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Abstract 
    A fault is an error that has effects on system behaviour. A software metric is a 

value that represents the degree to which software processes work properly and 

where faults are more probable to occur. In this research, we study the effects of 

removing redundancy and log transformation based on threshold values for 

identifying faults-prone classes of software. The study also contains a comparison of 

the metric values of an original dataset with those after removing redundancy and 

log transformation. E-learning and system dataset were taken as case studies. The 

fault ratio ranged from 1%-31% and 0%-10% for the original dataset and 1%-10% 

and 0%-4% after removing redundancy and log transformation, respectively. These 

results impacted directly the number of classes detected, which ranged between 1-20 

and 1-7 for the original dataset and 1-7 and 0-3) after removing redundancy and log 

transformation. The Skewness of the dataset was deceased after applying the 

proposed model. The classified faulty classes need more attention in the next 

versions in order to reduce the ratio of faults or to do refactoring to increase the 

quality and performance of the current version of the software. 

 

Keywords : software, Fault predication, Threshold value, Remove redundancy, Log 

transformation. 

 

مقاييس البرمجة المهجهةبالاعتماد على أداة تخمين الخطأ للبرمجيات   
 

رشا غانم السراج, *سماء ياسين حمه, اعاتكة محمد الطائي  

العخاق, المهصل, المهصل , جامعةعمهم الحاسهب والخياضيات كمية    
 الخلاصه

التي  ل درجة عمميات البخمجياتهه قيمة تمث ياتمجؤثخ عمى سمهك النظام. مقياس البخ ي الحيالخطأ هه      
تأثيخ إزالة التكخار  تم دراسة. في هحا البحث، المحتمل حجوثهاترف اين الاخطاء  تعمل بذكل صحيح و

كما يحتهي عمى  المعخضة للأخطاء ، تبة لتحجيج فئات البخمجياتالع حج بناءً عمى قيم التحهيل المهغاريتميو 
مجمهعة  . تم أخحالمهغاريتميتحهيل الصمية والقيم بعج إزالة التكخار و لمجمهعة البيانات الأمقارنة بين القيم 

٪( 10-٪ 0٪( ، )31-٪ 1وتخاوحت ندبة الخطأ بين ) كحالات دراسية.النظام و التعمم الإلكتخوني بيانات 
حه وتأثيخ ه المهغاريتميتحهيل ال٪ ( بعج إزالة التكخار و 4-٪ 0٪( ، )10-٪ 1لمجمهعة البيانات الأصمية و )

( لمجمهعة البيانات 7-1( و )20-1المكتذفة التي تخاوحت بين ) لنتائج بذكل مباشخ عمى عجد الاصنافا
بعج تطبيق  قل. انحخاف مجمهعة البيانات المهغاريتمي التحهيل( بعج إزالة التكخار و 3-0( و )7-1الأصمية و )

 من الاهتمام في الإصجارات اللاحقةيج مد ال معخضة لمخطأ تحتاج المرنفة بانها الاصنافالنمهذج المقتخح. 
 .وأداء الإصجار الحالي من البخمجياتلتقميل ندبة الأخطاء أو القيام بإعادة الهيكمة لديادة جهدة 
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I. Introduction 

     Software systems have become very common, and because they depend on the programming of 

many people, there is a possibility of the emergence of errors. These errors may affect code quality [1], 

reliability [2] and maintainability [3]. After diagnosing the error in the classes, refactoring can be 

performed to increase accuracy of the applications [4].  

Object-oriented metrics are used to measure software quality during software development and beyond.  

There are metrics that aid to measure the quality of the code and give suggestions to improve reuse, 

ease of maintenance, and detection errors, the most important of which are CK (Chidamber and 

Kemerer) metrics [5]. The CK metrics cover the most significant object-oriented properties, including 

cohesion, coupling, size, inheritance, and complexity [6]. They take high importance in applications 

that need accuracy. The used CK metrics are summarized in Table- 1 [7, 8]. 

 

Table 1- Metrics used in this study 

Metric Definition 

WMC (“Weighted 

Methods per Class”) 
A measure representing the total complexity of class's methods. 

DIT (“Depth of 

Inheritance Tree”) 
A measure representing the depth of a class diagram. 

NOC (“Number Of 

Children”) 

A measure representing the number of classes associated with a class 

with an inheritance relationship. 

CBO (“Coupling 

Between Object 

classes”) 

A measure representing the number of classes associated with a class 

with any relationship. 

RFC (“Response For 

Class”) 

A measure representing the total number of methods of class taking into 

account received messages. 

