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Abstract

A fault is an error that has effects on system behaviour. A software metric is a
value that represents the degree to which software processes work properly and
where faults are more probable to occur. In this research, we study the effects of
removing redundancy and log transformation based on threshold values for
identifying faults-prone classes of software. The study also contains a comparison of
the metric values of an original dataset with those after removing redundancy and
log transformation. E-learning and system dataset were taken as case studies. The
fault ratio ranged from 1%-31% and 0%-10% for the original dataset and 1%-10%
and 0%-4% after removing redundancy and log transformation, respectively. These
results impacted directly the number of classes detected, which ranged between 1-20
and 1-7 for the original dataset and 1-7 and 0-3) after removing redundancy and log
transformation. The Skewness of the dataset was deceased after applying the
proposed model. The classified faulty classes need more attention in the next
versions in order to reduce the ratio of faults or to do refactoring to increase the
quality and performance of the current version of the software.

Keywords : software, Fault predication, Threshold value, Remove redundancy, Log
transformation.
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I.  Introduction

Software systems have become very common, and because they depend on the programming of
many people, there is a possibility of the emergence of errors. These errors may affect code quality [1],
reliability [2] and maintainability [3]. After diagnosing the error in the classes, refactoring can be
performed to increase accuracy of the applications [4].
Obiject-oriented metrics are used to measure software quality during software development and beyond.
There are metrics that aid to measure the quality of the code and give suggestions to improve reuse,
ease of maintenance, and detection errors, the most important of which are CK (Chidamber and
Kemerer) metrics [5]. The CK metrics cover the most significant object-oriented properties, including
cohesion, coupling, size, inheritance, and complexity [6]. They take high importance in applications
that need accuracy. The used CK metrics are summarized in Table- 1 [7, 8].

Table 1- Metrics used in this study
Metric Definition
WMC (“Weighted
Methods per Class™)
DIT (“Depth of
Inheritance Tree”)
NOC (“Number Of A measure representing the number of classes associated with a class
Children”) with an inheritance relationship.

CBO (“Coupling
Between Object

A measure representing the total complexity of class's methods.

A measure representing the depth of a class diagram.

A measure representing the number of classes associated with a class
with any relationship.

classes”)
RFC (“Response For A measure representing the total number of methods of class taking into
Class”) account received messages.
LCOM (“Lack Of A measure representing the correlation between methods and local
Cohesion Metric”) variables of a certain class.

There are many previous research attempts to locate the error in the source code, which relied on
different principles. Till now, no study and model have been identified that can be applied to all
software and gives accurate results for all projects. Thus, this paper tried to have a different equation
for each software to meet with it by adding a constant value, ranging from zero to one and then to the
threshold value, as determined by the experiment to increase the accuracy of results.

In order to improve the quality of the program, these errors must be identified more precisely. In this
study, an indicator is needed to reduce the effort to understand, maintain, and refactor. Therefore, the
software metrics were used to determine which classes are needed more to focus on the testing and
refactoring. After detecting the faulty classes, the refactoring process can be performed.

The present study aims to apply a methodology that focuses on removing redundancy and then
applying log transformation to improve the quality of software metrics for identifying faults-prone
classes of open source software and to view a comparison of the metric values of the original dataset
with the values of the metric after performing the remove redundancy, log transformation, and
recording of results.

The research is organized as follows. Section two describes related work. Section three describes
methodology and contains a representation of UML (Unified Modelling Language) diagrams that
shows the overall structure of the research. Section four introduces case studies, followed by the
results that are obtained from the proposed methodology implementation. Finally, Sections five and
six describe the conclusions and recommendations for the future of the research.

Il. Related Work

In 2010, Shaik et al. demonstrated a study on the software metrics and their growing importance in
software development and obtaining certain characteristics of the software [9]. In 2012, Ferreira et a.l
studied open source projects, defined a threshold value for software metrics of object-oriented
programs, and explored the importance of deriving a threshold value for the metrics of Software
Engineering, which they used to enhance the quality of open source programs [10]. Also in the same
year, Chawla utilized five software metrics for analysing a set of three sorting programs based on java.
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There were 3 software measurement tools which were utilized for judging their performance in terms
of metrics indicated. The tool's comparative analysis was specified for indicating how they are
different in delivering results with regard to the same programs [11].

In 2013, Kapila et al. demonstrated all the approaches of faults prediction for getting aid with such

work to design Bayesian inference and Logistic regression model. Also, it was indicated that the
Bayesian inference graph might be provided for the probabilistic approach for faults identified and
presented for the next upcoming release. With regard to the Probabilistic reliability analysis, the
Bayesian inference was suggested for evaluating risk-related data. Such finding suggested a relation
between object-oriented metrics and faulty classes [12].
In 2015, Shatnawi proposed a model which takes into consideration data distribution and skewness of
the data and suggests log transformation and threshold value to identify faulty classes of open source
programs. He showed the importance of using log transformation in fault predicting and its impact on
the validity of the results [13].

