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Abstract

An eco-epidemiological system incorporating a vertically transmitted infectious
disease is proposed and investigated. Micheal-Mentence type of harvesting is
utilized to study the harvesting effort imposed on the predator. All the properties of
the solution of the system are discussed. The dynamical behaviour of the system,
involving local stability, global stability, and local bifurcation, is investigated. The
work is finalized with the numerical simulation to observe the global behaviour of
the solution.
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1. Introduction
Most of the real world problems, including biological and epidemiological problems, can be
formulated mathematically using the differential equations or difference equations. The application of
mathematical modeling in biology provides models known as mathematical biology models or
ecological models. However, the application of mathematical models in epidemiology provides
models known as epidemiological models. Since the environment contains millions of species that
interact with each other and may have different types of diseases, the mathematical models that
combine both ecology and epidemiology are known as eco-epidemiology models.
It is well known that there are two different modes of pathogen transmission, namely the horizontal
and vertical transmission modes. Horizontal transmission means the transmission of disease between
the individuals of the same generation, while the transmission of disease from parent to offspring is
known as vertical transmission [1]. Although most of the epidemic models are interested in the

horizontal transmission type of disease, there are few studies that are interested to study epidemic
models with diseases transmitted vertically; see for example [2-4] and the references therein. Later on,
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Naji and Hussien [5] studied the dynamics of the spread of infectious diseases within an epidemic
system. They considered both horizontal and vertical transmission in the host population.

Keeping the above in view, many studies have been performed, in which the researchers presented
eco-epidemiological models where the diseases exert horizontal transmission [6-9]. Later on, Sieber et
al. [10] considered an eco-epidemiological model incorporating differential competition. They
reported that the existence of differential competition can tremendously change the stability and
persistence of predator—prey systems. Kant and Kumar [11] suggested and investigated an eco-
epidemiological model involving stages that are structured with linear functional response. They
assumed that the stages are existing in prey and predator, while the infection occurs in the prey
population only. Das [12] proposed and studied an eco-epidemiological system in which the disease
exists in the predator population. He studied the effect of alternative food on the system dynamics.
Saifuddin et al. [13] considered the existence of strong-Allee effect on a simple eco-epidemiological
model. They studied the dynamics of the suggested system under the combined influence of strong-
Allee parameter and competition coefficients. Abdulghafour and Naji [14] proposed and studied an
eco-epidemiological model incorporating a prey refuge and nonlinear harvesting from the predator.
They assumed that the feeding process do not transfer the disease from prey to predator. Shaikh et al.
[15] proposed and studied an eco-epidemiological model involving a virus disease. In all these
proposed eco-epidemiological models and many others, in addition to the consideration of horizontal
transmission type of diseases, different factors are included, such as harvesting, vaccines, toxicants,
etc. Recently, Abdul Star and Naji [16] suggested and studied a prey-predator system incorporating a
vertically transmitted infectious disease in predator population only.

Recalling the above studies, in this paper, however, an eco-epidemiological system is suggested so
that it involves a disease transmitted vertically as well as horizontally within predator species. It is
assumed that the predator is falling under the effects of harvesting of nonlinear type. In fact, we used
the harvesting function proposed by [17]. The paper is organized as follows; section (2) includes the
formulation of the model and its dimensionless, in addition to the properties of the solution. In Section
(3), the stability analysis of the system is carried out. The local bifurcation analysis is investigated in
section (4). Section (5) provides a numerical simulation. Finally, Section (6) gives some conclusions
and discussion on the obtained results.

2. The formulation and dimensionless of the model

An eco-epidemiological model incorporating a vertically transmitted infectious disease and harvesting
in a predator population is formulated and studied. Consider the following hypotheses, which are
adopted in the formulation of the model:

1. Let X(T), Y(T), and Z(T) represent the densities at time T of the prey, susceptible predators,
and infected predators, respectively.

2. Let X(T) grows logistically, in the absence of predation, with a growth rate » > 0 and
carrying capacity k > 0.

3. Assume that Y(T) and Z(T) consume X (T) according to Holling-type Il functional response,
with maximum attack rates a; > 0 and i = 1,2, half saturation level C > 0, and conversion rates
e; > 0andi = 1,2. They decay exponentially in the absence of prey species, according to natural
deathratesd; > 0 and i = 1,2.

4. It is assumed that the disease is transmitted vertically in the predator species, in addition to
transmission by contact, with infectionrate b > 0 .
5. Finally, Y(T) and Z(T) are assumed to be harvested according to Micheal-Mentence type of

harvesting function, where E > 0 represents hunting efforts, while g; = 0,i = 1,2 are the catchability
coefficients of the predator and [; > 0,i = 1,2,3,4 are positive constants.

