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Abstract

This paper presents a numerical scheme for solving nonlinear time-fractional
differential equations in the sense of Caputo. This method relies on the Laplace
transform together with the modified Adomian method (LMADM), compared with
the Laplace transform combined with the standard Adomian Method (LADM).
Furthermore, for the comparison purpose, we applied LMADM and LADM for
solving nonlinear time-fractional differential equations to identify the differences
and similarities. Finally, we provided two examples regarding the nonlinear time-
fractional differential equations, which showed that the convergence of the current
scheme results in high accuracy and small frequency to solve this type of equations.

Keywords: Fractional order differential equations, Caputo fractional derivative,
Laplace Transform, Adomian decomposition methods.
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1. Introduction

Fractional calculus is a branch of mathematics that deals with real or complex number powers of
the differential and integral operators. On the basis that the idea of fractional calculus was born more
than three decades ago, serious efforts have been devoted to its modern study. Fractional differential
equations (FDEs) are the generalization of the differential equations of integer order, studied through
the theory of fractional calculus. In recent years, studies have been extensive about FDES, due to their
applications in many areas of vital research, such as physics, medicine, and engineering.
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Moreover, fractional calculus studies can allow the understanding of many fractal phenomena,
which cannot be studied by ordinary means. There are many applications for solving FDEs, such as
the fundamental function solutions to the fractional development advection-dispersion equation [1],
the implicit difference approximation [2], the introduction of stable numerical schemes by replacing
fractional quadrature rules to obtain the general solution for stability problems [3], the homotopy
analysis method as an approximate technique to find Solitary wave solutions [4], and the Laplace and
Fourier transforms [5]. In order to better understand the phenomenon described by a given nonlinear
FDEs, the solutions of differential equations for the fractional order are largely involved. Fractional
derivatives provide more accurate models of real world problems than integer order derivatives. Due
to many applications in scientific fields, FDEs has been found to be an effective tool to describe some
physical phenomena, such as propagation processes [6], properties of electrical and rheological
materials, and viscosity theories [3]. It is important to resolve time FDEs. It was found that fractional
time derivatives generally originate as infinitesimal generators of the time evolution when taken along
the time scale boundaries. Thus, the importance of investigating FDEs arises from the need to refine
the concepts of equilibrium, stability states, and evolution of time in a long time limit. In general, no
method provides an accurate solution for non-linear FDEs. Several different and robust methods have
been proposed to resolve FDES to obtain approximate solutions.

In this paper, we will apply a combination of Laplace transform with MADM [1][7] to solve the
general form of non-linear FDEs. [8]

Dfu(x,t) = Lu(x,t) + Nu(x, t) + g(x,t) (1.1)
with, n—1 < a < n, and subject to the initial condition,
%u(x, 0) =u™(x,0)=f.(x),r=01)(n—-1) (1.2)

where, Dfu(x, t) = Lfu(x,t) isthe Caputo fractional derivative, g(x,t) is the source term, L is
the linear operator, and N is the general nonlinear operator.
2. Definitions

We will adopt the Caputo definition for the concept of the fractional derivative, which is a
modification of the Riemann-Liouville, there are many papers are recommended for more details on
the geometric and physical interpretations for fractional derivatives of both Riemann-Liouville and
Caputo types [9, 10]. The Caputo definition has the advantage of dealing properly with the initial
value problems, in which the initial conditions are given in terms of the field variables and their
integer-order, which is the case in most physical processes.
2.1 The fractional derivative of f(x) in the Caputo sense is defined as [1][9]

X

1
D« — [n-apa — _ f\n—a—1 g£(n) 21
f@) f0) = pa— gy | GO P @de (2.,
0
forn—-1<a<n, neN, x>0, feC".
In addition, we need here two of its basic properties.
Lemma2l:if n—1<a<n ne€N, f€(}andu= -1, then [1][9]
D™ f(x) = f(x) (2.2),

n—-1 k
I"DEF(x) = Fx) — ;f@(m% . x>0 (23)

3. An Analysis of the ADM and Modified ADM
Now consider the general non-linear FDEs written in an operator's form (1.1). By applying the
inverse operator to both sides of (1.1), we get:
u(x, t) = fr(x) + Ly%[Lu(x, t) + Nu(x, t) + g(x, t)] (3.1)
Then the recursive relation according to the standard Adomian decomposition method (ADM)
[71[11] is expressed as follows

up(x,t) = fr(x) + L “[g(x, 1) ],

U1 (x,8) = L [Lu(x, t) + 4y ] (3.2),
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where A, (ug, ... un)—n, ie [N(Z Aiui)]a:o (3.3).

