
Altaie et al. Iraqi Journal of Science, 2021, Special Issue2, pp: 63-69

 DOI: 10.24996/ijs.2021.SI.2.7

*Email: asmahammo@uomosul.edu.iq

63

Software Fault Estimation Tool Based on Object-Oriented Metrics

Atica M. Altaie, Asmaa Yaseen Hamo

*
, Rasha Gh. Alsarraj

College of Computer Science and Mathematics, University of Mosul, Mosul, Iraq

Abstract
 A fault is an error that has effects on system behaviour. A software metric is a

value that represents the degree to which software processes work properly and

where faults are more probable to occur. In this research, we study the effects of

removing redundancy and log transformation based on threshold values for

identifying faults-prone classes of software. The study also contains a comparison of

the metric values of an original dataset with those after removing redundancy and

log transformation. E-learning and system dataset were taken as case studies. The

fault ratio ranged from 1%-31% and 0%-10% for the original dataset and 1%-10%

and 0%-4% after removing redundancy and log transformation, respectively. These

results impacted directly the number of classes detected, which ranged between 1-20

and 1-7 for the original dataset and 1-7 and 0-3) after removing redundancy and log

transformation. The Skewness of the dataset was deceased after applying the

proposed model. The classified faulty classes need more attention in the next

versions in order to reduce the ratio of faults or to do refactoring to increase the

quality and performance of the current version of the software.

Keywords : software, Fault predication, Threshold value, Remove redundancy, Log

transformation.

مقاييس البرمجة المهجهةبالاعتماد على أداة تخمين الخطأ للبرمجيات

رشا غانم السراج, *سماء ياسين حمه, اعاتكة محمد الطائي

العخاق, المهصل, المهصل , جامعةعمهم الحاسهب والخياضيات كمية
 الخلاصه

التي ل درجة عمميات البخمجياتهه قيمة تمث ياتمجؤثخ عمى سمهك النظام. مقياس البخ ي الحيالخطأ هه
تأثيخ إزالة التكخار تم دراسة. في هحا البحث، المحتمل حجوثهاترف اين الاخطاء تعمل بذكل صحيح و

كما يحتهي عمى المعخضة للأخطاء ، تبة لتحجيج فئات البخمجياتالع حج بناءً عمى قيم التحهيل المهغاريتميو
مجمهعة . تم أخحالمهغاريتميتحهيل الصمية والقيم بعج إزالة التكخار و لمجمهعة البيانات الأمقارنة بين القيم

٪(10-٪ 0٪(،)31-٪ 1وتخاوحت ندبة الخطأ بين) كحالات دراسية.النظام و التعمم الإلكتخوني بيانات
حه وتأثيخ ه المهغاريتميتحهيل ال٪ (بعج إزالة التكخار و 4-٪ 0٪(،)10-٪ 1لمجمهعة البيانات الأصمية و)

(لمجمهعة البيانات 7-1(و)20-1المكتذفة التي تخاوحت بين) لنتائج بذكل مباشخ عمى عجد الاصنافا
بعج تطبيق قل. انحخاف مجمهعة البيانات المهغاريتمي التحهيل(بعج إزالة التكخار و 3-0(و)7-1الأصمية و)

 من الاهتمام في الإصجارات اللاحقةيج مد ال معخضة لمخطأ تحتاج المرنفة بانها الاصنافالنمهذج المقتخح.
 .وأداء الإصجار الحالي من البخمجياتلتقميل ندبة الأخطاء أو القيام بإعادة الهيكمة لديادة جهدة

 ISSN: 0067-2904

Altaie et al. Iraqi Journal of Science, 2021, Special Issue2, pp: 63-69

63

I. Introduction

 Software systems have become very common, and because they depend on the programming of

many people, there is a possibility of the emergence of errors. These errors may affect code quality [1],

reliability [2] and maintainability [3]. After diagnosing the error in the classes, refactoring can be

performed to increase accuracy of the applications [4].

Object-oriented metrics are used to measure software quality during software development and beyond.

There are metrics that aid to measure the quality of the code and give suggestions to improve reuse,

ease of maintenance, and detection errors, the most important of which are CK (Chidamber and

Kemerer) metrics [5]. The CK metrics cover the most significant object-oriented properties, including

cohesion, coupling, size, inheritance, and complexity [6]. They take high importance in applications

that need accuracy. The used CK metrics are summarized in Table- 1 [7, 8].

Table 1- Metrics used in this study

Metric Definition

WMC (“Weighted

Methods per Class”)
A measure representing the total complexity of class's methods.

