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Abstract 

     An eco-epidemiological system incorporating a vertically transmitted infectious 

disease is proposed and investigated. Micheal-Mentence type of harvesting is 

utilized to study the harvesting effort imposed on the predator. All the properties of 

the solution of the system are discussed. The dynamical behaviour of the system, 

involving local stability, global stability, and local bifurcation, is investigated. The 

work is finalized with the numerical simulation to observe the global behaviour of 

the solution.  

  

Keywords: Eco-epidemiological model, Vertical transmission, Stability, Local 

Bifurcation. 

 

 وبائي يتضمن انتقال عمهدي لمرض معدي -حهل ديناميكية نظام بيئي
 

 هدى عبد الستار, هبة عبد الله ابراهيم, داليا خالد بهلهل
 قدم الخياضيات, كمية العمهم, جامعة بغجاد, بغجاد, العخاق

 الخلاصه
 محرادلميشتيشس  -دالة ميكائيلوبائي يتزسن انتقال عسهدي لسخض معجي اقتخح وبحث.  –نسهذج بيئي 

. الدمهك تست مشاقذتها والحي فخض عمى السفتخس. جسيع خهاص الحل لمشظام ادـــــــاستخجمت لجراسة الحر
انهي العسل بالسحاكاة حمي تم بحثة. سالجيشاميكي لمشظام والحي يتزسن الاستقخارية السحمية, الذاممة, والتفخع ال

 .العجدية لسلاحظة الدمهك الذامل لمحل
1. Introduction  

       Most of the real world problems, including biological and epidemiological problems, can be 

formulated mathematically using the differential equations or difference equations.  The application of 

mathematical modeling in biology provides models known as mathematical biology models or 

ecological models. However, the application of mathematical models in epidemiology provides 

models known as epidemiological models. Since the environment contains millions of species that 

interact with each other and may have different types of diseases, the mathematical models that 

combine both ecology and epidemiology are known as eco-epidemiology models. 

It is well known that there are two different modes of pathogen transmission, namely the horizontal 

and vertical transmission modes. Horizontal transmission means the transmission of disease between 

the individuals of the same generation, while the transmission of disease from parent to offspring is 

known as vertical transmission [1]. Although most of the epidemic models are interested in the 

horizontal transmission type of disease, there are few studies that are interested to study epidemic 

models with diseases transmitted vertically; see for example [2-4] and the references therein. Later on, 
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Naji and Hussien [5] studied the dynamics of the spread of infectious diseases within an epidemic 

system. They considered both horizontal and vertical transmission in the host population. 

Keeping the above in view, many studies have been performed, in which the researchers presented 

eco-epidemiological models where the diseases exert horizontal transmission [6-9]. Later on, Sieber et 

al. [10] considered an eco-epidemiological model incorporating differential competition. They 

reported that the existence of differential competition can tremendously change the stability and 

persistence of predator–prey systems. Kant and Kumar [11] suggested and investigated an eco-

epidemiological model involving stages that are structured with linear functional response. They 

assumed that the stages are existing in prey and predator, while the infection occurs in the prey 

population only. Das [12] proposed and studied an eco-epidemiological system in which the disease 

exists in the predator population. He studied the effect of alternative food on the system dynamics. 

Saifuddin et al. [13] considered the existence of strong-Allee effect on a simple eco-epidemiological 

model. They studied the dynamics of the suggested system under the combined influence of strong-

Allee parameter and competition coefficients. Abdulghafour and Naji [14] proposed and studied an 

eco-epidemiological model incorporating a prey refuge and nonlinear harvesting from the predator. 

They assumed that the feeding process do not transfer the disease from prey to predator. Shaikh et al. 

[15] proposed and studied an eco-epidemiological model involving a virus disease. In all these 

proposed eco-epidemiological models and many others, in addition to the  consideration of horizontal 

transmission type of diseases, different factors are included, such as harvesting, vaccines, toxicants, 

etc. Recently, Abdul Star and Naji [16] suggested and studied a prey-predator system incorporating a 

vertically transmitted infectious disease in predator population only.  

