infeasibility of any solution located or reached by the 

proposed genetic algorithm. The results showed reasonable performance for the 

proposed genetic-based task allocation protocol. Further, the results prove the 

necessity for designing problem-specific operators instead of adopting the canonical 

counterparts. 
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تخصيص المهام في إنترنت الأشياءخهارزمية جينية لمشكلة   
 

براء علي عطية ، مصطفى ناظم عباس  ،حسين محمد برهان *    
 قدػ الحاسبات، كمية العمؽم، جامعة بغجاد، بغجاد، العخاق

 الخلاصة
اكتدب إنتخنت الأشياء اهتسامًا ممحؽظًا في السجال الأكاديسي والرشاعي خلال الدشؽات القميمة الساضية .      
الهجف الخئيدي لأنتخنت الأشياء في وصف الأشياء اليؽمية ذات القجرات السختمفة بطخيقة متخابطة مع  يتسثل

مععػ كائشاته غيخ متجاندة مؼ يتسيد أنتخنت الأشياء بكؽن  الإنتخنت لسذاركة السؽارد والقيام بالسهام السعيشة.
ما إلى ذلغ. ومع ذلغ ، فإن أحج أهػ التحجيات حيث كسية الطاقة ، والقجرة عمى السعالجة ، وتخديؼ الحاكخة ، و 
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التي تؽاجه شبكات إنتخنت الأشياء هؽ تخريص السهام السؽفخة لمطاقة بحيث. يزسؼ بخوتؽكؽل تؽزيع السهام 
الفعال في شبكة إنتخنت الأشياء التؽزيع العادل والفعال لمسؽارد لجسيع الكائشات لمتعاون بذكل ديشاميكي مع 

سثل السداهسة الخئيدية في هحا البحث في معالجة مذكمة تخريص السهام في إنتخنت تت  طاقة محجودة.
الأشياء كسذكمة تحديؼ مع نسؽذج مجرك مجى الحياة. تػ اقتخاح خؽارزمية جيشية كبخوتؽكؽل لتخريص السهام. 

ية تقاطع بيؼ بالشدبة لمخؽارزمية السقتخحة، تػ ترسيػ تسثيل فخدي مرسػ خريرًا لمسذكمة وكحلغ أقتخاح عسم
أزواج الحمؽل معجلة عؼ العسمية التقميجية. علاوة عمى ذلغ، تػ ترسيػ مذغمي التهيئة والاضطخاب الفخدي 
)التقاطع والطفخة( لترحيح ججوى أي حل مؽجؽد أو تػ الؽصؽل إليه بؽاسطة الخؽارزمية الجيشية السقتخحة. 

جيشية السقتخحة. علاوة عمى ذلغ، أثبتت الشتائج أظهخت الشتائج أداء معقؽلا لبخوتؽكؽل تخريص السهام ال
 ضخورة ترسيػ عسميات تذغيل خاصة بالسذكلات بجلًا مؼ اعتساد العسميات التقميجية.

 

1. Introduction 

       The increased growth in the Internet of things (IoT) technologies provides a new perspective for 

the cooperation between the components of the physical world and engineering systems. Examples are 

Smart Home, Smart City, Connected Car, Connected Health (Digital health/Telehealth/Telemedicine), 

servers, and sensors. These devices can communicate and cooperate as heterogeneous devices in the 

IoT. Further examples extend from the current IoT solution to Collaborative IoT that can be connected 

through different communication technologies, e.g., 2G, 3G, 4G, LTE, 5G, WiFi, Zigbee, Bluetooth, 

and  BLE.  

     However, one of the main issues toward improving the efficiency of the network is task allocation. 

This key challenge has recently promoted a set of task allocation studies while supporting energy-

efficient IoT. The main aim of the energy-efficient task allocation is to enable the IoT objects to 

cooperate for a long period of time to perform different tasks. A simple example of the task allocation 

problem in IoT is shown in Figure-1. In the literature, many protocols have been proposed for solving 

the problem of task allocation in the IoT.  Colistra et al. [1] were the first to handle the task allocation 

problem while improving the network lifetime. Many other studies followed that work. Recently, the 

work of Khalil et al. [2] proposed an approach to prevent the untimely ends of the network lifetime by 

providing entitlement to all tasks assigned to this network while preserving the energy of battery-

powered objects. Further details of these works will be presented in Section 2. 

 
 

 

Figure 1- The task allocation problem in IoT. Seven different objects are able to perform four 

different tasks. 
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In what follows, we summarize the main aim of this paper:  

 The problem of task allocation in IoT is addressed in this paper as an optimization problem with a 

new formulation expressing the total set of objects as both one active subset and a number of inactive 

subsets, where only the active subset works at each round in the IoT lifetime. To the best of our 

knowledge, no such study has been addressed in the literature. 