DIT (“Depth of

Inheritance Tree”)
A measure representing the depth of a class diagram.

NOC (“Number Of

Children”)

A measure representing the number of classes associated with a class

with an inheritance relationship.

CBO (“Coupling

Between Object

classes”)

A measure representing the number of classes associated with a class

with any relationship.

RFC (“Response For

Class”)

A measure representing the total number of methods of class taking into

account received messages.

LCOM (“Lack Of

Cohesion Metric”)

A measure representing the correlation between methods and local

variables of a certain class.

 There are many previous research attempts to locate the error in the source code, which relied on

different principles. Till now, no study and model have been identified that can be applied to all

software and gives accurate results for all projects. Thus, this paper tried to have a different equation

for each software to meet with it by adding a constant value, ranging from zero to one and then to the

threshold value, as determined by the experiment to increase the accuracy of results.

In order to improve the quality of the program, these errors must be identified more precisely. In this

study, an indicator is needed to reduce the effort to understand, maintain, and refactor. Therefore, the

software metrics were used to determine which classes are needed more to focus on the testing and

refactoring. After detecting the faulty classes, the refactoring process can be performed.

The present study aims to apply a methodology that focuses on removing redundancy and then

applying log transformation to improve the quality of software metrics for identifying faults-prone

classes of open source software and to view a comparison of the metric values of the original dataset

with the values of the metric after performing the remove redundancy, log transformation, and

recording of results.

The research is organized as follows. Section two describes related work. Section three describes

methodology and contains a representation of UML (Unified Modelling Language) diagrams that

shows the overall structure of the research. Section four introduces case studies, followed by the

results that are obtained from the proposed methodology implementation. Finally, Sections five and

six describe the conclusions and recommendations for the future of the research.

II. Related Work

 In 2010, Shaik et al. demonstrated a study on the software metrics and their growing importance in

software development and obtaining certain characteristics of the software [9]. In 2012, Ferreira et a.l

studied open source projects, defined a threshold value for software metrics of object-oriented

programs, and explored the importance of deriving a threshold value for the metrics of Software

Engineering, which they used to enhance the quality of open source programs [10]. Also in the same

year, Chawla utilized five software metrics for analysing a set of three sorting programs based on java.

Altaie et al. Iraqi Journal of Science, 2021, Special Issue2, pp: 63-69

64

There were 3 software measurement tools which were utilized for judging their performance in terms

of metrics indicated. The tool's comparative analysis was specified for indicating how they are

different in delivering results with regard to the same programs [11].

 In 2013, Kapila et al. demonstrated all the approaches of faults prediction for getting aid with such

work to design Bayesian inference and Logistic regression model. Also, it was indicated that the

Bayesian inference graph might be provided for the probabilistic approach for faults identified and

presented for the next upcoming release. With regard to the Probabilistic reliability analysis, the

Bayesian inference was suggested for evaluating risk-related data. Such finding suggested a relation

between object-oriented metrics and faulty classes [12].

In 2015, Shatnawi proposed a model which takes into consideration data distribution and skewness of

the data and suggests log transformation and threshold value to identify faulty classes of open source

programs. He showed the importance of using log transformation in fault predicting and its impact on

the validity of the results [13].

 In 2017, Zhang et al. studied the effects of the log, Box-Cox, and rank transformations on the

normality of software metrics for open source software. Compared with their results, they selected the

best training for a target open source software, then measured the performance based on it [14]. Gupta

and Saxena proposed a model that used fourteen metrics from open source dataset and explored the

importance of object oriented metrics and their relationship with bug prediction. The bug prediction

was calculated based on equations that used these fourteen metrics [15]. Also in the same year, Gupta

et a.l proposed a model to formulate some assumptions matching to each other and to object-oriented

metrics , where the best appropriate metrics were chosen for the proposed model. The Logistic-

Regression-Classifier offers precision among all classifiers. The proposed model was trained and

tested on each of the dataset and the precision of the software was calculated in each case [16].

In 2018, three researches were done in this area, as follows.

 Zhu and Pham identified the significant difference between software metrics and observed defect

prediction. They also studied the relations involved in the object-oriented metrics "CK metrics suite"

and the number of defects. They finally decided on the differences of the metrics, to eclipse classes as

defective, and selected them with regard to defect prediction. They took a sample dataset from the bug

prediction dataset of source code metrics as the data is based on Eclipse classes[17].

 Zhu et a.l suggested a theoretic software reliability model which incorporates the process of fault

detection which is a stochastic process because of randomness resulting from environmental factors.