LCOM (“Lack Of 

Cohesion Metric”) 

A measure representing the correlation between methods and local 

variables of a certain class. 

 

      There are many previous research attempts to locate the error in the source code, which relied on 

different principles. Till now, no study and model have been identified that can be applied to all 

software and gives accurate results for all projects. Thus, this paper tried to have a different equation 

for each software to meet with it by adding a constant value, ranging from zero to one and then to the 

threshold value, as determined by the experiment to increase the accuracy of results. 

In order to improve the quality of the program, these errors must be identified more precisely. In this 

study, an indicator is needed to reduce the effort to understand, maintain, and refactor. Therefore, the 

software metrics were used to determine which classes are needed more to focus on the testing and 

refactoring. After detecting the faulty classes, the refactoring process can be performed. 

The present study aims to apply a methodology that focuses on removing redundancy and then 

applying log transformation to improve the quality of software metrics for identifying faults-prone 

classes of open source software and to view a comparison of the metric values of the original dataset 

with the values of the metric after performing the remove redundancy, log transformation, and 

recording of results. 

The research is organized as follows. Section two describes related work. Section three describes 

methodology and contains a representation of UML (Unified Modelling Language) diagrams that 

shows the overall structure of the research. Section four introduces case studies, followed by the 

results that are obtained from the proposed methodology implementation. Finally, Sections five and 

six describe the conclusions and recommendations for the future of the research. 

 

II. Related Work 

     In 2010, Shaik et al. demonstrated a study on the software metrics and their growing importance in 

software development and obtaining certain characteristics of the software [9]. In 2012, Ferreira et a.l 

studied open source projects, defined a threshold value for software metrics of object-oriented 

programs, and explored the importance of deriving a threshold value for the metrics of Software 

Engineering, which they used to enhance the quality of open source programs [10]. Also in the same 

year, Chawla utilized five software metrics for analysing a set of three sorting programs based on java. 
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There were 3 software measurement tools which were utilized for judging their performance in terms 

of metrics indicated. The tool's comparative analysis was specified for indicating how they are 

different in delivering results with regard to the same programs [11].  

     In 2013, Kapila et al. demonstrated all the approaches of faults prediction for getting aid with such 

work to design Bayesian inference and Logistic regression model. Also, it was indicated that the 

Bayesian inference graph might be provided for the probabilistic approach for faults identified and 

presented for the next upcoming release. With regard to the Probabilistic reliability analysis, the 

Bayesian inference was suggested for evaluating risk-related data. Such finding suggested a relation 

between object-oriented metrics and faulty classes [12].  

In 2015, Shatnawi proposed a model which takes into consideration data distribution and skewness of 

the data and suggests log transformation and threshold value to identify faulty classes of open source 

programs. He showed the importance of using log transformation in fault predicting and its impact on 

the validity of the results [13]. 

     In 2017, Zhang et al. studied the effects of the log, Box-Cox, and rank transformations on the 

normality of software metrics for open source software. Compared with their results, they selected the 

best training for a target open source software, then measured the performance based on it [14]. Gupta 

and Saxena proposed a model that used fourteen metrics from open source dataset and explored the 

importance of object oriented metrics and their relationship with bug prediction. The bug prediction 

was calculated based on equations that used these fourteen metrics [15]. Also in the same year, Gupta 

et a.l proposed a model to formulate some assumptions matching to each other and to object-oriented 

metrics , where the best appropriate metrics were chosen for the proposed model. The Logistic-

Regression-Classifier offers precision among all classifiers. The proposed model was trained and 

tested on each of the dataset and the precision of the software was calculated in each case [16]. 

In 2018, three researches were done in this area, as follows. 

     Zhu and Pham identified the significant difference between software metrics and observed defect 

prediction. They also studied the relations involved in the object-oriented metrics "CK metrics suite" 

and the number of defects. They finally decided on the differences of the metrics, to eclipse classes as 

defective, and selected them with regard to defect prediction. They took a sample dataset from the bug 

prediction dataset of source code metrics as the data is based on Eclipse classes[17].  

 Zhu et a.l suggested a theoretic software reliability model which incorporates the process of fault 

detection which is a stochastic process because of randomness resulting from environmental factors. 

The environmental factor, Percentage of Reused Modules, has been specified as gamma distribution in 

their work on the basis of collected data from the industry. Furthermore, the Open Source Software 

project data have been involved for showing the efficiency and predictive power regarding the 

suggested model[18].  