 A single objective genetic algorithm (GA) is developed to tackle the formulated problem.  

 A modified uniform crossover is proposed to improve the performance of the adopted GA. 

The rest of the paper is organized as follows. Section 2 describes the related scenarios proposed in the 

literature for solving the task allocation problem in the IoT networks. Section 3 defines the proposed 

protocol. In section 4, the traditional genetic algorithm and the proposed genetic algorithm are 

evaluated. Finally, concluding remarks are summarized and some future works are given in Section 5.  

2. Literature Review   

     The task allocation problem received a wide area of studies and was addressed in many real 

applications; for example, in distributed and collaborative systems [3, 4, 5] and in wireless sensor 

networks [6, 7, 8]. However, the existing methods have a limited scope in studying the task allocation 

problem in IoT. Regarding the allocation of resources in the IoT, the problem is an open issue. It 

makes network heterogeneity, which pertains to the capabilities of objects and this in turn complicates 

the assignment problem.  

    The work proposed in previous studies [9, 10] is restricted in reality, as they focused their attention 

on the assumptions about finding and allocating the resources without implementing a service to 

satisfy the best configuration of optimal resource allocation in IoT. The scope of the investigation 

began about the discovery of the characteristics of the best task allocation after the very earlier works 

[1, 11, 12]; the authors provided a scenario for allocating and sharing resources among all nodes in the 

IoT network. Their protocols aimed to maximize the network lifetime as it is expressed as the probable 

duration of the network before the expiration of the first object. Task groups and virtual objects were 

used. According to their protocol, an IoT is made of groups of abject nodes, i.e. task groups that 

perform similar and replaceable tasks. On the other hand, control powers are given to one node in each 

task group, known as virtual objects (VOs) . A VO receives a signal from the central server (Central 

Deployment Server) and redirects the signal to the appropriate nodes in the task group to activate it.  

IoT-Device to Device (D2D) cooperation framework for task allocation among objects in the IoT was 

suggested later [13]. It enables direct interaction between IoT objects, where proximity services based 

on D2D communication are used. They presented a game-theory based approach called Nash 

Equilibrium Point (NEP) to find a solution to minimize the energy of objects utility functions. The 

D2D objects nodes are divided into clusters, with only one object in each cluster is designated as 

cluster head and then the central server sends a request to the cluster head which in turn redirects the 

request to the cluster nodes to perform specific tasks. The energy-aware IoT (EnergIoT) approach was 

proposed in another report [14], where the authors defined the proposed approach as a hierarchical 

clustering approach based on the duty cycle ratio to maximize the network lifetime of battery-powered 

IoT devices. Different duty cycle  

ratios are designed to balance the energy consumption among objects nodes.  

Based on the coverage-lifetime problem in wireless sensor networks (WSNs), an evolutionary 

algorithm was proposed  [15], where a single-objective optimization problem was adopted for solving 

the coverage-lifetime problem as disjoint groups under both Boolean and probabilistic sensing models. 

The work proposed later [16] adopted the genetic algorithm (GA) as an efficient optimization 

algorithm with the aim of maintaining sensors schedule of minimum rank. They schedule the sensors 

into disjoint groups to design energy-efficient wireless sensor network that can reliably cover a target 

area. 

3. The Proposed Task Allocation Protocol 

     An IoT system can mathematically be modeled by    ×   matrix   with a set of   tasks                  

  = { 1, T2..., Tn}, and a set of   objects   = {O1, O2, ..., Om}. Rows of IoT matrix are labeled with 

the tasks in   . On the other hand, columns are labeled with objects in  . Also, let Ѕ be a collection of 

subsets of tasks, i.e. S = {S1, S2, ..., Sm}, each Si ∈ Ѕ defines the set of tasks that can be performed by 

object Oj . The tasks are assumed to be randomly assigned to the objects in  . Any entry (i, j) ∈   is 

set to 1 if Oj can perform Ti. Otherwise,  (i, j) = 0.  
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A critical object set,   , is identified as the smallest set of objects with the ability to perform the 

critical task.  A critical task is defined as the task with the minimum number of objects that can 

perform it (refer to Figure- 2), with the number of tasks   = {T1, T2, T3, T4, T5} of   = 5 and S = 

{{T1}, {T1}, {T1, T2} , {T2, T3}, {T3, T5}, {T2, T4}, {T3, T4}, {T4, T5}}. Here, in the example, the 

critical objects are the objects which can perform the critical task {T5 }. In other words, CS = {O5, O8} 

with |CS| = 2.  In this paper, we state the task allocation problem in IoT as an optimization problem 

where the GA has to search for the maximum number of object subsets in which each subset can 

completely perform all the tasks in  . Note that the maximum number of object subsets cannot 

exceed   . 

