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Abstract 
     This paper presents a numerical scheme for solving nonlinear time-fractional 

differential equations in the sense of Caputo. This method relies on the Laplace 

transform together with the modified Adomian method (LMADM), compared with 

the Laplace transform combined with the standard Adomian Method (LADM). 

Furthermore, for the comparison purpose, we applied LMADM and LADM for 

solving nonlinear time-fractional differential equations to identify the differences 

and similarities. Finally, we provided two examples regarding the nonlinear time-

fractional differential equations, which showed that the convergence of the current 

scheme results in high accuracy and small frequency to solve this type of equations. 
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  LMADMأستخدامالكدورية الزمن بالغير خطية الحلول العددية للمعادلات التفاضلية 

 
فائزه لفته حدن *,حميده عودة الحميدي  

العراق, البصرة, جامعة البصرة, كمية التربية لمعمهم الصرفة, سم الرياضياتق  
 

 الخلاصة
. Caputoقدمت هذه الهرقة صيغة عددية لحل الطعادلات التفاضمية الغير خطية الكسهرية الزمن بطفههم      

تحهيل مع مقارنةً معاً ( LMADM) حسظةالط Adomianطريقة و تعتطد هذه الطريقة عمى تحهيل لابلاس 
و  LMADM( ، أيضًا ؛ لغرض الطقارنة ، قطظا بتطبيق LADMالقياسية ) Adomianطريقة و لابلاس 
LADM غير خطية لطعرفة الاختلافات والتشابهات. وأخيرًا ، قدمظا الرية الزمن ه لحل الطعادلات التفاضمية الكس

 ةالحالي الغير خطية والتي أظهرت أن التقارب لمصيغة رية الزمنه سمثالين فيطا يتعمق بالطعادلات التفاضمية الك
 الصغير لحل هذا الظهع من الطعادلات. والتكرارتدقة عالية مع ال

 

1. Introduction 

      Fractional calculus is a branch of mathematics that deals with real or complex number powers of 

the differential and integral operators. On the basis that the idea of fractional calculus was born more 

than three decades ago, serious efforts have been devoted to its modern study. Fractional differential 

equations (FDEs) are the generalization of the differential equations of integer order, studied through 

the theory of fractional calculus.  In recent years, studies have been extensive about FDEs, due to their 

applications in many areas of vital research, such as physics, medicine, and engineering.  
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    Moreover, fractional calculus studies can allow the understanding of many fractal phenomena, 

which cannot be studied by ordinary means. There are many applications for solving FDEs, such as 

the fundamental function solutions to the fractional development advection-dispersion equation [1], 

the implicit difference approximation [2], the introduction of stable numerical schemes by replacing 

fractional quadrature rules to obtain the general solution for stability problems [3], the homotopy 

analysis method as an approximate technique to find Solitary wave solutions [4], and  the Laplace and 

Fourier transforms [5]. In order to better understand the phenomenon described by a given nonlinear 

FDEs, the solutions of differential equations for the fractional order are largely involved. Fractional 

derivatives provide more accurate models of real world problems than integer order derivatives. Due 

to many applications in scientific fields, FDEs has been found to be an effective tool to describe some 

physical phenomena, such as propagation processes [6], properties of electrical and rheological 

materials, and viscosity theories [3]. It is important to resolve time FDEs. It was found that fractional 

time derivatives generally originate as infinitesimal generators of the time evolution when taken along 

the time scale boundaries. Thus, the importance of investigating FDEs arises from the need to refine 

the concepts of equilibrium, stability states, and evolution of time in a long time limit. In general, no 

method provides an accurate solution for non-linear FDEs. Several different and robust methods have 

been proposed to resolve FDEs to obtain approximate solutions. 

     In this paper, we will apply a combination of Laplace transform with MADM [1][7] to solve the 

general form of non-linear FDEs. [8] 

 

             
  (   )    (   )    (   )   (   )                          (   ) 

with,           , and subject to the initial condition, 

                                    
  

    (   )   ( )(   )    ( )    ( )(   )                (   ) 

     where,   
  (   )    

  (   )   is the Caputo fractional derivative,  (   )  is the source term,    is 

the linear operator, and    is the general nonlinear operator.  