 Belachew et al. assessed and analyzed software metrics utilized for measuring software quality, 

especially software products and processes. The software quality is used to measure how the software 

is developed and the way that software is in accordance with the design. Yet, the quality standard 

utilized from one organization was considered to be distinctive from the others. Thus, it was better to 

utilize the software metrics for measuring its quality as well as the quality of the majority of the 

current software metrics tools [19].  

     In 2019, Rahmann et al. applied the software change metrics with regard to defect prediction. 

Furthermore, the performances of excellent machine learning and hybrid algorithms were used in the 

estimation of the defect with changing metrics. Hybrid algorithms displayed improvements in 

performance, precision, and recall. The acquired results specified that GFS-logitboost-c has optimum 

defect prediction capability [20].  

In the proposed model herein, the advantages of most previous studies were taken and combined in 

one model, starting with the metric collection, log transformation, and threshold value, while ending 

with skews calculation in each step and the use of these functions to identify faulty classes of open 

source projects. 

III. Methodology 

     Figure-1 demonstrates the  Use-Case diagram of the proposed tool to clarify the relationship of the 

system with the software engineer and the basic operation, as well as how to use it in detecting faulty 

classes in the software. 

https://www.sciencedirect.com/topics/computer-science/learning-algorithm
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Figure 1- Use-Case diagram for the proposed model 

 

The tool consists of seven classes, as follows.  

 MainClass: It calls all classes of the proposed model, sends the variables, returns the results, and 

prints the final results at the program interface. 

 MetricCollection: It opens the original file that contains data of many metrics collected, and 

extracts only six values, that represent the Chidamber and Kemerer’s metrics suite used in the 

proposed model, in another file.  

 RemoveRedundancy: It opens a file that contains CK metrics and removes redundancy from all 

records in the file. 

 LogTransformation: It opens a file that contains CK metrics after removing redundancy, applies a 

log transformation for all values, and saves the results in another file. 

 ThresholdCalculation: It takes the values of each metric in the file and computes the threshold 

through equation 1.  

    Threshold = mean (M) + standard deviation (SD) + constant value    ….. Equation 1 

    It was supposed to add a constant value that ranged from 0 to 1 to the threshold equation. The 

higher value implies a higher accuracy of the results for the faulty classes. Values of 0.5 and 0.4 were 

selected, which were suitable for the selected software, while it was possible to increase or decrease 

the value for other types of software depending on the accuracy of the results required. Through 

experience, it was found that these values give the best results, and accordingly, they were relied upon. 

When the constant value is close to zero, the number of classes increases, while when it is close to one, 

the number of classes decreases. Thus, we can be more specific about the classes that need more 

attention by increasing the constant value.  

 ClassesFaultyPresent: It computes the ratio of the fault classes depending on the number of 

classes that have a value higher than the threshold value divided by the total number of classes. 

 SkewnessCalculation: It computes the skewness of the values for each metric and returns the 

results. 
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Figure-2 shows an activity diagram of the proposed model to clarify the interaction between processes. 

 
Figure 2- Activity diagram for the proposed model 

 

IV. Case Studies 

     E-learning software [21] and system software [22] datasets consist of 64 and 65 classes, 

respectively. The datasets  are publicly reported by Zenodo website.  

 Practical steps of WMC metric before removing redundancy and before log transformation for e-

learning software are calculated as follows: 

Mean = Ʃ Xi /n =7.53571                                            

Standard  deviation= √ (Ʃ (Xi - mean)
2
 / n-1) = 6.04733         

   Skewness= Ʃ(Xi - mean )
3
 / (n-1) *σ

3
 =  1.56767    where σ is the standard deviation. 

   Threshold = mean (M) + standard deviation (SD) =  13.58304     

Faulty class= no. of classes > threshold value =9 

Failure rate= 14.0625 

 Practical steps of WMC metric after removing redundancy and after log transformation for e-

learning software are calculated as follows: 

Mean = Ʃ Xi /n =0.81087                                            
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Standard  deviation= √ (Ʃ (Xi - mean)
2
 / n-1) = 0.31989         

   Skewness= Ʃ(Xi - mean)
3
 / (n-1) *σ

3
  =  0.03611          where σ is the standard deviation 

   Threshold = mean (M) + standard deviation (SD) + 0.5 =  1.43076     

Faulty class= no. of classes > threshold value =2 

Failure rate= 3.125 

 

The statistical results of other metrics are described in Tables- 2, 3, 4 and 5 of the case studies. 

 

Table 2- Fault ratio of the file before removing redundancy and before log transformation for e-

learning software. 