Recalling the above studies, in this paper, however, an eco-epidemiological system is suggested so 

that it involves a disease transmitted vertically as well as horizontally within predator species. It is 

assumed that the predator is falling under the effects of harvesting of nonlinear type. In fact, we used 

the harvesting function proposed by [17]. The paper is organized as follows; section (2) includes the 

formulation of the model and its dimensionless, in addition to the properties of the solution. In Section 

(3), the stability analysis of the system is carried out. The local bifurcation analysis is investigated in 

section (4). Section (5) provides a numerical simulation. Finally, Section (6) gives some conclusions 

and discussion on the obtained results. 

2. The formulation and dimensionless of the model  

An eco-epidemiological model incorporating a vertically transmitted infectious disease and harvesting 

in a predator population is formulated and studied. Consider the following hypotheses, which are 

adopted in the formulation of the model: 

1. Let  ( ),  ( )  and  ( ) represent the densities at time   of the prey, susceptible predators, 

and infected predators, respectively. 

2. Let  ( ) grows logistically, in the absence of predation, with a growth rate     and 

carrying capacity    . 

3. Assume that  ( ) and  ( ) consume  ( ) according to Holling-type II functional response, 

with maximum attack rates                 half saturation level      and conversion rates  

              . They decay exponentially in the absence of prey species, according to natural 

death rates                . 

4. It is assumed that the disease is transmitted vertically in the predator species, in addition to 

transmission by contact, with infection rate     .  
5. Finally,  ( ) and  ( ) are assumed to be harvested according to Micheal-Mentence type of 

harvesting function, where     represents hunting efforts, while             are the catchability 

coefficients of the predator and                 are positive constants. 

Accordingly, the dynamics of the above described eco-epidemiological model can be described using 

the following set of differential equations: 
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where  ( )     ( )          ( )   . Now, the number of parameters can be reduced using the 

following dimensionless variables and parameters 

        
 

 
    

    

   
    

    

      
    

     
 
    

   

  
    

  
   
    

 

 
 

   
        

        
   

        

       
   

     
 
     

   

  
   

  
   
    

        

        
   

        

       
 

          

Therefore, system (1) can be written in the following dimensionless form:  
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                                                                          (2) 

Hence, system (2) has the following domain: 

  
  *(     )                +. 

Clearly, all the right-hand side functions are continuous and have continuous partial derivatives. 

Hence, the solution of system (2) exists and is unique.  

Now, the solution of system (2) is proved to be uniformly bounded, as shown in the following 

theorem. 

Theorem 1. The solution ( ( )  ( )  ( )) of system (2), starting at any initial condition that belong 

to   
   is uniformly bounded in the region 

  2(     )    
             

 

  
3, 

where    is given in the proof. 

Proof: From the first equation of system (2), we have 
  

  
  (   ). Then, direct computation shows 

that, for    , we obtain      .  

Now, let         ,  then we obtain that 

 
   

  
   

(   )  

   
 
(   )  

   
 (   )        . 

According to the biological meaning of the parameters, the following is obtained: 

 
   

  
       ,                                                                              

where       *     +. Then, it is easy to verify that, for      we get    
 

  
. Hence, the proof is 

achieved.                                                                                                                          ■  

3. Analysis of the stability 

In this section, the stability analysis of system (2) is carried out through computing all the possible 

steady-state points, and then their type of stability is discussed. Direct computation shows that system 

(2) has the following steady-state points.  

The first steady-state point, denoted by    (     )  and the second steady-state point, denoted by 

   (     )  always exist. 

The third steady-state point is denoted by    ( ̅  ̅  ), where 

  ̅  (   ̅)( ̅   ),                 (3) 

while  ̅ is a positive root of the following three degree polynomial equation: 

     
     

          ,                                                       (4) 

here           ,     (   )   (    ),   

     (   )   (      
 )   ,     , (    )    

 -   .    