2. Definitions 

     We will adopt the Caputo definition for the concept of the fractional derivative, which is a 

modification of the Riemann–Liouville, there are many papers are recommended for more details on 

the geometric and physical interpretations for fractional derivatives of both Riemann-Liouville and 

Caputo types [9, 10]. The Caputo definition has the advantage of dealing properly with the initial 

value problems, in which the initial conditions are given in terms of the field variables and their 

integer-order, which is the case in most physical processes.    

2.1 The fractional derivative of   ( ) in the Caputo sense is defined as [1][9] 

   ( )          ( )  
 

 (   )
∫(   )     

 

 

 ( )( )        (   ) 

                                     
  

 

  In addition, we need here two of its basic properties. 

Lemma 2.1: If                     
          , then [1][9] 

                  

      ( )   ( )                                                                 (   ) 

      ( )   ( )  ∑  ( )( )
  

  

   

   

              (   ) 
 

3. An Analysis of the ADM and Modified ADM 

      Now consider the general non-linear FDEs written in an operator's form (1.1). By applying the 

inverse operator to both sides of (1.1), we get:  

     (   )    ( )    
     (   )    (   )   (   )                 (   ) 

     Then the recursive relation according to the standard Adomian decomposition method (ADM) 

[7][11] is expressed as follows 

  (   )    ( )    
    (   )            

 

                               (   )    
     (   )                                  (   )  
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where                                (       )  
 

  
 

  

   [ (∑     
 
   )]

   
                  (   )  

 

     We present MADM that will facilitate the calculations and accelerate the convergence by 

decomposing the nonlinear term into two parts, taking into consideration not to repeat the term for 

more than one time in computing the polynomials. Therefore, the polynomials for the nonlinear 

term   ( )   ̅ (     ) can be obtained as follows: [12] 

 ̅ (  )   ̅ (       )             

 ̅ (     )   ̅ (       )   ̅ (       )   ̅ (       ) 

 ̅ (        )   ̅ (       )   ̅ (       )   ̅ (       )   ̅(       )    ̅ (       )   

   ̅   can be finally written as in the following convenient relation  

 ̅  ∑  ( ̅ (     ))  ∑  ̅ (       )

  

   
     

  

   

                        (   )  

where   is a decompose of the nonlinear term and       represent the dependent variable  . 

4. Laplace operation 

    The Laplace transform (LT) is a powerful tool in applied mathematics and engineering. It will allow 

us to transform FDEs into algebraic equations and then, by solving these algebraic equations, we can 

obtain the unknown function by using the inverse Laplace transform. 

4.1 Laplace transform  

   Given a function  ( ) defined for      , the LT  ( ) is defined by  

                             ( )     ( )  ∫  ( )

 

 

                                               (   )  

at least for those   for which the integral converges. 

4.2 Laplace Transform Properties [6] 

1.    ( )   ( )   ( )   ( ), 

2.       
 (   )

   , 

3.  [ ( )( )]     ( )       ( )        ( )    (   )( ) , 

4.      ( )  (  )  ( )( )  , 

5.  [∫  ( )
 

 
  ]  

 ( )

 
 , 

6.  [∫  (   )
 

 
 ( )  ]   ( ) ( )  

Lemma 4.1: The Laplace transform of Caputo fractional derivative                    can be 

obtained in the form of [11] [6] 

     ( )  
    ( )       ( )        ( )    (   )( )

     
              (   )  

5. Applications 

In this section, we consider two examples that demonstrate the performance and efficiency of the 

present algorithms for solving nonlinear FDEs. By the comparison with the exact solution, we report 

the absolute error which is defined by Abs.error1=│exact solution – LMADM│ and 

Abs.error2=│exact solution – LADM│. All our calculations were achieved by using MAPLE 

software. 