 

 
Figure 2- An IoT system model with five tasks and eight objects. Task T5 has the least number of 

objects (only two objects) to perform it. Critical objects and critical task are depicted in yellow. 

 

3.1. Algorithmic framework for the proposed protocol 

      In this section, we present the task allocation problem in IoT as finding the maximum possible 

number of the active subsets of the objects. The characteristic components for the proposed GA, 

specifically the formulations of individual initialization mechanism, recombination, and mutation 

operators, are designed to suit properly for solving the problem. With population initialization and 

evaluation, the GA then operates in cycles of generations, each with solutions selection, recombination 

and mutation, new population evaluation, and termination test. 

The first decision step of any genetic algorithm is the individual representation and population 

initialization. Each individual Ⅰ is represented as a vector Ⅰ = { 1,  2, ...,  m} of   genes. The locus of 

each gene        maps to the object   . The allele of each gene maps to an integer number 1   i 

≤   represents the subset number to which the corresponding object belongs to. Note that the allele 

value cannot exceed  . Each subset is to be filled with a collection of objects (selected randomly) 

until the generated subset can completely perform all the assigned tasks. This process is then repeated 
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to generate the next subset. The chromosome depicted in Figure- 3 (right) illustrates one individual 

solution with three complete active subsets {C1, C2, C3}.  

 
Figure 3- illustration example of IoT system model with three tasks and ten objects (left). On the other 

hand, the (right) example presents an individual example encoding three complete subsets. 

 

    The next step is to calculate the quality of the solutions, i.e. the objective function. In other words, 

this objective determines the lifetime of the network. The objective function can be defined as the 

maximum value that the genes of the individual hold: 

     ( )     
     

                         (1) 

     Regarding the generation of the mating pool, binary tournament selection is used to select pairs of 

parents. Next, both crossover and mutation are used as the main perturbation operators. In this paper, 

two crossover operators are experimented. The first operator is somewhat similar to the traditional 

uniform crossover operator, taking into account the condition of generating only feasible individuals, 

with probability    = 0.5.  Noting that the number of groups formed in a child does not exceed the 

largest number of subsets in the two parents. For example, let  1 and  2, are two individual parents. Let 

the largest number of subsets in    is   , and in    it is     
      

     
                                                                                                                                           (2) 

 

      
     

                                                                                                                                            (3) 

 

     Then the largest number of subsets   in which the child can reach is        {  ,   }. Let us 

consider the two chromosomes shown in Figures- 4 and 5 as the two parents. As a result of the 

crossing of these two parents by the uniform crossover operator, the generated child is shown in 

Figure-6. 
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Figure 4- An example of one chromosome for the IoT system model depicted in Figure-3 (left). The 

chromosome is composed of three subsets {C1, C2, C3}. Subset C1 is overfilled with several 

redundant objects. On the other hand, subsets C2 and C3 are overfilled, respectively, with two and 

three critical objects. 

 

 
Figure 5- An example of one chromosome for the IoT system model depicted in Figure- 3 (left). The 

chromosome is composed of two subsets {C1, C2}. Subset C1 is overfilled with several redundant 

objects. On the other hand, subset C2 is overfilled with five critical objects. 

 
Figure 6- Genotype for a child solution generated after uniform crossover for the two parents shown 

in Figures- 4 and 5. The chromosome is composed of three subsets  {C1, C2, C3}. We can easily 

notice several redundant objects or several critical objects assigned to singular subsets. 
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     In the proposed modified uniform crossover, on the other hand, two parents are crossed in their 

genes, in a sequence of one complete subset after another complete subset. Each gene in both parents 

with the same objects subset number is collected into Common set,   . Initially    is empty (i.e.  
  = 

∅). After that    is filled out by the first subset of both parents starting from   . This can be formally 

expressed as : 

 

  
      

  *  ∈ (     )                                             ( ) 

  

     Genes from the parents are selected randomly from   
  to the child until the child’s subset (  ) 

meets the feasibility condition. After completing the formation of the current subset, the remaining 

unassigned objects are coupled with the objects of the parents for generating the next subset. In this 

way, we will reduce the possibility of selecting multiple critical objects or objects with many common 

tasks shared in the same subset. Again, let us consider the two chromosomes shown in Figures- 4 and 

5 as the two parents. As a result of the crossing these two parents by the modified uniform crossover 

operator, the generated child is shown in Figure-7. 