We present MADM that will facilitate the calculations and accelerate the convergence by
decomposing the nonlinear term into two parts, taking into consideration not to repeat the term for
more than one time in computing the polynomials. Therefore, the polynomials for the nonlinear
term N(u) = N (m,, m,) can be obtained as follows: [12]

Ag(uwg) =N (m10: mzo)
Al(uO,ul) =N (mlo,mzl) + N (mll,mzo) + N (mll,mzl)
A,(ug,uq,uy) =N (mlo,mZZ) +N (mlz,mZO) +N (mll,mZZ) + N(mlz,mzl) +N (mlz,mZZ) :
A, can be finally written as in the following convenient relation
j 2i
A; = ij(lv (my,my)) = Z N (mlk,mzh), i,k,h=012,.. (3.4),
j=i T=i
k+h=j
where p is a decompose of the nonlinear term and m,, m, represent the dependent variable u.
4. Laplace operation

The Laplace transform (LT) is a powerful tool in applied mathematics and engineering. It will allow
us to transform FDEs into algebraic equations and then, by solving these algebraic equations, we can
obtain the unknown function by using the inverse Laplace transform.

4.1 Laplace transform
Given a function f(x) defined for 0 < x < oo, the LT F(s) is defined by

F(s) = LIf ()] = f f(x) eS¥dx @.1),
0

at least for those s for which the integral converges.
4.2 Laplace Transform Properties [6]

LIf(x) £ g(x)] = F(s) £ G(s),
[ ] F(a+1)

L[] = ) — 7O = 52 ©) = £ D),
LIx"f ()] = (~1)"F™(s)
[f ftyd] =22,

6. L[fo flx =) g(t)dt] = F(s)G(s).

Lemma 4.1: The Laplace transform of Caputo fractional derivative forn —1 < a <n, n € N can be
obtained in the form of [11] [6]

n _ oh— _ oh—2g¢/ _ ... f(n-1)
LIpef (o] = S E ) SO S,f_azf @@=/ 4,

5. Applications

In this section, we consider two examples that demonstrate the performance and efficiency of the
present algorithms for solving nonlinear FDEs. By the comparison with the exact solution, we report
the absolute error which is defined by Abs.errorl=|exact solution — LMADM| and
Abs. err0r2—|exact solution — LADMl All our calculations were achieved by using MAPLE
software.

Example 1: Consider the following time-fractional nonlinear dispersive KdV equation:
0!

ot + a(uz)x + U xx)x + W) xx = (5.1),
with the initial condition
1
u(x,0) = 5 (1 + cosh(Bx)), (5.2),
and the exact solution is
1
u(x,t) = > (1 + cosh(B(x — Alt“)), (5.3),
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. . . 0% .
where a is real valued constant and (u(u),,), and (u(u),),, are dispersive terms. P Dffuis

applied to study the behaviour of weakly nonlinear ion acoustic waves in a plasma comprised of cold
ions and hot isothermal electrons in the presence of a uniform magnetic field. The LT of (5.1) is
converted to
sU(x,s) —u(x,0)
sl-a = _L[a(uz)x + (W xx)x + @) xxls

We shall apply (3.2) and then substitute the initial conditions (5.2).

1 1
U(x,s) = ;u(x, 0) — S—aL[Za A, + 2B, + 3C,],

N (uw) = uu, = N(my,my) While with the standard ADM, we get the
Ay = uguy,, following components:
Ay = uguy, +ugug, +uquyy, Ag = Ugly,,
Ay = ugly, + Uplg, + Uty + UpUy, + U U, Ay = Uglly, + g,
A3 = ugus, +uzug, +uguz, +uzuy, +upus, Az = UpUz, + UpUo, + Uy,

+ Uz, + Usus,, Az = uguz, + Uzl + UjUp, + UpUy,,
and, By = uguy ., +Ugtlg, . F Uil Also , By = ugllg ...
By = UoUgyyy + UpUo sy T Urlzyyy + Uply s By = UoUy sy Ul yyr