Clearly,    exists uniquely in the first quadrant of   -plane, provided that any set of the following sets 

of conditions holds: 

           .                       (5a) 

          .                          (5b) 

The fourth steady-state point is denoted by    ( ̂    ̂), where 

  ̂  (   ̂)( ̂   ),                 (6) 

while  ̂ is a positive root of the following equation: 

    
     

          ,                                                             (7) 

where         ,      (   )   (    ),   
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     (   )   (      
 )   ,     , ( (   )   )-   . 

Clearly,    exists uniquely in the first quadrant of   -plane, provided that any set of the following sets 

of conditions holds: 

           .                         (8a) 

          .                       (8b) 

Finally, the fifth steady-state point is denoted by    ( 
       ) and located at the interior of 

positive octant   
 , where 

   (    )(    )    ,                                                                           (9a) 

while (     ) represents the intersection point of the following two isoclines in the interior of first 

quadrant of    plane. 

 

  (   )     
  ,  (    )-   ,      (   )      -           

      , (    )-    ,       (   )   -   

               ,          -       ,           -    

            (9b) 

 

  (   )  (   ) 
  ,   (   )-                                                  

 ,(   )(   )    (   )   -         
  

                        ,    (   )   (   )   -        

 ,     (   )-        ,  (   )    -    

                   (9c) 

Obviously, as    , the above two isoclines become  

    
     

          ,                                                                                   (9d) 

    
     

          ,                      (9e) 

where        ,      (    ),           (   )      ,  

     ,          
 -   ,    (   ),       (   ), 

     (   )(   )    (   )   ,     ,  (   )    -   . 

Direct computation shows that the above isoclines, which are represented by (9d) and (9e), intersect 

the   axis at the positive points    and     respectively, provided that the following sets of sufficient 

conditions are satisfied: 

               ,                    (10a) 

 

                          
               

  
               

}.                                         (10b) 

Accordingly, the two isoclines (9b) and (9c) intersect each other at (     ), which belong to the 

interior of the first quadrant of    plane, provided that the following sufficient conditions hold: 

 

     ,                                                                                (10c)           
   

  
       

   

  
  

  
   

  
       

   

  
  

},                                                                                   (10d)   

 

   

  
       

   

  
  

  
   

  
       

   

  
  

}.                                                                                     (10e) 

Consequently, the fifth steady-state point    exists in the interior of   
  uniquely, provided that, in 

addition to conditions (10a)-(10e), the following condition should be hold: 

 (    )(    )    .                      (10f) 

Now, the local stability around the above steady-state points is studied using the linearization 

technique. The variational matrix (VM) of system (2) around the first steady-state point    (     ) 
has the following eigenvalues: 

              .  
 

 
/   ,      .  

 

 
/   .                    (11) 

Accordingly, the first steady-state point is a saddle point. 

 The VM evaluated at the second steady-state point     (     ) is written as 
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  (  )  
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.                                                         (12) 

Therefore, the eigenvalues of  (  ) are given by 
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/.                   (13) 

Therefore, the second steady-state point    (     ) is locally asymptotically stable (LAS) if the 

following necessary and sufficient conditions hold: 
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/,                       (14a) 
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/.                       (14b) 

The VM evaluated at the third steady-state point    ( ̅  ̅  )  is determined as 
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Hence, one of the eigenvalues of  (  ) is     
   ̅

 ̅  
    ̅  .  

 

 
/ and the other two eigenvalues are 

the roots of the equation 

   
           ,                                               (16) 
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.  

Equation (16) has two roots 
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Therefore, from the above eigenvalues          and    , the third steady-state point    is LAS if the 

following conditions hold: 
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3.                       (17b) 

Furthermore, the VM evaluated at the fourth steady-state point    ( ̂    ̂) is written as 
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Clearly,  (  ) has three eigenvalues, one of them is written as     
   ̂

 ̂  
   ̂    

 

 
, while the 

other two eigenvalues are the roots of the equation 
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 . Again, this equation has 

the roots 
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Hence, the fourth steady-state point    is LAS if the following conditions hold: 
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3.                              (20b) 

Finally, the stability analysis around the fifth steady-state point    ( 
       ) is studied in the next 

theorem.  