 

 
 

Figure 7- Genotype for a child solution generated after the modified uniform crossover for the two 

parents shown in Figures- 4 and 5. The chromosome is composed of five subsets {C1, C2, … ,C5}. 

We can easily see that the existence of redundant objects in a single subset is reduced compared to the 

two parents shown in Figures-(4 and 5). 

Finally, the second operator, i.e. the mutation operator, is applied to the child population. The simplest 

rule for designing the mutation operator is the exchange of two genes with probability   . For 

example, a child’s chromosome    *            + where two gene loci   and   in the child 

chromosome    are swapped in their subset values, i.e.   and   . 

4. Experimental Results and  Discussion 

     In this section, we will examine the performance of the proposed single genetic algorithm for 

solving the task allocation problem in the IoT. Parameter settings that affect the performance of the 

algorithm are summarized in Table 1. While only one setting for   tasks (  = 4) is adopted in the work 

of the single objective evolutionary based task allocation protocol proposed in [4], here we vary   to 

three different settings:   = {5, 10, 15}. 

Further, we increase the upper limit of   objects from   = 400 (as in [4]) up to   = 0110 with five 

different settings:   = {100, 250, 500, 750, 1000}.  We have a total of 3 × 5 IoT different model 

instances. Further, for each IoT model, we define 10 different IoT systems with   tasks and   objects. 

Moreover, for each IoT system, the algorithms execute 10 different runs, thus we have a total of             

3 × 5 × 10 × 10. We compare the performance of both protocols, i.e. Genetic Algorithm for Task 

Allocation (GATA) and the Modified Genetic Algorithm (mGATA) for Task Allocation.  

     Table-2 reports the average of the performance of the algorithm in terms of the number of the 

generated complete subsets (i.e., lifetime) for the IoT system model with  =5 and  =100. 

Competitive results are given in bold. The results in Tables 3, 4 and 5 compare the performance of the 

algorithms for all possible settings indicated in Table 1. The competitions are performed among all 
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possible comparison pairs. Efficacious and successful results in all these tables are given in bold. We 

can see the positive impact of the proposed crossover operator on extending the IoT lifetime. 

 

Table- Settings used for testing the efficiency of the proposed algorithms. 

Parameter name Acronym Possible settings 

Number of systems nSystem 10 

Number of runs nRun 10 

Number of tasks   {5, 10, 15} 

Number of objects   {100, 250, 500, 750, 1000 } 

Population size   100 

Number of generations      100 

Probability of crossover    0.5 

Probability of mutation    0.05 

 

Table 2- Performance of GATA and mGATA protocols in terms of system's lifetime (the average of 

the maximum number of object subsets) of 10 different runs for each system, where   is set to 5 and 

  is set to 100. Successful results were marked with bold against their counterparts. 

System# GATA mGATA 

1 30.4 36.4 

2 31.2 34.4 

3 28.9 34.9 

4 27.8 35.5 

5 30.6 35.8 

6 30.4 37.4 

7 30.5 35.4 

8 31.3 35.4 

9 30.8 34.4 

10 29 36.5 

 

Table 3- Average of performance of GATA and mGATA protocols in terms of the maximum number 

of objects subsets (lifetime) of 100 different runs for each tested model (10 different systems for each 

model with 10 different runs for each system). The number of tasks   is 5, while   varies from 100 to 

1000. The best average was recorded for the 10 different IoT systems. Successful results were marked 

with bold against their counterparts. 

Test#     GATA mGATA 

1  100 30.09 35.61 

2  250 72.66 82.16 

3 5 500 145.96 158.2 

4  750 215.82 218.11 

5  1000 284.28 286.59 

 

Table 4- Average of performance of GATA and mGATA protocols in terms of the maximum number 

of objects subsets (lifetime) of 100 different runs for each tested model (10 different systems for each 

model with 10 different runs for each system). The number of tasks   is 10, while   varies from 100 

to 1000. The best average was recorded for the 10 different IoT systems. Successful results were 

marked with bold against their counterparts. 

Test#     GATA mGATA 

1  100 23.52 27.43 

2  250 57.74 64.86 

3 11 500 114.31 122.75 

4  750 165.39 168.59 

5  1000 223.31 235.64 
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Table 5- Average of performance of GATA and mGATA protocols in terms of the maximum number 

of objects subsets (lifetime) of 100 different runs for each tested model (10 different systems for each 

model with 10 different runs for each system).  The number of tasks   is 15, while   varies from 100 

to 1000. The best average was recorded for the 10 different IoT systems. Successful results were 

marked with bold against their counterparts. 