Accordingly, the dynamics of the above described eco-epidemiological model can be described using
the following set of differential equations:

dx X\ @ XY ayXz

BN mX
dr k X+C  X+C

ay eja XY q1EY

E_aurl_ pyz—d, Y-

dr X+C 1 LE+l,Y’ M)
az e,a, XZ q. EZ

—==—=""4bpYZ —-d, 7 —

dT x+c T 2 I3E+1,2°
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where X(0) = 0,Y(0) >0, and Z(0) > 0. Now, the number of parameters can be reduced using the
following dimensionless variables and parameters

R X  aY aZ ea , bk d C
I e " a, VETCT
a, qlE _ & L E e, a, bk d, a, q, E a, 3 E
6= ;#:—;V:_!E:_l‘g: y T = .
r2l, k’ rl, k r a, r r2l, k rily k
Therefore, system (1) can be written in the following dimensionless form:
dx
dt‘x[(l‘x)—m—m]‘xfl("y'z)
[m—ﬁ —V—nTy] vf2(x,y,2), )
d
d—j 2 vy - -] =200y, 2).

Hence, system (2) has the following domain:

R3 ={(x,y,2) € R3,x >0,y >0,z > 0}.

Clearly, all the right-hand side functions are continuous and have continuous partial derivatives.
Hence, the solution of system (2) exists and is unique.

Now, the solution of system (2) is proved to be uniformly bounded, as shown in the following
theorem.

Theorem 1. The solution (x(t),y(t),z(t)) of system (2), starting at any initial condition that belong
to R3, is uniformly bounded in the region

A—{(xy,Z)EIR3 x<1; x+y+z_6}
1

where 0, is given in the proof.
Proof: From the first equation of system (2), we have % = x(1 — x). Then, direct computation shows
that, for t - oo, we obtain x < 1.
Now, let w; = x + y + z, then we obtain that

d _(-o (1-p

S x— 2 R (B v)yz—yy — €z,
According to the blologlcal meaning of the parameters, the following is obtained:

dwq
< —
T 2 —0,w;,

where 8; = min{1,y, }. Then, it is easy to verify that, for t - oo, we get w; < ei' Hence, the proof is
1

achieved. [
3. Analysis of the stability

In this section, the stability analysis of system (2) is carried out through computing all the possible
steady-state points, and then their type of stability is discussed. Direct computation shows that system
(2) has the following steady-state points.

The first steady-state point, denoted by s, = (0,0,0), and the second steady-state point, denoted by
s, = (1,0,0), always exist.

The third steady-state point is denoted by s, = (&, ¥, 0), where

y=QQ-x0F+o0), ®)
while x is a positive root of the following three degree polynomial equation:
Gyx3 + Gox% + Gsx + G, =0, 4)

here Gi=y—a,G,=a(l—c)—y(l—2c),
Gs=am+c)—y(m+2c—c?)—8,G,=—[clyn +6) +yc?] <O0.

Clearly, s, exists uniquely in the first quadrant of xy-plane, provided that any set of the following sets

of conditions holds:

G, >0, G, >0. (5a)

G, >0, G3<0. (5b)
The fourth steady-state point is denoted by s; = (X, 0,2), where

2=0-2)(&+ o), (6)
while % is a positive root of the following equation:

Gsx3 + Gex? + Gyx + Gg = 0, 7

where Gs =& —u, Go=u(l—c)—&(1 — 2c),
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G, =u(t+c)—&(T+2c—c?)—¢,Gg=—[c(E(t+c)+¢€)]<0O.
Clearly, s5 exists uniquely in the first quadrant of xz-plane, provided that any set of the following sets
of conditions holds:

Gs >0, Gg > 0. (8a)

Gs >0, G, <0. (8b)
Finally, the fifth steady-state point is denoted by s, = (x*,y*,z*) and located at the interior of
positive octant R, where
z'=1-x)x"+c)—y", (9a)
while (x*,y™) represents the intersection point of the following two isoclines in the interior of first
quadrant of xy —plane.

9106, y) = Bnx® + [Bn(2c — D]x? + [an + Bne(c — 2) —yn — §lx

+Bx°y + [B(2c = DIx?y + [a + fn + Bc(c — 2) —y]xy (9b)
+cfy? — [yc + Bc? + Benly + Bxy? — [8c + yen + fnc?] = 0,
92, y) = (€ —wx® + [§ — pu(1 = )]x?
Hu - +o)+5c(l—c) —elx

—vx3y —vx?y + [§ —cv(1 —¢) +v(T + ¢) — ulxy — vcy? (%)
+[&c + cv(t + )]y — vxy? — [Ec(t + ¢) + &c] = 0.
Obviously, as y — 0, the above two isoclines become
Rix3 + Ryx? + Ryx + R, = 0, (9d)
Rsx3 + Rgx? + Ryx + Rg = 0, (%)

where Ry = fn > 0,R, = fn(2c — 1), R3 = an+ Bnc(c —2) —yn =94,

Ry = —[8c+yen + Bnc®] <0,Rs = (§ — ), Rg = & — u(1 — ),

R, = (u—&8@+c)+éc(1—c)—¢€, Rg =—[éc(t+c)+ec] <O.
Direct computation shows that the above isoclines, which are represented by (9d) and (9e), intersect
the x —axis at the positive points x; and x,, respectively, provided that the following sets of sufficient
conditions are satisfied:

RZ >0 or R3 < 0, (10a)
R; >0 and Rz >0
or : (10b)