Theorem 2: The fifth steady-state point    ( 
       ) is LAS, provided that 
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where all the symbols are clearly described in the proof.   
Proof: The VM around the fifth steady-state point    ( 

       ) is determined as 
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,                                                                             (22) 
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where   
      ,    

       and   
      . 

The characteristic equation associated with  (  ) is determined as 

    
      

           ,                                                                                                (23) 

where         ,  

            ,  

      ,                 -, 
with 

               ,                 , 
                 ,                 , 
                 ,                 , 
           ,           , 

           ,                        , 
               . 

Moreover, it is easy to verify that    

                                                 . 

Direct computation yields that the sufficient conditions (21a)-(21d) with the sign of VM elements 

guarantee that     ,     ,     ,     ,              ,     ,     ,          
 ,       and       . Therefore, using the conditions (21e)-(21f) guarantees the positivity of   , 

  , and        . Hence, due to the Routh-Hurwitz criterion, the fifth steady-state point    
(        ) is LAS.             

 

In the following, Lyapunov method is used to determine the basin of attraction for each steady-state 

point. Then we will say that the steady-state is globally asymptotically stable (GAS) if its basin of 

attraction can be extended to the whole domain of system (2).  

 

Theorem 3:  Let the second steady-state point is LAS. Then it is GAS if, in addition to condition 

(21d), the following condition holds: 
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Proof. Consider the positive definite real valued function around    
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where       and    are positive constants to be computed. Obviously,    is defined for all       
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Therefore, by choosing         
 

 
 and    

 

 
 , we get after some manipulation that 

 

   

  
   (   ̂)  .

 

 
 
 

 
/    .

 

 
 

 ̂

   
/   

   

 (   )

 .
 

 
 

 ̂

   
/   

   

 (   )

 

Clearly, conditions (21d) and (24) guarantee that 
   

  
 is negative definite. Also, since    approaches to 

infinity if and only if any one of their variables           or      then it is radially 

unbounded Laypunov function. Therefore, the second steady-state point    is GAS.                                                   

Theorem 4: Assume that the third steady-state point is LAS. Then it is GAS if the following sufficient 

conditions hold: 
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where      
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,    
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     ̅̅̅̅
,       ,   ̅̅ ̅   ̅   ,        and   ̅̅ ̅     ̅. 

Note that the conditions (25a)-(25d) guarantee that 
   

  
 is negative definite. Hence,    is radially 

unbounded Laypunov function. Therefore, the third steady-state point    is GAS.       

Theorem 5.  Assume that the fourth steady-state point is LAS. Then it is GAS if the following 

sufficient conditions hold: 
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where       
 ̃

   ̃
,    
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     ̃
,   ̃   ̃   ,         and   ̃     ̃. 

It is easy to verify that conditions (26a)-(26d) guarantee that 
   

  
 is negative definite. Then    is 

radially unbounded Laypunov function. Accordingly, the fourth steady-state point    is GAS.    

Theorem 6.  Assume that the fifth steady-state point is LAS. Then it is GAS if the following sufficient 

conditions hold: 
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where the unknown symbols are given in the proof. 
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Therefore, by choosing         
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Note that conditions (27a)-(27c) ensure that 
   

  
 is negative definite. Hence,    is radially unbounded 

Laypunov function. Consequently, the fifth steady-state point    is GAS.                

4. The occurrence of bifurcation  

Inthissection,theSotomoyor’stheorem[18]forlocalbifurcationisperformedtostudythepossibility

of the occurrence of local bifurcation near the steady-state points of system (2). 

Now, for simplifying the notations of system (2), we rewrite it in the vector form as follows  
  

  
  ( ), with   (     )  and   (           )

 . 