T U2Uz sy B, = UoUzyyy T UzUoyyy T Url s
B3 = UoUs yyy + UsUoyyy T Uslls ey, + UsUypy By = UgUs, e + UsUoyyy T UrUz ey

T UU3 e T Uz T UsUssyys T Ul e

where, uu, = XpoAn, Ulxxy = Xn=0Bn, Uxlyxy = Xn=0Cn, and n = 0. Hence, by
using the relations (3.4) and (3.3) for nonlinear terms, we can obtain the following forms of 4,, ,
B, , A, and By, respectively: B

Thus, in the same way, we calculate the other polynomials of C,, and C,,, using the inverse LT and,
according to (3.2), the zeroth component u, is written as follows:

1
ug(x, t) = L71 [Eu(x, 0)],

and the recursive relation can be written as follows:

1 1
g =5 (1+cosh(Bx)),  pas (e, t) = —L71 [s—aﬁ[Za An + 2B, +3G,]|.

Both zeroth and the first components are similar in ADM and MADM, but the other components
are different, which is why the approximate solution has higher accuracy and faster approximation to
the exact solution than LADM, where the other components can be written as follows:

_ 1sinh(Bx)(2aB + 2B* + cosh(Bx) B(5B” + 2a))t*
=Ty r(l+a)

u, = 1 ! ((Za2 — 6 cosh(Bx)? (a + 6B?)(a + B?)
8T(1+3a0)I(1+ a)?
— 2cosh(Bx)3(a + 10B%)(5B% + 2a) + B*(11 + 48cosh(Bx))
+aB?(13 + 21cosh(Bx))) t3°T(2a + 1)sinh(Bx)(5B% + 2a)B3> + 2a
1

T 8Tar D)

(B2(—~50B* — 40aB? — 8a?))

By collecting these components, we obtain the following numerical solutions:
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1 1 1sinh(Bx) (2aB + 2B3 + cosh(Bx) B(5B% + 2a))t%
u(x, t)=—+2cosh(Bx)—— ( F+a) )

1 1
"8 T'(1+ 3a0)[(1 + )2 ((Zaz — 6 cosh(Bx)?*(a + 6B%)(a + B?)

— 2cosh(Bx)*(a + 10B*)(5B? + 2a) + B*(11 + 48cosh(Bx))
+aB?(13 + 21cosh(Bx))) t39T(2a + 1)sinh(Bx)(5B? + 2a)B3)
1 1
+3Taa D
8T2a + 1)
+ 6cosh(Bx)*(a + 6B2)(5B? + 2a) — cosh(Bx)(121B* + 62aB? + 4a?))t*%),

which provides us with the closed form solutions (5.3) as in Table-1, where g = L
2k2a1

boF(1+a)' = _0'5' a= 1’ a1 = 2'5; bO = 0.5.

Example 5.2: Consider the solution of generalized Hirota—Satsuma coupled KdV of time-fractional
order[4]

B?(—50B* — 40aB? — 8a? + 4cosh(Bx)*(5B% + 2a)?

uf = Euxxx — 3uu, + 3(vw)y,
(5.4),

VE = — Uy + 33UV, ,
W = —Wyyy + 33U Wy,
with the initial conditions
1
u(x,0) == (ﬂ — 2k?) + 2k?tanh?[kx]

\
|
b0y = B KD B KD } (5.5),
)] }

3¢, ? 3¢,
w(x,0) = co4 + citanh[kx]

and the boundary conditions will be found from the analytical solution
u(x, t) = —(ﬁ — 2k?) + 2k?tanh?[k(x — ct)]

k%co(B+ k%) 4k*(B +k?)
3¢,2 3¢,
w(x,t) = ¢y + cytanh[k(x — ct)]
where k,cy,c; # 0and S are arbitrary constants. By using the Laplace transform of a given
system to convert it into another system of PDES

v(x,t) =— (5.6)

tanh[k(x — ¢

sU(x,s) —u(x, 0)

[2 Upxx — SUU, + 3(vw)x] )

sl-a
sV(x,s) —v(x,0)
sl-a = L[~V + 3uvy], (5.7),
sW(x,s) —w(x,0)
Si-a = L[—Wyyy + 3uW,].