R;>0and R, <0
Accordingly, the two isoclines (9b) and (9c) intersect each other at (x*,y*), which belong to the
interior of the first quadrant of xy —plane, provided that the following sufficient conditions hold:

Xy < Xo, (10c)
%>Oandaa—‘i1<0
or : (10d)
%<0andaa—‘i1>0
%>Oand%>0
or . (10e)
%<Oand%<0

Consequently, the fifth steady-state point s, exists in the interior of R3 uniquely, provided that, in
addition to conditions (10a)-(10e), the following condition should be hold:

(1-x")(x*+c) >y (10f)
Now, the local stability around the above steady-state points is studied using the linearization
technique. The variational matrix (VM) of system (2) around the first steady-state point s, = (0,0,0)
has the following eigenvalues:

/101=1>0,/'102=—(y+g)<0,/103=—(€+§)<0. (11)

Accordingly, the first steady-state point is a saddle point.
The VM evaluated at the second steady-state point s; = (1,0,0) is written as
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[ - -—
JGs0) = ! 0 =-(0r+3) 0 ! (12)
oo e (e+))]
Therefore, the eigenvalues of J(s;) are given by
,111=—1<o,112=ﬁ—(y+§),/1 =L —(¢45). (13)

Therefore, the second steady-state point s; = (1,0,0) is locally asymptotically stable (LAS) if the
following necessary and sufficient conditions hold:

0[

1+c (V + ) (14a)

fe<(e+ ) (14b)
The VM evaluated at the third steady-state point s, = (x,y,0) is determined as

_ Xy x X
[_ (x+c)? T Ftc T X+c —I
_ acy 5y _

](52) - | (X+c)? +7)? B y | (15)
Hence, one of the eigenvalues of J(s,) IS Ay,3 = — + (f + ) and the other two eigenvalues are
the roots of the equation

A 2—T2/12+D2—0 (16)

_ 5xXy
u+02*'m+yﬂandD2 (@+03 m+y))x3’+(x+02m+yﬁ
Equation (16) has two roots

121:%*'% ’T22—4D2and122———— —4D2

Therefore, from the above eigenvalues 1,4, 1,5, and /123, the third steady-state point s, is LAS if the
following conditions hold:

where T, = —x +

;—i+v7<(f+§), (17a)
sy <min{E (3 ) o) (170)
Furthermore, the VM evaluated at the fourth steady- state point s; = (X, 0, 2) is written as
X (x)ii)z B ﬁ ~ e
J(s3) =] 0 ;—i—ﬁi—y—g 0 | (18)
| (;fc; vi (:é)zj

Clearly, J(s3) has three eigenvalues, one of them is written as A3, = g—i —-BzZ—vy —g, while the
other two eigenvalues are the roots of the equation
A% - T3A3 + D3 = O, (19)

€2 _(_#c ¢ P ex2? . . .
where T3 = —X + — @ +C)2 t o D; = ((2+6)3 (T+2)2) X2+ Giorera? . Again, this equation has

the roots

/131:% % ;T32_4D3andl33=%_% T32_4D3.

Hence, the fourth steady-state point s5 is LAS if the following conditions hold:
ax N 1)
E<BZ+‘}/+;’ (20&)
& . ~f1 1 uc
(rezyz < N {x (E - (7?+c)2) ’ (7?+c)3}' (200)
Finally, the stability analysis around the fifth steady-state point s, = (x*, y*, z*) is studied in the next

theorem.
Theorem 2: The fifth steady-state point s, = (x*, y*, z*) is LAS, provided that
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x*y* 6y *
+Z + +Z < 21a
B7 BIZ B;7 ﬁ§2 x* (21a)
6 oy* 6z* ac
< +—==+—=, 21b
13;2 /3{2352 BIZBEZ B (21b)
ez* ey* uc
< +—==+—=, 21c
ﬁ§2 BIZB;Z Bp T Bl (21c)
va<pu, (21d)
a11F4 + a13r‘5 - a12F6 < 0 (218)
Bu(8B32y" + eB32z") < dex* ( ﬁy—; - %) (21f)
1 1

where all the symbols are clearly described in the proof.
Proof: The VM around the fifth steady-state point s, = (x*,y", z") is determined as

J(s3) = (ai,)3X3 (22)
x*z* x* x*
where a;; = —x* + =% + 25, aj, = — =, a13 = — =,
11 512 ﬁlz 12 Bl 13 ﬁl
__acy” sy”* _ *
A1 = —7 Agz = 7.7 A3 = =By,
B1 B2
gy = Y% Gy, = V2", a3y = 2
31 = gz 432 (33 = g7

where fi=x"+4+c, Bo=n+y andf;=1t+2".
The characteristic equation associated with J(s,) is determined as

A3+ A12% + A0, + A3 = 0, (23)
where A; = —T4,

Ay =T, + T3 + T,

Az = —[ay1Ty + ay3T5 — a5l
with

[1 = ay1 +az +azs, I = a1z, — a12054,

[3 = ay1a33 — ay13a31, [y = az2033 — Az30a3,,

['s = az1a3; — 32031, ['s = az1a33 — az3031,

[7 =a11 +az, Iy = a11 +ass,

[y = az; + ass, 1o = 412023031 + a13021a3,

[11 = a11az20a33.
Moreover, it is easy to verify that

A= Ay Ay — Az = =TIy —Tgly — azassly + azzasz,ly — Iy + I
Direct computation yields that the sufficient conditions (21a)-(21d) with the sign of VM elements
guarantee that T; <0, [, >0, I3 >0, [, >0, a;3ls —a;,lx >0, x>0, I, <0,[5<0, Iy >
0,0 > 0 and I;; < 0. Therefore, using the conditions (21e)-(21f) guarantees the positivity of A,
A;, and A;A, — A;. Hence, due to the Routh-Hurwitz criterion, the fifth steady-state point s, =
(x*,y*,z") is LAS.