The environmental factor, Percentage of Reused Modules, has been specified as gamma distribution in

their work on the basis of collected data from the industry. Furthermore, the Open Source Software

project data have been involved for showing the efficiency and predictive power regarding the

suggested model[18].

 Belachew et al. assessed and analyzed software metrics utilized for measuring software quality,

especially software products and processes. The software quality is used to measure how the software

is developed and the way that software is in accordance with the design. Yet, the quality standard

utilized from one organization was considered to be distinctive from the others. Thus, it was better to

utilize the software metrics for measuring its quality as well as the quality of the majority of the

current software metrics tools [19].

 In 2019, Rahmann et al. applied the software change metrics with regard to defect prediction.

Furthermore, the performances of excellent machine learning and hybrid algorithms were used in the

estimation of the defect with changing metrics. Hybrid algorithms displayed improvements in

performance, precision, and recall. The acquired results specified that GFS-logitboost-c has optimum

defect prediction capability [20].

In the proposed model herein, the advantages of most previous studies were taken and combined in

one model, starting with the metric collection, log transformation, and threshold value, while ending

with skews calculation in each step and the use of these functions to identify faulty classes of open

source projects.

III. Methodology

 Figure-1 demonstrates the Use-Case diagram of the proposed tool to clarify the relationship of the

system with the software engineer and the basic operation, as well as how to use it in detecting faulty

classes in the software.

https://www.sciencedirect.com/topics/computer-science/learning-algorithm

Altaie et al. Iraqi Journal of Science, 2021, Special Issue2, pp: 63-69

65

Figure 1- Use-Case diagram for the proposed model

The tool consists of seven classes, as follows.

 MainClass: It calls all classes of the proposed model, sends the variables, returns the results, and

prints the final results at the program interface.

 MetricCollection: It opens the original file that contains data of many metrics collected, and

extracts only six values, that represent the Chidamber and Kemerer’s metrics suite used in the

proposed model, in another file.

 RemoveRedundancy: It opens a file that contains CK metrics and removes redundancy from all

records in the file.

 LogTransformation: It opens a file that contains CK metrics after removing redundancy, applies a

log transformation for all values, and saves the results in another file.

 ThresholdCalculation: It takes the values of each metric in the file and computes the threshold

through equation 1.

 Threshold = mean (M) + standard deviation (SD) + constant value ….. Equation 1

 It was supposed to add a constant value that ranged from 0 to 1 to the threshold equation. The

higher value implies a higher accuracy of the results for the faulty classes. Values of 0.5 and 0.4 were

selected, which were suitable for the selected software, while it was possible to increase or decrease

the value for other types of software depending on the accuracy of the results required. Through

experience, it was found that these values give the best results, and accordingly, they were relied upon.

When the constant value is close to zero, the number of classes increases, while when it is close to one,

the number of classes decreases. Thus, we can be more specific about the classes that need more

attention by increasing the constant value.

 ClassesFaultyPresent: It computes the ratio of the fault classes depending on the number of

classes that have a value higher than the threshold value divided by the total number of classes.

 SkewnessCalculation: It computes the skewness of the values for each metric and returns the

results.

Altaie et al. Iraqi Journal of Science, 2021, Special Issue2, pp: 63-69

66

Figure-2 shows an activity diagram of the proposed model to clarify the interaction between processes.

Figure 2- Activity diagram for the proposed model

IV. Case Studies

 E-learning software [21] and system software [22] datasets consist of 64 and 65 classes,

respectively. The datasets are publicly reported by Zenodo website.

 Practical steps of WMC metric before removing redundancy and before log transformation for e-

learning software are calculated as follows:

Mean = Ʃ Xi /n =7.53571

Standard deviation= √ (Ʃ (Xi - mean)
2
 / n-1) = 6.04733

 Skewness= Ʃ(Xi - mean)
3
 / (n-1) *σ

3
 = 1.56767 where σ is the standard deviation.

 Threshold = mean (M) + standard deviation (SD) = 13.58304

Faulty class= no. of classes > threshold value =9

Failure rate= 14.0625

 Practical steps of WMC metric after removing redundancy and after log transformation for e-

learning software are calculated as follows:

Mean = Ʃ Xi /n =0.81087

Altaie et al. Iraqi Journal of Science, 2021, Special Issue2, pp: 63-69

67

Standard deviation= √ (Ʃ (Xi - mean)
2
 / n-1) = 0.31989

 Skewness= Ʃ(Xi - mean)
3
 / (n-1) *σ

3
 = 0.03611 where σ is the standard deviation

 Threshold = mean (M) + standard deviation (SD) + 0.5 = 1.43076

Faulty class= no. of classes > threshold value =2

Failure rate= 3.125

The statistical results of other metrics are described in Tables- 2, 3, 4 and 5 of the case studies.