In 2017, Zhang et al. studied the effects of the log, Box-Cox, and rank transformations on the
normality of software metrics for open source software. Compared with their results, they selected the
best training for a target open source software, then measured the performance based on it [14]. Gupta
and Saxena proposed a model that used fourteen metrics from open source dataset and explored the
importance of object oriented metrics and their relationship with bug prediction. The bug prediction
was calculated based on equations that used these fourteen metrics [15]. Also in the same year, Gupta
et a.l proposed a model to formulate some assumptions matching to each other and to object-oriented
metrics , where the best appropriate metrics were chosen for the proposed model. The Logistic-
Regression-Classifier offers precision among all classifiers. The proposed model was trained and
tested on each of the dataset and the precision of the software was calculated in each case [16].

In 2018, three researches were done in this area, as follows.

Zhu and Pham identified the significant difference between software metrics and observed defect
prediction. They also studied the relations involved in the object-oriented metrics "CK metrics suite"
and the number of defects. They finally decided on the differences of the metrics, to eclipse classes as
defective, and selected them with regard to defect prediction. They took a sample dataset from the bug
prediction dataset of source code metrics as the data is based on Eclipse classes[17].

. Zhu et a.l suggested a theoretic software reliability model which incorporates the process of fault
detection which is a stochastic process because of randomness resulting from environmental factors.
The environmental factor, Percentage of Reused Modules, has been specified as gamma distribution in
their work on the basis of collected data from the industry. Furthermore, the Open Source Software
project data have been involved for showing the efficiency and predictive power regarding the
suggested model[18].

. Belachew et al. assessed and analyzed software metrics utilized for measuring software quality,
especially software products and processes. The software quality is used to measure how the software
is developed and the way that software is in accordance with the design. Yet, the quality standard
utilized from one organization was considered to be distinctive from the others. Thus, it was better to
utilize the software metrics for measuring its quality as well as the quality of the majority of the
current software metrics tools [19].

In 2019, Rahmann et al. applied the software change metrics with regard to defect prediction.
Furthermore, the performances of excellent machine learning and hybrid algorithms were used in the
estimation of the defect with changing metrics. Hybrid algorithms displayed improvements in
performance, precision, and recall. The acquired results specified that GFS-logitboost-c has optimum
defect prediction capability [20].

In the proposed model herein, the advantages of most previous studies were taken and combined in
one model, starting with the metric collection, log transformation, and threshold value, while ending
with skews calculation in each step and the use of these functions to identify faulty classes of open
source projects.

Il. Methodology

Figure-1 demonstrates the Use-Case diagram of the proposed tool to clarify the relationship of the
system with the software engineer and the basic operation, as well as how to use it in detecting faulty
classes in the software.
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Figure 1- Use-Case diagram for the proposed model

The tool consists of seven classes, as follows.
« MainClass: It calls all classes of the proposed model, sends the variables, returns the results, and
prints the final results at the program interface.
« MetricCollection: It opens the original file that contains data of many metrics collected, and
extracts only six values, that represent the Chidamber and Kemerer’s metrics suite used in the
proposed model, in another file.
« RemoveRedundancy: It opens a file that contains CK metrics and removes redundancy from all
records in the file.
« LogTransformation: It opens a file that contains CK metrics after removing redundancy, applies a
log transformation for all values, and saves the results in another file.
« ThresholdCalculation: It takes the values of each metric in the file and computes the threshold
through equation 1.

Threshold = mean (M) + standard deviation (SD) + constant value ..... Equation 1

It was supposed to add a constant value that ranged from 0 to 1 to the threshold equation. The
higher value implies a higher accuracy of the results for the faulty classes. Values of 0.5 and 0.4 were
selected, which were suitable for the selected software, while it was possible to increase or decrease
the value for other types of software depending on the accuracy of the results required. Through
experience, it was found that these values give the best results, and accordingly, they were relied upon.
When the constant value is close to zero, the number of classes increases, while when it is close to one,
the number of classes decreases. Thus, we can be more specific about the classes that need more
attention by increasing the constant value.
. ClassesFaultyPresent: It computes the ratio of the fault classes depending on the number of
classes that have a value higher than the threshold value divided by the total number of classes.
. SkewnessCalculation: It computes the skewness of the values for each metric and returns the
results.
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Figure-2 shows an activity diagram of the proposed model to clarify the interaction between processes.
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Figure 2- Activity diagram for the proposed model

IV. Case Studies
E-learning software [21] and system software [22] datasets consist of 64 and 65 classes,

respectively. The datasets are publicly reported by Zenodo website.
e  Practical steps of WMC metric before removing redundancy and before log transformation for e-
learning software are calculated as follows:
Mean =X Xi /n =7.53571
Standard deviation= ( (Xi - mean)® / n-1) = 6.04733

Skewness= X(Xi - mean )/ (n-1) *o° = 1.56767 where o is the standard deviation.