In the following, Lyapunov method is used to determine the basin of attraction for each steady-state
point. Then we will say that the steady-state is globally asymptotically stable (GAS) if its basin of
attraction can be extended to the whole domain of system (2).

Theorem 3: Let the second steady-state point is LAS. Then it is GAS if, in addition to condition
(21d), the following condition holds:
£ . (v ¢
; < min {;, ;} (24)
Proof. Consider the positive definite real valued function around s,
xu—X

Vi =k [, —du+kyy + ksz,
where k4, k, and k5 are positive constants to be computed. Obviously, V; is defined for all x > 0,y >
0and z = 0, since

av. ~
= kg (x =) = [aky — kg1 25+ ks — ky] == = [kop — kavlyz
k1% ko6y kX £z
= [y — ]y~ [t ] 2~ e
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Therefore, by choosing k; = 1,k, = 1 and k; = % , We get after some manipulation that

e mt (£ D (- )y

- (i — L) __=tZ
u  x+c z u(t+z)
Clearly, conditions (21d) and (24) guarantee that % is negative definite. Also, since V; approaches to
infinity if and only if any one of their variables x — oo, y = oo, or z = oo, then it is radially
unbounded Laypunov function. Therefore, the second steady-state point s; is GAS.
Theorem 4: Assume that the third steady-state point is LAS. Then it is GAS if the following sufficient
conditions hold:

L < hE (25a)
¥ < ¢y, (25h)
(acn 2 ) (y y)? < (1 - 7) (x — %)?, (25¢)
BlyyZct (250)

Proof. ConS|d_er the following positive definite real valued function around s,

V,=c¢ f;?du + ¢, f;%dv + 37,

where ¢4, ¢;, and c5 are positive constants to be computed. Obviously, V., is defined for all x > 0,y >
0,and z > 0, since

Y (1-52) -9~ (6 - e F) k- D& - )

dt
1
_B_[Cl — cap]xz — [C3§ — By — ﬁ]
—leaB —csvlyz + (55) O - y)z e
Therefore, by choosingc; = 1,¢, = ﬁ L and c¢; = =, we get after some algebraic steps that

dVZ 2 515 v § BB- %
<=M (x—x)? +M2(y }’) (ac —;)yz—(;—?y—z)z,
whereM1=1—:M2= Pri=x+c,Bi=%X+c,fy=n+yand B, =n+7.

By’ aan
Note that the conditions (25a)-(25d) guarantee that d—tz is negative definite. Hence, V, is radially
unbounded Laypunov function. Therefore, the third steady-state point s, is GAS.
Theorem 5. Assume that the fourth steady-state point is LAS. Then it is GAS if the following
sufficient conditions hold:

Bv B (26a)

uc a

Z<cp, (26b)
__Zz —_ M2 & _ 2

(1 :BE) (x — %)% < (WB;) (z — 7)?, (26¢)

T bz, y (25d)

c uc a’
Proof. Consider the following positive definite real valued function around s;:

Vs = llfxudu+ Ly + 13 [ ===
where [, [,, and I are positive constants to be found. Note that /5 is defined for all x > 0,y > 0, and
z > 0, since

@ ht-gg| e -0t la - FE e -ne -2
dx

—[dyB — d3v]zy — [d3VZ + dyy — _] y

B1
L _L — )2
y =5 ldi - dza]xy+(ﬁ =)z -2)?,

B>
Therefore, by choosing l; = 1,1, == and l; = ﬁ , We get after some manipulation that
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dV3< —M; (x — x)2—[E—Fﬂ]yz—[@+£—§]y+M4(2—2)2,

e uc uc
ﬁ’M‘*:% Bi=%+c, f3=1+2 andﬁ;=1+2.
It is easy to verify that conditions (26a)-(26d) guarantee that 22 ~” is negative definite. Then V3 is

radially unbounded Laypunov function. Accordingly, the fourth steady-state point s5 is GAS.
Theorem 6. Assume that the fifth steady-state point is LAS. Then it is GAS if the following sufficient
conditions hold:

where M; =1 —

p11 >0, (27a)
P23* < 4P22P33 , (27b)
[VP22(y —¥") = P33z — 2] < pas(x —x")?, (27¢)

where the unknown symbols are given in the proof.
Proof. Consider the foIIowing positive definite real valued function around s,
Va=bh [ * du +b2fy A dv +bs [, %dw
where by, b, and bs are positive constants to be computed. Clearly, V, is defined for all x > 0,y > 0,
and z > 0. Since

avy _ _byy* bz’ a2 1 _ ok ok
= (b= 55— 75) =202 = = by~ hpacl(x —x) (&~ ¥)