Table 2- Fault ratio of the file before removing redundancy and before log transformation for e-

learning software.

Metric

name
mean

Standard

deviation
skewness Threshold

Faulty

class

Failure

rate

WMC 7.53571 6.04733 1.56767 13.58304 9 14.0625

DIT 3.07813 1.67056 0.10518 4.74869 20 31.25

NOC 6.0 1.85164 0.15752 7.85164 1 1.5625

CBO 5.06452 4.15766 1.64654 9.22218 8 12.5

RFC 14.39286 12.74289 2.04199 27.13575 7 10.9375

LCOM 38.39024 61.63024 2.70416 100.02048 5 7.8125

Table 3- Fault ratio of the file after removing redundancy and after log transformation for e-learning

software.

Metric

name
mean

Standard

deviation
skewness Threshold

Faulty

class

Failure

rate

WMC 0.81087 0.31989 0.03611 1.43076 2 3.125

DIT 0.56137 0.15823 0.84264 1.01960 7 10.9375

NOC 0.75427 0.15005 0.75449 1.20433 1 1.5625

CBO 0.71971 0.27493 0.05102 1.29465 2 3.125

RFC 1.01856 0.38910 0.21735 1.70766 1 1.5625

LCOM 1.34576 0.57469 0.13142 2.22046 2 3.125

Table 4- Fault ratio of the file before removing redundancy and before log transformation for system

software.

Metric

name
mean

Standard

deviation
skewness Threshold

Faulty

class

Failure

rate

WMC 8.8 9.09641 2.83771 17.89641 7 10.76923

DIT 3.55385 6.94823 7.09210 10.50207 1 1.53846

NOC 0 0 0 0 0 0

CBO 7.31746 6.99166 3.20843 14.30912 5 7.69231

RFC 20.46154 20.25155 2.17235 40.71309 7 10.76923

LCOM 74.45833 180.62968 4.26238 255.08801 3 4.61538

Table 5- Fault ratio of the file after removing redundancy and after log transformation for system

software.

Metric

name

Mean

Standard

deviation

Skewness

Threshold

Faulty

class

Failure

rate

WMC 0.83049 0.32953 0.5334 1.56001 3 4.61538

DIT 0.83652 0.39733 0.3778 1.63385 1 1.53846

NOC 0 0 0 0 0 0

CBO 0.84129 0.27076 0.44461 1.51206 3 4.6153846

RFC 1.13467 0.42181 0.23724 1.95648 1 1.53846

LCOM 1.43652 0.69733 0.3778 2.53385 2 3.07692

Altaie et al. Iraqi Journal of Science, 2021, Special Issue2, pp: 63-69

68

 In all tables, the calculated value of the threshold is stated and, depending on it, the number of

faulty classes and failure rate are computed. The results for E-learning and system datasets revealed

that the fault ratio ranged from 1%-31% and 0%-10% for the original dataset and 1%-10% and 0%-4%

after removing redundancy and log transformation. These results impacted directly the number of

classes detected, which ranged between 1-20 and 1-7) for the original dataset and 1-7 and 0-3) after

removing redundancy and log transformation.

 As shown in Tables-3 and 5, the number of faulty classes and failure rate after removing

redundancy and log transformation was decreased compared with those before removing redundancy

and log transformation. Data in Tables- 2 and 4 are in the form that aids a software engineer to focus

the attention on specific classes to improve the quality of these classes. The skewness of the dataset

was also decreased.

V. Conclusions

 In this research, a method for finding the fault rate of software was proposed depending on the

object-oriented metrics. The paper concludes that:

 The proposed model classifies software classes as faulty or non-faulty based on metric values and

the number of faulty classes, while the fault percentage is also determined.

 The paper employs two software as case studies. When the proposed model was applied, the

accuracy of determining the number of faulty classes and failure rate in the datasets was increased

after each operation (removal of redundancy and Log transformation)

 Decreasing the indicator of faulty classes and failure rate tends to reduce the effort of

understanding the code. It also provides easy maintenance and easy refactoring by focusing on the

classes that need more attention. Furthermore, it improves the quality and performance of the source

code.

VI. Future Work

A set of improvements can be made, as summarized in the following points:

 Applying the proposed model on many datasets of software and comparing the results.

 Integrating the proposed model with other object-oriented metrics to predict faults of open source

software to achieve more precise and reliable results.

 Expending the proposed model by using artificial intelligence algorithms.