Threshold = mean (M) + standard deviation (SD) = 13.58304
Faulty class= no. of classes > threshold value =9
Failure rate= 14.0625
e Practical steps of WMC metric after removing redundancy and after log transformation for e-
learning software are calculated as follows:
Mean = X Xi /n =0.81087
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Standard deviation= (Z (Xi - mean)® / n-1) = 0.31989
Skewness= X(Xi - mean)®/ (n-1) *o® = 0.03611
Threshold = mean (M) + standard deviation (SD) + 0.5 = 1.43076

Faulty class= no. of classes > threshold value =2

Failure rate= 3.125

where o is the standard deviation
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The statistical results of other metrics are described in Tables- 2, 3, 4 and 5 of the case studies.

Table 2- Fault ratio of the file before removing redundancy and before log transformation for e-
learning software.

Metric Standard Fault Failure
name mean deviation skewness Threshold classy rate
WMC 7.53571 6.04733 1.56767 13.58304 9 14.0625
DIT 3.07813 1.67056 0.10518 4.74869 20 31.25
NOC 6.0 1.85164 0.15752 7.85164 1 1.5625
CBO 5.06452 4.15766 1.64654 9.22218 8 12.5
RFC 14.39286 12.74289 2.04199 27.13575 7 10.9375
LCOM 38.39024 61.63024 2.70416 100.02048 5 7.8125
Table 3- Fault ratio of the file after removing redundancy and after log transformation for e-learning
software.
Metric Standard Fault Failure
name mean deviation skewness Threshold classy rate
WMC 0.81087 0.31989 0.03611 1.43076 2 3.125
DIT 0.56137 0.15823 0.84264 1.01960 7 10.9375
NOC 0.75427 0.15005 0.75449 1.20433 1 1.5625
CBO 0.71971 0.27493 0.05102 1.29465 2 3.125
RFC 1.01856 0.38910 0.21735 1.70766 1 1.5625
LCOM 1.34576 0.57469 0.13142 2.22046 2 3.125
Table 4- Fault ratio of the file before removing redundancy and before log transformation for system
software.
Metric Standard Fault Failure
name mean deviation skewness Threshold classy rate
WMC 8.8 9.09641 2.83771 17.89641 7 10.76923
DIT 3.55385 6.94823 7.09210 10.50207 1 1.53846
NOC 0 0 0 0 0 0
CBO 7.31746 6.99166 3.20843 14.30912 5 7.69231
RFC 20.46154 20.25155 2.17235 40.71309 7 10.76923
LCOM 74.45833 180.62968 4.26238 255.08801 3 4.61538
Table 5- Fault ratio of the file after removing redundancy and after log transformation for system
software.
Metric Mean Standard Skewness Faulty Failure
name .. Threshold
deviation class rate
WMC 0.83049 0.32953 0.5334 1.56001 3 4.61538
DIT 0.83652 0.39733 0.3778 1.63385 1 1.53846
NOC 0 0 0 0 0 0
CBO 0.84129 0.27076 0.44461 1.51206 3 4.6153846
RFC 1.13467 0.42181 0.23724 1.95648 1 1.53846
LCOM 1.43652 0.69733 0.3778 2.53385 2 3.07692
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In all tables, the calculated value of the threshold is stated and, depending on it, the number of
faulty classes and failure rate are computed. The results for E-learning and system datasets revealed
that the fault ratio ranged from 1%-31% and 0%-10% for the original dataset and 1%-10% and 0%-4%
after removing redundancy and log transformation. These results impacted directly the number of
classes detected, which ranged between 1-20 and 1-7) for the original dataset and 1-7 and 0-3) after
removing redundancy and log transformation.

As shown in Tables-3 and 5, the number of faulty classes and failure rate after removing
redundancy and log transformation was decreased compared with those before removing redundancy
and log transformation. Data in Tables- 2 and 4 are in the form that aids a software engineer to focus
the attention on specific classes to improve the quality of these classes. The skewness of the dataset
was also decreased.

V. Conclusions

In this research, a method for finding the fault rate of software was proposed depending on the
object-oriented metrics. The paper concludes that:

« The proposed model classifies software classes as faulty or non-faulty based on metric values and
the number of faulty classes, while the fault percentage is also determined.

o The paper employs two software as case studies. When the proposed model was applied, the
accuracy of determining the number of faulty classes and failure rate in the datasets was increased
after each operation (removal of redundancy and Log transformation)

« Decreasing the indicator of faulty classes and failure rate tends to reduce the effort of
understanding the code. It also provides easy maintenance and easy refactoring by focusing on the
classes that need more attention. Furthermore, it improves the quality and performance of the source
code.

VI. Future Work

A set of improvements can be made, as summarized in the following points:

« Applying the proposed model on many datasets of software and comparing the results.

« Integrating the proposed model with other object-oriented metrics to predict faults of open source
software to achieve more precise and reliable results.

« Expending the proposed model by using artificial intelligence algorithms.
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