~ L[y =2 (= )z~ 2) = [baf — bl — ¥z 2

+(3%) 0=+ (55) @=22

Therefore, by choosing by = 1,b, = — and b; = %

dV4<—P11(x—x )2+[\/E(y y*) — \/E(Z—z )] ,
v BB1 v Bie ﬁ*

>y, BBL_ v s
Cﬂl CB*’ p22 - acnﬂ p23 - uc ac' p33 - HCTﬁ; 1 = X C,

Bz =n+y",and B3 =1+2z"
Note that conditions (27a)-(27c) ensure that % is negative definite. Hence, V, is radially unbounded

Laypunov function. Consequently, the fifth steady-state point s, is GAS.

4. The occurrence of bifurcation

In this section, the Sotomoyor’s theorem [18] for local bifurcation is performed to study the possibility
of the occurrence of local bifurcation near the steady-state points of system (2).

Now, for simplifying the notations of system (2), we rewrite it in the vector form as follows

% =F(Y),withY = (x,y,2)" and F = (xfy,yf2 2f3)".
So, according to VM of system (2) at the point Y, it is easy to verify that, for any vector H =
(v1,v,,v3)T, we have that

after some algebraic steps we obtain

where p;; =1-—

D*F(Y)(H,H) = [mij]3Xl, (28a)
- _ _ ¢y __c ).,2 _<
where my; = —2 (1 TE (x+c)3) 2( ro7 V1Va — 2 Groy V1Va
_ cy 2 ac
myq = —2 vl 2—— o2 v1v2 + 2( " )3 — 2Bv,v3,
cuz
M1 = =205 vi 2( — )2 V13 + 2V U, + vaz
On the other hand, we have that
D3F(x,y,2) (3, H, %) = [ny], ., (28b)
_ cy cz 3, 6ev1%v, | 6cv;%v3
where M1 = ((x+c)4 (x+c)4) 1 (x+c)3 (x+c)3’
_ 6cyv®  6acvi’v,  68mvy°
21T Gt T Taro? |
_6cuzvy®  6ucv vy 6TEVSS
N31 = - -

(x+c)* (x+c¢)3 (t+2)*
Then, in the following theorems, the occurrence of local bifurcation with specifying their type at each
steady-state point is discussed.
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Theorem 7. Assume that condition (14a) holds with the parameter u passes through the value u*,
where

fr=(1+c) (5 + f). (292)
Then, system (2) around the second steady-state point has a transcritical bifurcation if
Grte) o £ (29b)

t(1+c) = 12’
otherwise, it has a pitchfork bifurcation.
Proof: The VM of system (2) at s, with u = p* is determined as

AU
C c
J1=J](s,u") = & _ )
! (5147 0 1+c ()/ + 17) 0
0 0 0
Then, the eigenvalues of the above VM are A1) = —1,21Y) = ﬁ — (y + ) <0 and 21 =0, and

hence the second steady-state s, is a non-hyperbolic point.
Now, the eigenvector of the J; corresponding to /1[113] = 0, that is denoted by H; = (v11,v12,v13)7, is
computed as H; = (0yv43,0,v,3)T, Where o, = —% , While v;3 # 0 is a real number.

Also, the eigenvector of ;7 corresponding to the eigenvalue /1[113] =0 is determined as J; =
(¢11,1p12,1p13)T = (0, 0 1p13)T where ;5 # 0 is a real number.

Slnce —=F,=(0, 0 )T hence by substituting s; and u*, we obtain that F,( sy, u*) = (0,0,0)7,

then ol "[F,(sq,u* )] =0.
Moreover, since
SlT[DF (s, u* )3—[1] V“w“ #0,
where DF, is the derivative of F, Wlth respectto Y.
Also, by using equation (28a) With s1, 1, H1, and J;, we obtain that
31" [D2F( sy, 0*)(Hy, H)] = 23452 <—T((51T-I-|_:)) + i)
Obviously, 3,7 [D2F(sy,u*)(H,,H;)] # 0 under the condition (29b). Hence, according to
Sotomayor’s theorem, system (2) around the second steady-state point s; with u = u* possesses a
transcritical bifurcation.
However, violating condition (29b) leads to ;" [D2F( sy, u*)(H;, H;)] = 0, and hence a transcritical
bifurcation does not occur. On the other hand, using equation (28b) with s,, u*, H; and J; gives that

* +
3, [D3F (1, K (3, 30, 3] = =601 s (sorz +5) # 0.
Hence, system (2) undergoes a pitchfork bifurcation.
Theorem 8. Assume that the condition (17b) holds with the parameter ¢ passes through the value &*,

where

¢ =(E+vi-2)>o0. (30a)
Then, system (2) around the third steady-state point s, has a transcritical bifurcation if
(x+ X ——TI +vD + > # 0, (30b)

where I; and T, are given |n the proof. Otherwise, system (2) has a pitchfork bifurcation.
Proof: By using similar arguments used in the proof of theorem (7), we obtain the following results.
The VM of system (2) at s, with & = $™ is

_ Xy x
rx(ﬂm —52—54
L= =| @y sy _pot=[byl,
S ll wreor wor PV Pl
0 0 0

The eigenvalues of J, are /1[221] = A,, and /1[222] = 1,,, Which are negative due to condition (17b) and
(2]
A5 =0.
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The eigenvector of J, corresponding to the eigenvalue /1[223] =0 is H, = (Vyq,V20,V3) =

bipoby3—b13b bi3 by1—bq11b . .
(F1v23, F2U23,1723)T, Where F]_ = 1223 1322 > 0 and FZ =232 1123 < 0, Wlth U23 * 0 IS a I’ea|
b11 bzz_b12b21 bll b22_b12b21

number.