Test#     GATA mGATA 

1  100 21.16 24.43 

2  250 51.97 57.8 

3 05 500 100.52 110.4 

4  750 147.59 151.9 

5  1000 200.29 200.57 

 

5. Conclusions 

     This paper addresses the problem of task allocation in IoT as an optimization problem. The 

protocol is designed to solve the problem as a single objective optimization problem with the aim of 

extending the lifetime of the IoT networks. The problem is solved by adopting the mechanism of 

genetic algorithm.     A modified crossover operator is also proposed to improve the performance of 

the algorithm. The results showed reasonable evidence for the importance of designing problem aware 

operators. An extension to this work can be recommended by modeling the problem as a disjoint set 

cover problem. Further, additional measures can be achieved. In such case, the problem has to satisfy 

two or more contradictory objectives. To meet this goal, a multi-objective genetic algorithm can be 

adopted rather than the single objective algorithm. 

 

References 

1. G. Colistra, V. Pilloni, and L. Atzori. 2014a. Objects that agree on taskfrequency in the iot: A 

lifetime-oriented consensus based approach. In 2014 IEEE World Forum on Internet of Things 

(WF-IoT), pages 383–387. IEEE. 

2. E. A. Khalil, S. Ozdemir, and A. A. Bara’a. 2019. A new task allocation protocol for extending 

stability and operational periods in internet of things. IEEE Internet of Things Journal, 6(4): 

7225–7231. 

3. J. Godoy and M. Gini. 2013. Task allocation for spatially and temporally distributed tasks. In 

Intelligent Autonomous Systems 12, pages 603–612. Springer. 

4. M. Simao Filho, P. R. Pinheiro, and A. B. 2016. Task allocation in distributed software 

development aided by verbal decision analysis. In Computer Science On-line Conference, pages 

127–137. Springer. 

5. A. Malik and A. Bilberg.  2019. Complexity-based task allocation in human-robot collaborative 

assembly. Industrial Robot: the international journal of robotics research and application. 

6. J. H. Zhu and H. Gao. 2007. Energy efficient algorithm for task allocation in wireless sensor 

networks. Ruan Jian Xue Bao(Journal of Software), 18(5):1198–1207. 

7. Z. Sun, Y. Liu, and L. Tao. 2018. Attack localization task allocation in wireless sensor networks 

based on multi-objective binary particle swarm optimization. Journal of Network and Computer 

Applications, 112: 29–40. 

8. Niccolai, F. Grimaccia, M. Mussetta, and R. Zich. 2019. Optimal task allocation in wireless sensor 

networks by means of social network optimization. Mathematics, 7(4): 315. 

9. G. Colistra, V. Pilloni, and L. Atzori.  2014b. The problem of task allocation in the internet of 

things and the consensus-based approach. Computer Networks, 73:98–111. 

10. G. Colistra, V. Pilloni, and L. Atzori. 2014c. Task allocation in group of nodes in the iot: A 

consensus approach. IEEE international conference on Communications (ICC), pages 3848–3853. 

IEEE. 

11. Silverajan and J. Harju. 2009. Developing network software and communications protocols 

towards the internet of things. In Proceedings of the Fourth International ICST Conference on 

COMmunication System softWAre and middlewaRE, pages 1–8. 

12. Guinard, V. Trifa, F. Mattern, and E. Wilde. 2011. From the internet of things to the web of 

things: Resource-oriented architecture and best practices. In Architecting the Internet of things, 

pages 97–129. Springer. 



Burhan et al.                                             Iraqi Journal of Science, 2021, Vol. 62, No. 4, pp: 1376-1385 
                    

1385  

13. Abd-Elrahman, H. Afifi, L. Atzori, M. Hadji, and V. Pilloni. 2016. Iot-d2d task allocation: An 

award-driven game theory approach. In 2016 23rd International Conference on 

Telecommunications (ICT), pages 1–6. IEEE. 

14. Q. Li, S. P. Gochhayat, M. Conti, and F. Liu. 2017. Energiot: A solution to improve network 

lifetime of iot devices. Pervasive and Mobile Computing, 42:124–133. 

15. Mustafa N. Abbas, Bara'a, A. Attea and Nasreen J. Kadhim. 2018. Evolutionary Based Set Covers 

Algorithm with Local Refinement for Power Aware Wireless Sensor Networks Design. Iraqi 

Journal of Science, 1959-1966. 

16. Bara'a, A. Attea, and Sarab M. Hameed. 2014. A genetic algorithm for minimum set covering 

problem in reliable and efficient wireless sensor networks. Iraqi Journal of Science, 55(1): 224-

240. 