So, according to VM of system (2) at the point  , it is easy to verify that, for any vector   
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 , we have that 
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Then, in the following theorems, the occurrence of local bifurcation with specifying their type at each 

steady-state point is discussed. 
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Theorem  7. Assume that condition (14a) holds with the parameter   passes through the value   , 
where 

   (   ) .  
 

 
/.                                                                                            (29a) 

Then, system (2) around the second steady-state point has a transcritical bifurcation if  
(    ) 

 (   )
 

 

  
,                                                                                         (29b) 

otherwise, it has a pitchfork bifurcation. 

Proof: The VM of system (2) at    with      is determined as  

     (    
 )  [
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]  

Then, the eigenvalues of the above VM are    
, -
        

, -
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/     and     

, -
  , and 

hence the second steady-state    is a non-hyperbolic point. 

Now, the eigenvector of the    corresponding to    
, -
    that is denoted by    (           )

   is 

computed as    (           )
 , where     

 

 
 , while       is a real number. 

Also, the eigenvector of   
  corresponding to the eigenvalue    

, -
   is determined as    

(           )
  (       )

 , where       is a real number. 

Since 
  

  
    (    

  

   
) , hence by substituting     and   , we obtain that   (     

 )  (     ) , 

then   
 [  (     

 )]   .  

Moreover, since  

   
 [   (     

 )   ]  
      

   
   , 

where     is the derivative of    with respect to  .  

Also, by using equation (28a) with   ,  
 ,     and   , we obtain that 

  
 ,   (     

 )(     )-       
 4
 (    ) 

 (   )
 
 

  
5 

Obviously,   
 ,   (     

 )(     )-    under the condition (29b). Hence, according to 

Sotomayor’s theorem, system (2) around the second steady-state point    with      possesses a 

transcritical bifurcation.  

However, violating condition (29b) leads to   
 ,   (     

 )(     )-   , and hence a transcritical 

bifurcation does not occur. On the other hand, using equation (28b) with   ,  
 ,    and    gives that 

   
 ,   (     

 )(        )-       
    .

(    )

  (   ) 
 

 

  
/   . 

Hence, system (2) undergoes a pitchfork bifurcation.                         

Theorem  8. Assume that the condition (17b) holds with the parameter   passes through the value   , 
where 

   .
   ̅

 ̅  
    ̅  

 

 
/   .                                                                                                    (30a) 

Then, system (2) around the third steady-state point    has a transcritical bifurcation if  
     

( ̅  ) 
        

 

  
  ,                                                                        (30b) 

where    and    are given in the proof. Otherwise, system (2) has a pitchfork bifurcation. 

Proof: By using similar arguments used in the proof of theorem (7), we obtain the following results. 

The VM of system (2) at    with      is  

     (    
 )  

[
 
 
   ̅  

 ̅  ̅

( ̅  ) 
 

 ̅

 ̅  
 

 ̅

 ̅  

     ̅

( ̅  ) 
   ̅

(   ̅) 
    ̅

   ]
 
 
 
 [   ]   . 

The eigenvalues of     are    
, -
            

, -
    , which are negative due to condition (17b) and 

   
, -
  .  
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The eigenvector of    corresponding to the eigenvalue    
, -
   is    (           )

  

(               )
 , where    

             

               
   and    

              

              
  , with       is a real 

number. 

The eigenvector of   
  that corresponding to the eigenvalue    

, -
   is    (           )

  

(       )
 , where       is a real number. 

Also, we get 
  

  
    (      )

    (     
 )  (     )    

 [  (     
 )]   . 

 Moreover, we obtain    
 [   (     

 )   ]           . 

Then, using equation (28a), with   ,  
 ,    and     gives   

 ,   (     
 )(     )-  

       
 .

     

( ̅  ) 
        

 

  
/    under the condition (30b). Hence, system (2) around the third 

steady-state    with      possesses a transcritical bifurcation. 