Example 1: Consider the following time-fractional nonlinear dispersive KdV equation: 

                                  
   

   
  (  )  ( ( )  )  ( ( ) )                       (   )    

 

with the initial condition 

                                         (   )  
 

 
(      (  ))                                                (   )  

and the exact solution is 

                                       (   )  
 

 
(      ( (     

 ))                                 (   )  
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     where a is real valued constant and ( ( )  )      ( ( ) )   are dispersive terms. 
   

      
   is 

applied to study the behaviour of weakly nonlinear ion acoustic waves in a plasma comprised of cold 

ions and hot isothermal electrons in the presence of a uniform magnetic field.  The LT of (5.1) is 

converted to 
  (   )   (   )

    
      (  )  ( ( )  )  ( ( ) )     

We shall apply (3.2) and then substitute the initial conditions (5.2). 

 

 (   )  
 

 
 (   )  

 

  
                  

 

  ( )       ̅(     ) 

 ̅       
  

 ̅             
       , 

 ̅             
                    

 ̅       
      

      
            

            
  

  

While with the standard ADM, we get the 

following components: 

        
                                          

              
                                

              
                   

        
      

              

  

and ,  ̅                 
         , 

 ̅                 
                

          

 ̅         
        

        
        

        
                

  

  

Also ,           
                                          

                  
                                

                  
                     

          
        

        

          

 

  
     where,        ∑     

 
            ∑      

              ∑    
 
                       Hence, by 

using the relation   (   )     (   )  for nonlinear terms, we can obtain the following forms of  ̅  , 

 ̅            , respectively: 

     Thus, in the same way, we calculate the other polynomials of   ̅  and      using the inverse LT and, 

according to (3.2), the zeroth component        written as follows: 

  (   )     [
 

 
 (   )]  

and the recursive relation can be written as follows: 

   
 

 
(      (  ))      (   )      *

 

  
                +    

     Both zeroth and the first components are similar in ADM and MADM, but the other components 

are different, which is why the approximate solution has higher accuracy and faster approximation to 

the exact solution than LADM, where the other components can be written as follows: 

 

    
 

 

     (  )(            (  ) (      ))  

 (   )
 

 

   
 

 
 

 

 (    ) (   ) 
((         (  ) (     )(    )

      (  ) (      )(      )    (         (  ))

    (         (  )))     (    )    (  )(      )  )     

 
 

 

 

 (    )
(  (               )) 

    
By collecting these components, we obtain the following numerical solutions: 
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      (  ) (      )(      )    (         (  ))

    (         (  )))     (    )    (  )(      )  )

 
 

 

 

 (    )
(  (                     (  ) (      ) 

      (  ) (     )(      )      (  )(               ))   )  

which provides us with the closed form solutions (5.3) as  in Table-1, where   
 

√
   

 

       

     

   (   )
                            

Example 5.2: Consider the solution of generalized Hirota–Satsuma coupled KdV of time-fractional 

order[4] 

                                     
  

  
 

 
           (  )   

  
                                    

  
                                  

}                               (   )  

with the initial conditions 

              

 (   )  
 

 
(     )                                       

 (   )   
     (    )

   
 

 
   (    )

   
        

 (   )                                                             }
 
 

 
 

              (   )  

  
and the boundary conditions will be found from the analytical solution 

    

 (   )  
 

 
(     )            (    )                         

 (   )   
     (    )

   
 

 
   (    )

   
      (    ) 

 (   )              (    )                                                }
 
 

 
 

             (   )  

     where                   are arbitrary constants.  By using the Laplace transform of a given 

system to convert it into another system of PDEs 

 
  (   )   (   )

    
  [

 

 
           (  ) ]  

  (   )   (   )

    
                

  (   )   (   )

    
                }

 
 

 
 

                             (   )  

     Again, by using the relations  (   )     (   )  for nonlinear terms, we can obtain the first few 