The eigenvector of J,” that corresponding to the eigenvalue 1[223] =0 is Iy = (W1, Yo P23)T
(0,0,3,3)T, where 1,5 # 0 is a real number.

Also, we get Z—g = F; = (0,0,—2)" = Fe(55,&%) = (0,0,0)" = 3, [Fe(s5,,69)] = 0.

Moreover, we obtain ~ 3," [DF¢( 53, &%) H,] = 4313 # 0.

Then, using equation (28a), with s,, &* H, and I, gives I’ [D2F( s, E)(H, Hy)] =
21)53V532 ((x%)z I+vh + riz) # 0 under the condition (30b). Hence, system (2) around the third
steady-state s, with & = &* possesses a transcritical bifurcation.

Now, violating condition (30b) leads to ,” [D2F( s,,&*)(H,, H,)] = 0, and hence a transcritical
bifurcation does not occur. On the other hand, using equation (28b) with s,, u*, H, and 3, gives that

~ * ry’
35" [D3F (52,8 (35, T3, 75)] = —63v55° (S5 + 2) = 0.

(X+c)3 13
Hence, system (2) has a pitchfork bifurcation.
Theorem 9. Assume that the condition (20b) holds. Then, as the parameter § passes through the value
6", where

5 =n(s=-pz-v)>0, (31a)
then system (2) around the fourth steady-state point has a transcritical bifurcation if
6*
G —B w2+ 5 #0, (31b)

where w; and w, are given in the proof. Otherwise, it has a pitchfork bifurcation.
Proof: It is easy to verify that the VM of system (2) at s; with § = 6" is

_py_Xz _ % _ X
[ X (£+c)2 £+c 9?+c]
I3 :](E316*):| cgé 0 502 |: [Cij]gxg'
| o vZ o
The eigenvalues of /5 are /1[331] = A31 and /1[333] = A33, Which are negative due to condition (20b) and
Bl =,

The eigenvector of J;, corresponding to the eigenvalue /1[332] =0, is Hz = (v31,V3;,V33)" =

281N gng , = LEE2TA25E  with g, % 0 is a real

T
W1 V39,V32, WU where w; =
( 1732 msz 2 32) ' 1 C11 €33—C13C31 C11 €33—C13C31

number.

The eigenvector of J;” corresponding to the eigenvalue /1[332] =0 is I3 = (Paq, P, P33)T =
(0,3,,0)T, where 15, # 0 is a real number.

Also, we get  Z2=Fy = (0,2, 0)7 = Fy(53,8") = (0,00)" = 35" [Fs(5,6)] = 0.

Moreover, we obtain ~ J;" [DFs( s3,8%) H3] = 173211& = 0.
Then, using equation (28a), with s;, 8%, H3, and I3 gives I3” [D2F(s3,6%)(Hs, H3)] =
213, V3,2 (% )qt 0 under the condition (31b). Hence, system (2) around the

fourth steady-state s; with § = §* possesses a transcritical bifurcation.
Now, violating condition (31b) leads to I3"[D2F( s3,8)(H3,H3)] = 0, and hence a transcritical
bifurcation does not occur. On the other hand, using equation (28b) with s3, 6*, H3, and 35 gives that

5
wl—ﬁm2+$

(x+0)? n?

2 (%X _ps
S5TID3F( 55,6") (Fs, H, H5)] = —6¢32v323(““’1 Nl y)) 0.

Hence, system (2) has a pitchfork bifurcation.
Theorem 10: Suppose that the conditions (21a)-(21c) with the following conditions hold:
Ap2031 — A1032 < 0, (32a)
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11032 — A12a31 < 0. (32b)
Then, when the parameter ¢ passes through the value €, system (2) around the fifth steady-state point

undergoes a saddle-node bifurcation if
(4] (4] (4]

wsm;; + wgmy; +mg; # 0, (32¢)
where
* _ ﬁ§2 a13(A22031—021032)+0A23(A11A32—A12031)
e = B8 . (33)
z a11022—012021

Proof: From Equation (22), it is easy to verify that the VM of system (2) at s, with ¢ = €™ is

Ja=JGae) =(al')

3x3

where ag] = q;; forall ,j = 1,2,3 with agl_;)] = ay3(e"). Also, it is clear that, at e = £*, we obtain that
A3 = 0, where A5 is given in Equation (23).