References

1. Bird C., Nagappan N., Murphy B., Gall H. and Devanbu P. T. 2011. “Don’t touch my code!:

examining the effects of ownership on software quality”. In T. Gyimothy and A. Zeller, editors,

SIGSOFT FSE, pages 4–14. ACM, 2011.

2. Okumura K., Okamura H. and Dohi T. 2018. “Software Reliability Modeling and Analysis via

Kernel-Based Approach”, 22nd International Conference on Engineering of Complex Computer

Systems (ICECCS), Fukuoka, Japan, pp. 154-157.

3. Kumar L., Naik D. K. and Rath S. K. 2015. Validating the Effectiveness of Object-Oriented

Metrics for Predicting Maintainability, Procedia Computer Science, 57: 798- 806.

4. Singha S.and Kaur S. 2018. “A systematic literature review: Refactoring for disclosing code

smellsin object oriented software”, Ain Shams Engineering Journal, 9(4): 2129-2151.

5. Misra, S.; Adewumi, A., Fernandez-Sanz, L. and Damasevicius, R. 2018. A Suite of Object

Oriented Cognitive Complexity Metrics, IEEE Access, pp.8782–8796.

6. Nuñez-Varela A. S., Pérez-Gonzalez H. G., Martínez-Perez F. E. and Soubervielle-Montalvo C.,

2017. “Source code metrics: A systematic mapping study”, Journal of Systems and Software, 128.

7. Manoj H.M and Nandakumar A.N, 2016. “Constructing Relationship Between Software Metrics

and Code Reusability in Object Oriented Design”, International Journal of Advanced Computer

Science and Applications, 7(2).

8. Bakar N. S. A. A. 2016. ” The Analysis of Object-Oriented Metrics in C++ Programs”, Lecture

Notes on Software Engineering, 4(1), February 2016.

9. Shaik A., Reddy C. R. K., Manda B., Prakashini. C and Deepthi. K. 2010. “Metrics for Object

Oriented Design Software Systems: A Survey”, Journal of Emerging Trends in Engineering and

Applied Sciences (JETEAS), pp.190-198.

https://www.sciencedirect.com/science/journal/01641212
https://www.sciencedirect.com/science/journal/01641212/128/supp/C

Altaie et al. Iraqi Journal of Science, 2021, Special Issue2, pp: 63-69

69

10. Ferreira K. A.M., Bigonha M. A.S., Bigonha R. S., Mendes L. F.O. and Almeida H. C. 2012.

"Identifying thresholds for object-oriented software metrics", The Journal of Systems and

Software, pp. 244– 257.

11. Chawla M. K. and Chhabra I., 2012. “Implementing Source Code Metrics for Software quality

analysis”, International Journal of Engineering Research & Technology (IJERT), 1(5).

12. Kapila H. and Singh S., 2013. “Analysis of CK Metrics to predict Software Fault-Proneness using

Bayesian Inference ”, International Journal of Computer Applications, 74(2).

13. Shatnawi R., 2015. "Deriving metrics thresholds using log transformation", Journal of software

evolution and process, pp.95–113.

14. Zhang F, Keivanloo I. and Zou Y. 2017. "Data transformation in cross project defect prediction".

Empirical Software Engineering., 22(6): 3186-3218, DOI 10.1007/s10664-017-9516-2.

15. Gupta D. L. and Saxena K., 2017. " Software bug prediction using object-oriented metrics ",

Sadhana, The Indian Academy of Sciences , 42(5): 655–669.

16. Gupta, Dharmendra Lal, and Kavita Saxena. 2017. "Software bug prediction using object-oriented

metrics." Sādhanā.

17. U P. and PK N. B. 2018. Prediction of software defects using object- oriented metrics”,

International Journal of Civil Engineering and Technology (IJCIET), 9(1): 889–899.

18. Zhu M. and Pham H., 2018. ” A software reliability model incorporating martingale process with

gamma-distributed environmental factors”, Annals of Operations Research, springer.

19. Belachew E. B., Gobena F. A. and Nigatu S. T., 2018. “Analysis of software quality using

software metrics“ ,International Journal on Computational Science & Applications (IJCSA)

8(4/5).

20. Rhmann W., Pandey B., Ansari G. and Pandey D.K. 2019. “Software fault prediction based on

change metrics using hybrid algorithms: An empirical study”, Journal of King Saud University –

Computer and Information Sciences, Elsevier.

21. https://zenodo.org/record/322433#.Xm6aGqgzbIU.

22. https://zenodo.org/record/322450.

https://zenodo.org/record/322450