Again, by using the relations (3.4) and (3.3) for nonlinear terms, we can obtain the first few
Adomian's polynomials of A4, ,A4,, B,, B,,C,,C,, D, and D,,, respectively:

and, By = (vowg)y, also, By = (vowg)y »
By = (ow1)x + (1wo)x + (V1W1)5, By = (Wowq)x + (V1wo)yx
B, = (Wowa)x + (12Wo)x + (V1Wo)x + (VoW1 B, = (Wowy)x + (Vawp)x + (V1 W2)y,
_ + (Vaw2)y, B; = (vow3)x + (V3wp)x + (V1W3)y
B3 = (Wows3)x + (W3wp)x + (V1W3)x + (V3wy)y + (V1W2)y,

+ (Vw3)x + (V3W3)y, :
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and so on to the other polynomials C,, C,, D,, and D,,. By using the inverse Laplace transform and
according to (3.2), the zeroth components u, , vyand w, are written as follows:

ug(x,t) = L71 :%u(x, 0)], ]

vo(x,t) = L1 :%v(x, 0)], }

1
wo(x,t) = L7t Ew(x, 0)], J
and the recursive relation can be written as follows:
[ 1 1
un+1(x; t) = L1 S_“L [E (un)xxx — 34, + 3Bn]] ’

1
vn+1(x: t) =L1 [S_aL[_(vn)xxx + BCn]]v g

[ 1
Whi1(x, t) = Lt S_aL[_(Wn)xxx + 3Dn]]r

where n = 0. Hence, we obtain the foIIdwing components:
up =3 — 2k? + 2k? tanh (kx)?,

__APqB+K) 4@ +EY)
Vo= T3 c1? 3 o3}

tanh(kx),

Wy = ¢ + cytanh(kx),

4k3sinh(kx) pt¢
= I'(a + 1)cosh(kx)®
4k3(B + k?) pte
V1= 3I'(a + 1)cosh(kx)?c,
B cik pt*
"1 = T + 1)cosh(kx)?’

)

B 4B2%k* (=2 cosh(kx)? + 3)I'(a + 1)? cosh(kx)3 t3*
ta = I'(a + 1)2cosh(kx)? < ra+1)
4(—9k? + cosh(kx)? (=B + 5k))I'(a + 1)sinh(kx)kt3“>
+ ’
F'Ga+1)

8 B2(B + k?)sinh(kx) k* (T(a + 1)* cosh(kx)® t2¢ N 12k3T'(2a + 1) sinh(kx) kt3*
V2= T30 T(a + 1)? cosh(kx)® r2a+1) TBa+ 1) ’

. p2 sinh(kx) k?t2* 12 sinh(kx)? T(2a + 1)k5t3¢
Wi 1 ['(2a + 1) cosh(kx)®  T(3a + 1) cosh(kx)®T(a + 1)2 /)

By collecting all these components, we can obtain the closed form solutions (5.6)
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2

3 . o 4
uCet)= Lg 224042 (s py? 4 AK e B 8p° & (1 [
3 I(o) o cosh(k x) l"(oc) occosh(kx)2< a) F(oc-l— EJ
2 . 1 (x
. 12sz4 (ta)z\/— 96 B K’ s1nh(kx)\/;( [(x+ > t
4

I'(o) o cosh(k x) (2a

1 B k> sinh(k x) \/—

2

F((x)2 o cosh(k x)7 (30‘) F[oc + L]

3

o+ 2)
3

P4 (e 1
- 2 160 2

3 2 2 1 2 2 3 1
v(x, t) I(0)" o cosh(k x)° ?) ( ?j I'(a)” o cosh(k x) ( ) F[ot—l— ?) F(oc—l-

Jz
4 KB 4k k” tanh(k x) B L4 k* tanh(k x) | 4 2B
3 3¢ ¢ 3 4 3 (o) o cosh(k x)? ¢
3. 2.7 )2 1) (a)
. B 8 |3 sinh(k x) k* (ta>2 \/_ @ B sinh(k x)” k ﬁ(2 ) F[OH' 7) ()3
i I'(a) acosh(kx)Qc] ¢, T(r) o cosh( kx)? 2(1 F((x ] cll"(ot)2 o cosh(k x)° (3°) F((H %] 1"[0(+ %]

rlecs
A
)'rfe

8% sinh(k x) &° (t“) [r

_ 3
3

w(x, t)

¢ I'(0t) 0 cosh( kx)®

=¢, + ¢, tanh(k x) +

16¢, B sinhlk )? [ (2‘*)2r(a+

2 1
F(OH' 7]

B sinh(k x)2k° 1 (%) I‘(oc + i] () /3

2

Y
¢

clkﬁtoC

2c, B’ sinh(k x)

M@)o cosh(kx)° (30‘)3 F(a + %] F(oc + 3]

e () =

3

I'(o) o cosh(k x)?