Therefore, the VM of system (2) that is given by Equation (34) has zero eigenvalue, denoted by

A[;;] = 0, with two negative real part eigenvalues denoted by

A=ty a2 -4, and 28 = 811 4,7 44,

where A; > 0 and A, > 0 are given in Equation (23).

The eigenvector of j, corresponding to the eigenvalue /1&43] =0 is Hy= Vg1, V42, V43)" =
(0)31743, (1)41)43,1)43)T, Where w3 = % >0 and Wy = _% < 0, Wlth V43 *0 |S a
real number.

The eigenvector of J,” corresponding to the eigenvalue /1&43] =0 is I4 = (W41, W42, Ps3)T =
(w543, WeWPasz, Yas3)T, Where wg = % > 0and wg = —% > 0,withy,; = 0isa
real number.

Also, we get Z—g =F.= (00,227 = Fe(s4,6") = (0,0,22)" = I, [Fe(54,€7)] = -Z¥a250.
Therefore, according to Sotomayor’s theorem, system (2) undergoes a saddle node bifurcation if, in
addition to I, [F.(s,, )] # 0, the value of I, [D2F(sy, €*)(H,, H,)] # 0, too. Hence,
straightforward computation shows that

Sa [D?F (54, %) (Ha, Hy)] = —2043%13 [wsmﬁ] + wemgi] + m?ﬂ],

(34)

[4] [( cy” cz*) 2 c c
where m:> = |1 — — = w3+ —=S w30, + —S w3/,

1 g BT T A g3

4] _ |cy” 2 ac né 2

My = | =3 W3 — 5 W3Ws — 3wy + fwyl,

Bi B1 B2

[4] [cuz* 2  uC Ts*]

= w ——= W3 — VW4 ——=|.
S R T oo

Clearly, W, [D?F(E,, £*)(V,,V,)] # 0 under condition (32c). Thus, the proof follows.

5. Simulation of the system

In this section, system (2) is simulated numerically using the following set of hypothetical data. The

objective is to specify the types of attractors in system (2) and detect the control parameters.
c=02,a=08=03y=0146 =0,n =10, 35

u=0.70v=0.35¢=0.15¢=0,7 = 10. (35)
For the data given by equation (35), it is observed that the solution of system (2) approaches
asymptotically (APAS) the periodic attractor in the interior of R3, as shown in Figure (1).
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Figure 1- The trajectory of system (2) using equation (35) APAS the periodic attractor in the interior
of R3.. (a) Periodic attractor of system. (2). (b) Trajectory of x. (c) Trajectory of y. (d) Trajectory of z.

[ =)

According to Figure (1), system (2) coexists at a periodic attractor using equation (35). Now, for the
same data with decreasing the parameter c in the range 0 < ¢ < 0.18, system (2) loses its persistence
and the trajectory APAS to the periodic attractor in the interior of the first quadrant of xy —plane.
While upon increasing it in the range 0.25 < ¢ < 0.7, system (2) loses its persistence, too, and the
trajectory APAS the periodic attractor in the interior of the first quadrant of xz —plane. However, for
the range 0.7 < ¢ < 1, the trajectory of system (2) APAS the fourth steady-state point in the interior
of the first quadrant of xz —plane. Otherwise, the system (2) still has periodic dynamics in the interior
of R3; see Figure (2) for the selected values of the parameter.
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Figure 2-The trajectory of system (2) using equation (35) with different values of c, so that it APAS
to: (a) Periodic attractor in the interior of first quadrant of xy —plane for ¢ = 0.15. (b) Periodic
attractor in the interior of R3 for ¢ = 0.22. (c) Periodic attractor in the interior of first quadrant of
xz —plane for ¢ = 0.4. (b) The fourth steady-state point s; = (%, 0, 2) for c = 0.8.

[ 2]

Now, it is noted that decreasing the parameter « in the range 0 < a < 0.8, with the other parameters
being as in equation (35), leads to losing the persistence of system (2) and the solution APAS the
periodic dynamics in the interior of the first quadrant of xz —plane. However, increasing « in the
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range 0.9 < a < 1 causes an extinction in z species and the solution APAS the periodic dynamics in
the interior of the first quadrant of xy —plane. Otherwise, the solution of system (2) still approaches
the periodic attractor in the interior of R3; see Figure (3) for the selected values of a.

(a)
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Figure 3-The trajectory of system (2) using equation (35) with different values of a, so that it APAS

to: (a) Periodic attractor in the interior of the first quadrant of xz —plane for @ = 0.4. (b) Periodic

attractor in the interior of R3 for @ = 0.85. (c) Periodic attractor in the interior of the first quadrant of

xy —plane for @ = 0.95.

It is noted that, for the range 0.4 < B < 1 with the other parameters being as in equation (35), system
(2) faces extinction in y species and it APAS the periodic dynamics in the interior of the first quadrant
of xz —plane. Otherwise, system (2) still persists at periodic dynamics in the interior of R3; see Figure
(4) for the selected values of .
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Figure 4-The trajectory of system (2) using equation (35) with different values of £, so that it APAS
to: (a) Periodic attractor in the interior of R3 for § = 0.15. (b) Periodic attractor in the interior of the
first quadrant of xz —plane for § = 0.5.