Metric 

name 
mean 

Standard  

deviation 
skewness Threshold 

Faulty 

class 

Failure 

rate 

WMC 7.53571 6.04733 1.56767 13.58304 9 14.0625 

DIT 3.07813 1.67056 0.10518 4.74869 20 31.25 

NOC 6.0 1.85164 0.15752 7.85164 1 1.5625 

CBO 5.06452 4.15766 1.64654 9.22218 8 12.5 

RFC 14.39286 12.74289 2.04199 27.13575 7 10.9375 

LCOM 38.39024 61.63024 2.70416 100.02048 5 7.8125 

 

Table 3- Fault ratio of the file after removing redundancy and after log transformation for e-learning 

software. 

Metric 

name 
mean 

Standard  

deviation 
skewness Threshold 

Faulty 

class 

Failure 

rate 

WMC 0.81087 0.31989 0.03611 1.43076 2 3.125 

DIT 0.56137 0.15823 0.84264 1.01960 7 10.9375 

NOC 0.75427 0.15005 0.75449 1.20433 1 1.5625 

CBO 0.71971 0.27493 0.05102 1.29465 2 3.125 

RFC 1.01856 0.38910 0.21735 1.70766 1 1.5625 

LCOM 1.34576 0.57469 0.13142 2.22046 2 3.125 

 

Table 4- Fault ratio of the file before removing redundancy and before log transformation for system 

software. 

Metric 

name 
mean 

Standard  

deviation 
skewness Threshold 

Faulty 

class 

Failure 

rate 

WMC 8.8 9.09641 2.83771 17.89641 7 10.76923 

DIT 3.55385 6.94823 7.09210 10.50207 1 1.53846 

NOC 0 0 0 0 0 0 

CBO 7.31746 6.99166 3.20843 14.30912 5 7.69231 

RFC 20.46154 20.25155 2.17235 40.71309 7 10.76923 

LCOM 74.45833 180.62968 4.26238 255.08801 3 4.61538 

 

Table 5- Fault ratio of the file after removing redundancy and after log transformation for system 

software. 

Metric 

name 

 

Mean 

 

Standard  

deviation 

Skewness 

 
Threshold 

Faulty 

class 

Failure 

rate 

WMC 0.83049 0.32953 0.5334 1.56001 3 4.61538 

DIT 0.83652 0.39733 0.3778 1.63385 1 1.53846 

NOC 0 0 0 0 0 0 

CBO 0.84129 0.27076 0.44461 1.51206 3 4.6153846 

RFC 1.13467 0.42181 0.23724 1.95648 1 1.53846 

LCOM 1.43652 0.69733 0.3778 2.53385 2 3.07692 
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     In all tables, the calculated value of  the threshold is stated and, depending on it, the number of 

faulty classes and failure rate are computed. The results for E-learning and system datasets revealed 

that the fault ratio ranged from 1%-31% and 0%-10% for the original dataset and 1%-10% and 0%-4% 

after removing redundancy and log transformation. These results impacted directly the number of 

classes detected, which ranged between 1-20 and 1-7) for the original dataset and 1-7 and 0-3) after 

removing redundancy and log transformation. 

     As shown in Tables-3 and 5, the number of faulty classes and failure rate after removing 

redundancy and log transformation was decreased compared with those before removing redundancy 

and log transformation. Data in Tables- 2 and 4 are in the form that aids a software engineer to focus 

the attention on specific classes to improve the quality of these classes. The skewness of the dataset 

was also decreased. 

V. Conclusions 

     In this research, a method for finding the fault rate of software was proposed depending on the 

object-oriented metrics. The paper concludes that: 

 The proposed model classifies software classes as faulty or non-faulty based on metric values and 

the number of faulty classes, while the fault percentage is also determined.  

 The paper employs two software as case studies. When the proposed model was applied, the 

accuracy of determining the number of faulty classes and failure rate in the datasets was increased 

after each operation (removal of redundancy and Log transformation)  

 Decreasing the indicator of faulty classes and failure rate tends to reduce the effort of 

understanding the code. It also provides easy maintenance and easy refactoring by focusing on the 

classes that need more attention. Furthermore, it improves the quality and performance of the source 

code. 

VI. Future Work 

A set of improvements can be made, as summarized in the following points: 

 Applying the proposed model on many datasets of software and comparing the results. 

 Integrating the proposed model with other object-oriented metrics to predict faults of open source 

software to achieve more precise and reliable results. 

 Expending the proposed model by using artificial intelligence algorithms. 
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