Adomian's polynomials of   ̅        ̅         ̅     ̅            respectively: 

and,  ̅  (    )   
 ̅  (    )  (    )  (    )   
 ̅  (    )  (    )  (    )  (    ) 

 (    )    
 ̅  (    )  (    )  (    )  (    ) 

 (    )  (    )   
  

also,    (    )                             
    (    )  (    )                             
    (    )  (    )  (    )       
     (    )  (    )  (    )  

 (    )       
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and so on to the other polynomials   ̅     ̅          By using the inverse Laplace transform and 

according to (3.2), the zeroth components                  written as follows: 

   

  (   )     [
 

 
 (   )]  

  (   )     [
 

 
 (   )]  

      (   )     [
 

 
 (   )]     

}
 
 

 
 

 

and the recursive relation can be written as follows: 
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By collecting all these components, we can obtain the closed form solutions (5.6) 
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 (   )   
 

 

 

 

 

 

 

 

 

 (   )   

   

          

              
 

 

  (   )    
 

               

                                                                                   

                                                                                                          . 

 

    

 

   

   The numerical results are listed in Tables 2a, 2b, and 2c for  (   )  (   )     (   )  respectively, 

where                                         
 

Table 1-The numerical results in comparison with the analytical solutions for various values 

of             for Example 5.1  

 α = 0.5 α = 0.75 α = 1.0 

    Abs. error1 Abs. error2 Abs. error1 Abs. error2 Abs. error1 Abs. error2 

0.1 

0.25 0.033573465 0.035078182 0.005755138 0.005927608 0.000592224 0.000608784 

0.50 0.035736217 0.038926279 0.006480788 0.006846431 0.001175507 0.001210615 

0.75 0.040155012 0.045415638 0.007558588 0.008161559 0.001722470 0.001780365 

1.00 0.046766167 0.054738582 0.008888380 0.009802174 0.002156088 0.002243827 

0.3 

0.25 0.096961220 0.104779961 0.028420468 0.030463317 0.002118922 0.002566041 

0.50 0.101948887 0.118524935 0.031898155 0.036229079 0.004915917 0.005863828 

0.75 0.113738563 0.141073582 0.037993742 0.045135726 0.008399976 0.009963146 
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1.00 0.132084780 0.173510663 0.046606630 0.057430218 0.012447274 0.014816238 

0.5 

0.25 0.155554096 0.172377348 0.057480538 0.063928107 0.002632510 0.004702507 

0.50 0.161352982 0.197018958 0.063819825 0.077488933 0.008822848 0.013211326 

0.75 0.177954506 0.236770101 0.075837002 0.098378281 0.017312487 0.024549383 

1.00 0.204571142 0.293705450 0.093302035 0.127463065 0.027966547 0.038933974 

 

Table 2-Comparison of the numerical results of the analytical solutions with LMADM and LADM for 

various values of             for Example 5.2, 

Table 2a 

                  α = 0.5               α = 0.75                α = 1.0 

    Abs. error1 Abs. error2 Abs. error1 Abs. error2 Abs.error1 
Abs. 

error2 

0.1 

0.25 1.233640     1.237832     3.08360     3.08840     5.       5.2      

0.50 1.606142     1.614488     4.46081     4.47038     4.       9.6      

0.75 1.970714     1.983139     5.81594     5.83018     3.       1.40      

1.00 2.325642     2.342038     7.14243     7.16122     2.       1.82      

0.3 

0.25 2.745901     2.7676821     9.13176     9.18867     5.08     1.723      

0.50 3.182651     3.226017     1.113800     1.125130     4.63      2.943      

0.75 3.603800     3.668365     1.308934     1.325804     4.09      4.102      

1.00 4.007515     4.092709     1.497685     1.519944     3.45      5.217      

0.5 

0.25 3.775932     3.822796     1.477563     1.495524     4.005     9.771      

0.50 4.153975     4.247285     1.674920     1.710682     
3.754      

1.5235 

     

0.75 4.511753     4.650676     1.864046     1.917289     
3.443      

2.0537 

     

1.00 4.847889     5.031198     2.044139     2.114393     
3.072      

2.5627 

     

 

Table 2b 

  α = 0.5 α = 0.75 α = 1.0 

    Abs. error1 Abs. error2 Abs. error1 Abs. error2 Abs. error1 Abs. error2 

0.