1
2

o (2(1)

2

_) 5 (ta)3.ﬁ

1
2

I'(a) F[oc + —j cosh(k x)*

o 1"(0c)2 (3“)3 F(oc + %j F(oc + %j cosh(k x)°

The numerical results are listed in Tables 2a, 2b, and 2c for u(x, t), v(x, t)and w(x, t), respectively,
where k =0.1,8=1.5,¢; =1.5,¢ =15andc = —1.5.

Table 1-The numerical results in comparison with the analytical solutions for various values

of a,x and t for Example 5.1

a=0.5 0=0.75 =10

t X Abs. errorl | Abs.error2 | Abs.errorl | Abs.error2 | Abs.errorl | Abs.error2
0.25 | 0.033573465 | 0.035078182 | 0.005755138 | 0.005927608 | 0.000592224 | 0.000608784

0.50 | 0.035736217 | 0.038926279 | 0.006480788 | 0.006846431 | 0.001175507 | 0.001210615

ot 0.75 | 0.040155012 | 0.045415638 | 0.007558588 | 0.008161559 | 0.001722470 | 0.001780365
1.00 | 0.046766167 | 0.054738582 | 0.008888380 | 0.009802174 | 0.002156088 | 0.002243827

0.25 | 0.096961220 | 0.104779961 | 0.028420468 | 0.030463317 | 0.002118922 | 0.002566041

0.3 | 0.50 | 0.101948887 | 0.118524935 | 0.031898155 | 0.036229079 | 0.004915917 | 0.005863828
0.75 | 0.113738563 | 0.141073582 | 0.037993742 | 0.045135726 | 0.008399976 | 0.009963146
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1.00 | 0.132084780 | 0.173510663 | 0.046606630 | 0.057430218 | 0.012447274 | 0.014816238
0.25 | 0.155554096 | 0.172377348 | 0.057480538 | 0.063928107 | 0.002632510 | 0.004702507
0.50 | 0.161352982 | 0.197018958 | 0.063819825 | 0.077488933 | 0.008822848 | 0.013211326
oo 0.75 | 0.177954506 | 0.236770101 | 0.075837002 | 0.098378281 | 0.017312487 | 0.024549383
1.00 | 0.204571142 | 0.293705450 | 0.093302035 | 0.127463065 | 0.027966547 | 0.038933974

Table 2-Comparison of the numerical results of the analytical solutions with LMADM and LADM for
various values of a , x and t for Example 5.2,

