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Abstract

The perturbed equation of motion can be solved by using many numerical
methods. Most of these solutions were inaccurate; the fourth order Adams-Bashforth
method is a good numerical integration method, which was used in this research to
study the variation of orbital elements under atmospheric drag influence. A satellite
in a Low Earth Orbit (LEO), with altitude form perigee = 200 km, was selected
during 1300 revolutions (84.23 days) and Agy / Mgy Value of 5.1 m% 900 kg. The
equations of converting state vectors into orbital elements were applied. Also,
various orbital elements were evaluated and analyzed. The results showed that, for
the semi-major axis, eccentricity and inclination have a secular falling discrepancy,
Longitude of Ascending Node is periodic, Argument of Perigee has a secular
increasing variation, while true anomaly grows linearly from 0 to 360°. Furthermore,
all orbital elements, excluding Longitude of Ascending Node, Argument of Perigee,
and true anomaly, were more affected by drag than other orbital elements, through
their falling as the time passes. The results illustrate a high correlation as compared
with literature reviews in this field.

Keywords: Orbital Elements, Satellite’s Orbit, Atmospheric Drag, Orbit Integration
Methods, Satellite’s Perturbation.
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Introduction

The main condition in orbit’s determination is to find state vectors and orbital elements. During
the rotation of the satellite around the Earth, it is affected by several types of perturbations, which are
deviations from normal motion [1, 2]. In the presence of perturbations, the ideal path of a satellite will
vary from the hypothetical two-body problem [3]. They are classified into two categories: gravitational
and non-gravitational. Gravitational perturbations include those of the non-spherical Earth and the
third body attraction, whereas non-gravitational perturbations involve those of the atmospheric drag
and solar radiation pressure. The process of orbit determination is based on the predication of the
satellite’s drift, which in turn is used to estimate the future orbit [4, 5, 6]. This process occurs by a
numerically integrated perturbed equation of motion, using one of the integration methods, such as
Adams-Bashforth. It is strongly affected by the orbit dynamics and, thus, quality control of the
numerical methods is required prior to each orbit analysis [7].

Many researchers were interested in studying various numerical integration methods to find an
exact orbit determination. Shen et al. estimated the trajectory of the satellite under the influence of J,,
Js, and J, via fourth order Runge-Kutta method [8]. Mishra et al. elaborated the method of determining
a precise ephemeris for an orbiting satellite due to atmospheric drag. This method includes guessing of
state vectors from a sequence of data [9]. Mohammed and Abdul-Rahman extensively studied the
behavior of orbital elements using changeable values for As,.; Ms,, altitudes, and eccentricities due to
different perturbations [10]. Thangavel et al. studied the effects of atmospheric drag and J, in a close-
proximity operation for LEO [11].

Methods

The following steps are used to complete the requirements of this research.

Kepler’s Equation Solution

This equation is used to find eccentric anomaly E then true anomaly f. Later, both these two
parameters are employed for describing the position and velocity (state vectors) at different times.
Mikkola’s method is one of the methods to solve Kepler’s equation with an accuracy of 10™%°. To start
this method, an initial value for eccentric anomaly E, must be calculated as below [12]:

E, = M+ e(3s — 4s3) (1)
. . .. _ _ g _ 2 3 1/3 _ 1—e
where M is mean anomaly, e is eccentricity, s =z >+ ds, z=(Bx+/B?+a3)> a= 70705
B = 0.5M __0.078(z-0.50)?
"B getr05 0 T 1te
Hence, the final value of eccentric anomaly can be expressed as:
E =M+ esin(E,) 2)

To solve the equation above, e and M are given, then the equation must be solved directly for eccentric
anomaly. The repetition will continue until the desired value of eccentric anomaly is obtained.

State Vectors Calculation

The position and velocity vectors of a satellite in its orbit can be represented as [2, 13]:

X = (cos(E) — e) 3)
y = ay 1 — e?sin(E) 4
z=20 (5)
v, = —\/%sin(f) (6)

m

v, = \/;(e + cos(f)) (7)

v,=0 (8)

where p = GM is the gravitational constant of the Earth (398600 km®/sec®), f is the true anomaly, p is
the semi latus rectum (h?/p = a (1-e%)), h is angular momentum per unit mass, and a is semi- major
axis. The elements of g, f, h and a will be explained later in the orbital elements calculation section.
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To convert the position and velocity components from the object plane to the equatorial plane, the
Gaussian vector (conversion matrix) must be used as below [2]:

X X

Y| = l:{_1 [y (9)
Z Z

Vx Uy

vy| =R1 vy] (10)
vz U,

where R™ is the inverse of Gauss matrix, which contains Euler angles (inclination i, Argument of
perigee o and Longitude of Ascending Node Q), as below [2]:
P, Q. W
R =[Py Qy W, (11)
P, Q; W,
where Py = cos (o) cos () - sin () sin () cos (i), Py = cos (») sin () + sin (o) cos () cos (i), Pz=
sin (w) sin (i), Qx = - sin (®) cos () - cos (o) sin () cos (i), Qy = - sin () sin () + cos (o) cos (Q)
cos (i), Qz= cos (w) sin (i), Wx = sin (Q) sin (i), Wy = - cos () sin(i), Wz = cos (i).
Equations (9) and (10) can be represented as in the following:
X=Px+ Quy + W,z
Y =Pyx+ Quy
+ W,z (12)
Z=P,x+Q,y+W,z
vx = Pyvx + Qxvy + Wyvy
Vy = Pva + vay
+ Wyv,
vz = Pux + Quy + W,v;
where X, Y, Z, vy, vy and vz are the state vectors of a satellite in the equatorial plane at time (t).
Thus, the final illustration of state vectors can be stated as [13]:
- Position is: r = ((X)? + (Y)? + (2)%) %
- Velocity is: v = ((vx)? + (vy)? + (vz)?) %5
Orbital Elements Calculation

(13)

= Semi-major axis can be defined as [13]:
2 v?
a=1/(- F) (14)
= Eccentricity can be calculated by [6, 13]:
e=(r,—ry)/2a (15)

where rp, is the distance from perigee point and r, is the distance from apogee point. In this study,
only a semi-circular orbit is taken into account.
= Inclination specifies the tilt of the orbit plane, which is represented as follows [13]:

tani = [hZ+h%/h, (16)

hy =yvz —zvy
h, = zvy — xvy 17)
h, = xvy — yvx

where hy, hy, and h; are the angular momentum per unit mass in X,Y, and Z directions, respectively.

Therefore, the magnitude of h per unit mass is (hZ + h% + h2) °°

= Longitude of Ascending Node is [2]:

tan Q = _hX/hY (18)
= Argument of perigee is stated as below [2]:

w=uu-—f (19)
where uu is the argument of latitude which can be computed by [3]:

tan uu = zh/(—xhy + yhy) (20)
And f is the true anomaly which can be calculated as [2]:

tan 0.5f = (1 + e/1 — e)*® tan 0.5E (21)
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The input orbital elements applied in the present study are given in Table -1.

Table 1- The input orbital elements and other parameters required for this study [2, 14].
a (km) e i (deg) Q (deg) o (deg) f (deg)
6584.7 0.001 63.5 20 120 0
E (deg) Mset (KQ) | Asar (M) Co Po (kg/m®) | Scale Height (km)
0 900 5.1 2.2 2.789x10"° 37.105

Atmospheric Drag Calculation
The perturbed acceleration of the satellite due to atmospheric drag is [2, 10]:

1 Agat 2 Vr
a =— —Cp—=pv-— 22
Drag 2 =D Mgat P v, ( )

where Cp, is the drag coefficient, As, is the cross sectional area of the satellite perpendicular to
velocity vector, Ms,. is the mass of satellite, v, is the satellite velocity vector relative to the
atmosphere, and p is the atmospheric density. The density is calculated using the US Naval Research
Laboratory mass spectrometer and incoherent scatter (NRLMSISE-00), where E indicates that the
model extends from the ground through exosphere and 00 is the year of release. Table -1 gives the
required values to input in equation (22). We suppose that the atmosphere rotates at the same angular
speed as that of the Earth. With this hypothesis, the relative velocity vector is [10]:
Vi = Vin = Wgartn X T (23)
where v;, is the inertial velocity vector for satellite, Wg,¢, is the Earth’s rotational velocity vector,
and r is the inertial satellite position vector. Further breakdown into vector components of equation
(23) can be represented as [10]:
Vx = Vx + Wgarth X Y
Vy = Vy — Wgareh X X (24)
Vz = Vg
The magnitude of v, is (vx? + vy? + vz2) ®°. The perturbed equation of motion (under the atmospheric
drag influence) is [2]:

. 2
= — 3T+ aprag (25)

Fourth Order Adams-Bashforth Method

This method requires information about a series of previous points. Such methods need a boot-up
to obtain enough information to start running. Adams-Bashforth is one of the multi-step methods; it is
often referred to as a predictor-corrector method. There are other multi-step methods, such as Milne,
Adams-Moulton, Gauss-J ackson (sum-squared), and Obrechkoff [15].
In order to predict the new positions and velocities by this method, equation (25) must be firstly
integrated numerically using fourth order Runge-Kutta’s method as below [2, 7]:

o
S;e" (k1 + 2Kz + 2 K3 + Ky) (26)

where vy, is the initial velocity at epoch, vy, is the, predicted velocity k; = ax,k, =
aXo+ 0.5 Ogtep Ky, k3= aXot 0.5 Ogpep ky, ky = aXot Ogtep k3, X, IS the acceleration at epoch, oggep, is
the step time equal to (tstep/m). tsep= Tp /NN, m is the sub-step number (the used value is 50), T is the
satellite’s orbital period, and nn is the step number per one revolution. tge,= T, /50000 is considered as
the best value to obtain a better solution after many attempts, as compared to those reported in other
literature reviews [10, 14].