1 

0.2

5 

5.1533255

     

5.1533269

     

1.8783730

     

1.8783732 

     
1.505      1.505      

0.5

0 

5.1293837

     

5.1293892

     

1.8720289

     

1.8720295

      
1.493       1.493      

0.7

5 

5.0991844

     

5.0991965

     

1.8633835

     

1.8633849

      
1.472      1.473       

1.0

0 

5.0628770

     

5.0628983

     

1.8524797

     

1.8524821 

     
1.444      1.446      

0.

3 

0.2

5 

6.3647537

     

6.3647608

     

2.8303898

     

2.8303917 

     
4.0541      4.0545      

0.5

0 

6.3144311

     

6.3144595

     

2.8132302

     

2.8132376 

     

4.0133  

     
4.0149      

0.7

5 

6.2565362

     

6.2565994

     

2.7926519

     

2.7926684 

     
3.9521      

3.9558  
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1.0

0 

6.1913550

     

6.1914661

     

2.7687571

     

2.7687861 

     
3.8712      3.8775      

0.

5 

0.2

5 

5.9557846

     

5.9557999

     

2.9545385

     

2.9545444 

     

1.87134

     

1.87153

     

0.5

0 

5.8880117

     

5.8880727

     

2.9276132

     

2.9276366 

     

1.84979

     

1.85054

     

0.7

5 

5.8132618

     

5.8133978

     

2.8971370

     

2.8971891 

     

1.81881

     

1.82049

     

1.0

0 

5.7319055

     

5.7321445

     

2.8632623

     

2.8633539 

     

1.77879

     

1.78173

     

 

Table 2c 

  
α = 0.5 α = 0.75 α = 1.0 

  
  

Abs. error1 Abs. error2 Abs. error1 Abs. error2 Abs. error1 Abs. error2 

0.1 

0.25 5.7590972

     

5.7590988

     

2.0991751

     

2.0991753

     

1.681     1.682     

0.50 5.7323410

     

5.7323471

     

2.0920852

     

2.0920859

     

1.667     1.668     

0.75 5.6985919

     

5.6986055

     

2.0824236

     

2.0824252

     

1.645     1.646     

1.00 5.6580165

     

5.6580404

     

2.0702380

     

2.0702408

     

1.614     1.616     

0.3 

0.25 7.1129282

     

7.1129362

     

3.1631011

     

3.1631032

     

4.5304     4.5309     

0.50 7.0566904

     

7.0567221

     

3.1439246

     

1.439328

     

4.4851     4.4869     

0.75 6.9919899

     

6.9920605

     

3.1209273

     

3.1209458

     

4.4168     4.4208     

1.00 6.9191468

     

6.9192709

     

3.0942235

     

3.0942560

     

4.3263     4.3334     

0.5 

0.25 6.6558850

     

6.6559021

     

3.3018434

     

3.3018500

     

2.09131

     

2.09152

     

0.50 6.5801454

     

6.5802135

     

3.2717531

     

3.2717792

     

2.06721

     

2.06805

     

0.75 6.4966088

     

6.4967608

     

3.2376946

     

3.2377529

     

2.03263

     

2.03450

     

1.00 6.4056891

     

6.40595624

     

3.1998380

     

3.1999403

     

1.98789

     

1.99118

     

 

6. Conclusions 

      In this article, we found the solutions of nonlinear time-fractional differential equations by 

combining Laplace transform with the modified Adomian decomposition method (LMADM). We 

conclude that the results obtained by using this method are effective; they require a small number of 

iterations and high accuracy to solve different nonlinear fractional differential equations and their 

good convergence, compared with the Laplace transform combined with the standard Adomian 

analysis method (LADM). 
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