Also, it is noted that, for the range 0 < y < 0.1 with the other of parameters being as in equation (35),

system (2) loses the persistence and the solution APAS the periodic dynamics in the interior of the
first quadrant of the xy —plane. However, for 0.2 <y < 1, system (2) faces extinction in y species
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and it APAS the periodic dynamics in the interior of the first quadrant of the xz —plane. While,
otherwise, the solution of system (2) still approaches to the periodic attractor in the interior of R3, see
Figure (5) for selected values of y.
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Figure 5- The trajectory of system (2) using equation (35) with different values of d,, so that it APAS
to: (a) Periodic attractor in the interior of the first quadrant of xy —plane for d; = 0.05. (b) Periodic
attractor in the interior of the first quadrant of xz —plane for d; = 0.3.

Furthermore, the effect of harvesting on the y species is shown in Figure (6), so that for 0 < § < 0.12
with other parameters being as in equation (35), the solution of system (2) still persists at a periodic
dynamics in the interior of R3. However, increasing the parameter § further leads to extinction in the
y species and the solution approaches the periodic dynamics in the interior of the first quadrant of the
xz —plane.

On the other hand, varying the parameters n and , with the other parameters being as in equation (35),
has quantitative effects on the level of population density of y and z, respectively, in the 3D periodic
dynamics of system (2). Also, it is noted that varying the parameters u and & has similar effects on the
solution of system (2) as those shown in the case of varying y and «a, respectively.

Now, for 0 < v < 0.35, with the other parameters being as in equation (35), system (2) faces an
extinction in the z species and the solution of system (2) APAS the periodic dynamics in the interior of
the first quadrant of the xy —plane. Otherwise, system (2) still persists at the periodic dynamics in the
interior of R3; see Figure (7) for the selected values of v.

Finally, Figure (8) explains the effect of varying &, keeping other parameters as in equation (35). It is
noted that, for 0 < € < 0.1, the solution of system (2) still persists at periodic dynamics in the interior
of R3. However, increasing this parameter further causes an extinction in z species, and the solution
APAS the periodic dynamics in the interior of the first quadrant of the xy —plane.
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Figure 6-The trajectory of system (2) using equation (35) with different values of &, so that it APAS
to: (a) Periodic attractor in the interior of R3 for § = 0.05. (b) Periodic attractor in the interior of the
first quadrant of xz —plane for § = 0.2.
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Figure 7- The trajectory of system (2) using equation (35) with different values of v, so that it APAS
to: (a) Periodic attractor in the interior of R of xy —plane for v = 0.25. (b) Periodic attractor in the
interior of R3 for v = 0.5.
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Figure 8-The trajectory of system (2) using equation (35) with different values of ¢, so that it APAS
to: (a) Periodic attractor in the interior of R3 for £ = 0.05. (b) Periodic attractor in the interior of R2
of xy —plane for ¢ = 0.2.

6. Discussion and conclusions

In this paper, an eco-epidemiological model is suggested and studied. The model is combining a
prey-predator system with an infectious disease in the predator. It is assumed that the disease is
transmitted vertically, in addition to the natural horizontal transmission within predator individuals.
Moreover, there is a harvesting event on the predator using Micheal-Mentence type of harvesting
function. The stability analysis of all possible steady-states is investigated using the linearization
technique and Lyapunov functions. The possibility of the occurrence of local bifurcation around the
steady-states of the system is investigated. Finally, the paper is ended with the numerical simulation of
the model using a hypothetical set of data, as given in equation (35). Regarding the numerical
simulation results that depend on the data given by equation (35), different sets of data can be used
too. The following conclusions are obtained.
1. System (2) APAS the periodic dynamics in the interior of R3. In fact, due to the complexity of
the stability conditions given by (21a)-(21f), it is difficult to find data that satisfy all these conditions
and then obtain an asymptotically stable coexistence equilibrium point, but it still exists analytically.
2. Decreasing the half saturation constant (c¢) below a specific value or increasing it above
another specific value causes an extinction in one compartment of the predator species (susceptible or
infected) and, then, system (2) loses its persistence and APAS the periodic dynamics or steady-state
point in the boundary planes. However, it still persists at a periodic dynamics otherwise.

3. Similar behavior as that observed in the half saturation constant is also obtained regarding the
conversion rates (a and u) and the death rates of predator compartments (y and £).
4. Increasing the contact’s infection rate () above a specific value leads to an extinction in the

susceptible predator and the solution APAS the periodic dynamics in the boundary xz —plane.
Otherwise, the system (2) persists at periodic dynamics in the interior of R3.

5. Similar behavior as that observed in the contact’s infection rate is also obtained regarding each
of the maximum harvesting rates (§ and ¢).
6. The parameters which stand for the prevention of the harvesting process, represented by (n

and t), have quantitative effects on the levels of predator curves in the periodic dynamics that fall in
the interior of R3.

7. Decreasing the contact’s transmission rate (v) below a specific value leads to an extinction in
the infected predator and the solution APAS the periodic dynamics in the boundary xy —plane.
Otherwise, the system (2) still persists at periodic dynamics in the interior of R3.
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