Ostep

where X, is the initial position at epoch, X; is the predicted position, kk;= vXo, kKko= VXo+ 0.5 Ggtep
kki, kk3 = vx,+ 0.5 Gstep kk,, and kk, = vx,+ 0.5 Ostep kK.
Also, equations (26) and (27) can be used to calculate other positions and velocities in Y and Z
directions, respectively. Hence, the final position and velocity via fourth order Adams-Bashforth
method can be computed as [7]:
c"step

Vx1 = Vxo +

iz = Vx1 + 5, (55Kq — 59Kz +37K3 — 9K,) (28)
o
Xz = Xy + ) (55kk, — 59kk, + 37Kk — k) (29)
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Similarly, equations (28) and (29) can be used to calculate other positions and velocities in Y and Z
directions, respectively.
Results and Discussion

A program in MATLAB was designed to analyze the variance in six orbital elements for a satellite
in a LEO through 1300 revolutions. Figure -1 describes the semi-major axis; it is observed that, in
ideal circumstances (no atmospheric drag influence), the value of the semi-major axis remains
constant with time whereas it is reduced as the time passing under the effect of drag perturbation. On
the 41" day, the value of semi-major axis is 6563.5 km, but in the ideal condition it was 6584.5 km.
Thus, drag compresses the satellite’s orbit. According to this perturbation, the size of the orbit shrinks
through 84.23 days.

6600 : T '

6580

6560

Amosphernic Drag Efiect
— — — Ideal

6540 F-

E
=. 6520 T
@ M H :

6480

5450 e ............................... ............................... ............................. -

6440 i ' : : ‘ :
0 123 24 5 3675 4888 609 7266  84.23

Time (days)

Figure 1- The effect of atmospheric drag on semi-major axis, the red line represents the ideal state and
blue line denotes to the perturbed state.

The effect of atmospheric drag on eccentricity is shown in Figure -2; on the 41" day, the value of
eccentricity is 0.0009965, while it was 0.001 for the ideal state. It is obvious that atmospheric drag not
only contracts the size of the orbit, but also changes its shape. This leads to a breakdown in the
satellite line.
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Figure 2- The effect of atmospheric drag on eccentricity, the red line denotes to the ideal state and
blue line represents the perturbed state.

Inclination in ideal circumstances remains the same with time, whereas in reverse condition, it is
linear with simple, periodic, drops from 63.5 to 63.483 °. After the 70™ day, inclination has a fast
dropping, as shown in Figure -3.
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Figure 3- The effect of atmospheric drag on inclination, the red line represents the ideal state and blue
line denotes to the perturbed state.

Figure -4 depicts the Longitude of Ascending Node, which has a linear increase until the 12" day,
then begins to have a periodic variation (non-uniform periodic), which starts with large width
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amplitude then becomes too small within 84.23 day. It changes between 20 and 19.997 °, but, with the
absence of drag, this element remains constant.
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Figure 4- The effect of atmospheric drag on the Longitude of Ascending Node, the red line is the ideal
state and blue line is the perturbed state.

Figure -5 illustrates the Argument of Perigee, that shows a linear increase over time (from 120 to
148°), but, in adverse circumstances, it remains unchanged.
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Figure 5- The effect of atmospheric drag on the Argument of Perigee, the red line is the ideal state and
blue line is the perturbed state.

Finally, the true anomaly increases from 0 to 360 °. The behavior of this element is not obvious
during 1300 revolutions, as illustrated in Figure -6. Thus, the number of revolutions is minimized to be
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4 revolutions to explain true anomaly, as one can note from Figure -7. The numerical values of the
perturbed orbital elements are given in Table-2.
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Figure 6- The effect of atmospheric drag on the true anomaly angle, the red line represents the ideal
state and blue line denotes to the perturbed state.
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Figure 7- The effect of atmospheric drag on the true anomaly angle during 4 revolutions, the red line
is the ideal state and blue line is the perturbed state.
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Table 2- The variance in orbital elements according to atmospheric drag effect for 71 days.

Day a (km) e i (deg) Q (deg) o (deg)

1 6584.5 0.001 63.5 20 121
11 6578.8 0.000998 63.4988 20.006 124
21 6571.6 0.0009975 63.4986 20.003 127
31 6566 0.0009970 63.49845 20.005 132
41 6563.5 0.0009965 63.49715 20.0048 134
51 6558.1 0.0009960 63.49601 20.005 137
61 6536.8 0.0009945 63.49455 20.006 143
71 6516.6 0.0009858 63.49000 20.007 146

Conclusions

The semi-major axis, eccentricity, and inclination have a secular dropping behavior, the Longitude
of Ascending Node is periodic, the Argument of Perigee has a secular growing variation, and the true
anomaly grows linearly from 0 to 360 °. Also, the semi-major axis, eccentricity, and inclination are
more affected by atmospheric drag as the time passes than other orbital elements. Furthermore, these
three elements have a fast dropping through the last revolutions. The behavior of the semi major axis,
eccentricity, and inclination shows a good agreement as compared with several published studies,
which used only the fourth order Runge-Kutta method [Ahmed et al., 2017, Mohammed and Abdul-
Rahman, 2018]. The present study demonstrate that the modification in the fourth order Adams-
Bshforth method gives more accurate values in orbital elements for a satellite in a LEO under
atmospheric drag effect.
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