Table 2a
a=0.5 a=0.75 a=1.0
t X Abs. errorl Abs. error2 Abs. errorl Abs. error2 Abs.errorl e'ra;’%sr.Z
0.25 | 1.23364010~* | 1.23783210~* | 3.0836010~° | 3.0884010°° 5.10710 52107°
0.50 | 1.606142107* | 1.61448810~* | 4.4608110~> | 4.4703810°° 4.10710 9.6107°
0.1 0.75 | 1.970714107* | 1.983139107* 5.8159410~5 5.8301810°° 3.10710 1.40 108
1.00 | 2.325642107% | 2.34203810~* | 7.1424310°> | 7.1612210°° 210710 1.8210°8
0.25 | 2.745901107* | 2.767682110~* | 9.1317610~> | 9.1886710°° 5.08108 1.723 107
0 0.50 | 3.18265110~* | 3.22601710~* | 1.11380010~* | 1.12513010™* | 443 10-8 20431077
™1 0.75 | 3.60380010~* | 3.66836510~* | 1.30893410~* | 1.32580410~* | 409 10-8 4.102 10~7
1.00 | 4.00751510* | 4.09270910~* | 1.49768510~% | 1.51994410* | 3.451078 | 5.2171077
0.25 | 3.77593210~* | 3.82279610* | 1.47756310~* | 1.49552410™* | 400510~ 97711077
0.50 | 4.153975107* | 4.24728510* | 1.67492010~* | 1.71068210~* _7 1.5235
3.754 10 10-7
0.5 [70.75 | 4.51175310* | 4.65067610~* | 1.86404610 % | 1.91728910~* _7 2.0537
3.443 10 10-7
1.00 | 4.84788910* | 5.03119810~* | 2.044139107* | 2.11439310~* _7 2.5627
3.072 10 10-7
Table 2b
a=0.5 a=0.75 a=1.0
t X Abs. errorl Abs. error2 Abs. errorl Abs. error2 Abs. errorl | Abs. error2
052 5.115(:)31_3355 5.1?(()’:5’:369 1.81731_’>Z30 1.817(6)3:_3132 1,505 10-° 1,505 10-®
) 0(.)5 5.112353?37 5.112(5)9£’>§92 1.8175(_)389 1.81(2)(3%95 1493 10-% | 1.493 10-*
1 057 5.033}?44 5.0;9(5)9}‘?65 1.8?(?;;:?35 1.8;33?:?49 147210-% | 1.473 10-®
1(.)0 5.0;33?270 5.0:35?383 1.8if>§i1Z97 1'815§f1§21 1.444 10~ 1.446 10~
052 6.3;3612?37 G'BngfOS 2.83(())??98 2.813(())9317 4.0541 10~ | 4.0545 10-7
0. | 05 6.3144311 6.3144595 2.8132302 2.8132376 4.0133 4.0149 10-7
3 0 10~* 10~* 10~* 10~* 1077 '
0.7 6.2565362 6.2565994 2.7926519 2.7926684 3.9521 10-7 3.9558
5 10~* 10~* 10~* 10~* ' 1077
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1.0 6.1913550 6.1914661 2.7687571 2.7687861 7 7
0 10-4 10-4 10-4 10-4 3.8712 10 3.8775 10
0.2 5.9557846 5.9557999 2.9545385 2.9545444 1.87134 1.87153
5 1074 1074 1074 10~ 106 106
0.5 5.8880117 5.8880727 2.9276132 2.9276366 1.84979 1.85054
0. 0 1074 1074 1074 104 106 106
5107 5.8132618 5.8133978 2.8971370 2.8971891 1.81881 1.82049
5 1074 1074 1074 1074 106 106
1.0 5.7319055 5.7321445 2.8632623 2.8633539 1.77879 1.78173
0 1074 1074 1074 1074 106 106
Table 2¢
a=05 a=0.75 a=1.0
t x Abs. errorl Abs. error2 Abs. errorl Abs. error2 Abs. errorl | Abs. error2
0.25 5.7590972 5.7590988 2.0991751 2.0991753 1.68110°° 1.68210°
1072 1072 1072 1072
0.50 5.7323410 5.7323471 2.0920852 2.0920859 1.667107° 1.66810°
01 1072 1072 1072 1072
' 0.75 5.6985919 5.6986055 2.0824236 2.0824252 1.645107° 1.646107°
1072 1072 1072 1072
1.00 5.6580165 5.6580404 2.0702380 2.0702408 1.614107° 1.616107°
1072 1072 1072 1072
0.25 7.1129282 7.1129362 3.1631011 3.1631032 4.5304107° | 4.530910°°>
1072 1072 1072 1072
0.50 7.0566904 7.0567221 3.1439246 1.439328 4.4851107° | 4.486910~5
0.3 1072 1072 1072 1072
' 0.75 6.9919899 6.9920605 3.1209273 3.1209458 4.4168107° | 4.420810°5
1072 1072 1072 1072
1.00 6.9191468 6.9192709 3.0942235 3.0942560 4.3263107° | 4.333410°5
102 1072 1072 1072
0.25 6.6558850 6.6559021 3.3018434 3.3018500 2.09131 2.09152
102 1072 1072 1072 1074 1074
0.50 6.5801454 6.5802135 3.2717531 3.2717792 2.06721 2.06805
05 102 1072 1072 1072 1074 1074
' 0.75 6.4966088 6.4967608 3.2376946 3.2377529 2.03263 2.03450
1072 1072 1072 1072 1074 1074
1.00 6.4056891 6.40595624 3.1998380 3.1999403 1.98789 1.99118
1072 1072 1072 1072 1074 1074

6. Conclusions

In this article, we found the solutions of nonlinear time-fractional differential equations by
combining Laplace transform with the modified Adomian decomposition method (LMADM). We
conclude that the results obtained by using this method are effective; they require a small number of
iterations and high accuracy to solve different nonlinear fractional differential equations and their
good convergence, compared with the Laplace transform combined with the standard Adomian

analysis method (LADM).
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