Now, violating condition (30b) leads to   
 ,   (     

 )(     )-   , and hence a transcritical 

bifurcation does not occur. On the other hand, using equation (28b) with   ,  
 ,    and    gives that 

   
 ,   (     

 )(        )-          
 .

      
 

( ̅  ) 
 

 

  
/   . 

Hence, system (2) has a pitchfork bifurcation.                           

Theorem  9. Assume that the condition (20b) holds. Then, as the parameter   passes through the value 

  , where 

    .
   ̂

 ̂  
   ̂   /   ,                                                                                                  (31a) 

then system (2) around the fourth steady-state point has a transcritical bifurcation if  
     

( ̂  ) 
        

  

  
  ,                                                                                            (31b) 

where    and    are given in the proof. Otherwise, it has a pitchfork bifurcation. 

Proof: It is easy to verify that the VM of system (2) at    with      is  

     (    
 )  

[
 
 
   ̂  

 ̂  ̂

( ̂  ) 
 

 ̂

 ̂  
 

 ̂

 ̂  

   
     ̂

( ̂  ) 
   ̂

   ̂

(   ̂) ]
 
 
 

 [   ]   . 

The eigenvalues of    are     
, -
             

, -
     , which are negative due to condition (20b) and 

   
, -
  . 

The eigenvector of   , corresponding to the eigenvalue    
, -
  , is    (           )

  

(               )
 , where    

              

              
 and    

              

              
, with       is a real 

number. 

The eigenvector of   
  corresponding to the eigenvalue    

, -
   is    (           )

  

(       )
 , where       is a real number. 

Also, we get 
  

  
    (  

 

   
  )    (     

 )  (     )    
 ,  (     

 )-   . 

 Moreover, we obtain    
 ,   (     

 )   -  
      

 
  . 

Then, using equation (28a), with   ,  
 ,     and    gives   

 ,   (     
 )(     )-  

       
 .

     

( ̂  ) 
        

  

  
/    under the condition (31b). Hence, system (2) around the 

fourth steady-state    with      possesses a transcritical bifurcation. 

Now, violating condition (31b) leads to   
 ,   (     

 )(     )-   , and hence a transcritical 

bifurcation does not occur. On the other hand, using equation (28b) with   ,  
 ,     and    gives that 

   
 ,   (     

 )(        )-          
 4

      
 

( ̂  ) 
 
.
   ̂

 ̂  
   ̂  /

  
5   . 

Hence, system (2) has a pitchfork bifurcation.                           

Theorem 10: Suppose that the conditions (21a)-(21c) with the following conditions hold:  

                ,                       (32a) 
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                .                               (32b) 

Then, when the parameter   passes through the value   , system (2) around the fifth steady-state point 

undergoes a saddle-node bifurcation if  

      
, -
      

, -
    

, -
  ,                       (32c) 

where  

    
  
  

  
0
   (             )    (             )

             
1.                        (33) 

Proof: From Equation (22), it is easy to verify that the VM of system (2) at    with      is  

     (    
 )  .   

, -
/
   

,                      (34) 

where    
, -
     for all           with    

, -
    ( 

 ). Also, it is clear that, at     , we obtain that 

    , where    is given in Equation (23).  

Therefore, the VM of system (2) that is given by Equation (34) has zero eigenvalue, denoted by 

   
, -
    with two negative real part eigenvalues denoted by  

   
, -
    

 
  

 
√  

       and     
, -
    

 
  

 
√  

      ,    

where      and      are given in Equation (23). 

The eigenvector of    corresponding to the eigenvalue    
, -
   is    (           )

  

(               )
 , where    

             
             

   and     
             
             

  , with       is a 

real number. 

The eigenvector of   
  corresponding to the eigenvalue    

, -
   is    (           )

  

(               )
 , where    

             
             

   and     
             
             

    with       is a 

real number. 

Also, we get 
  

  
    (    

  

   
)    (     

 )  (      
 

    
)    

 ,  (     
 )-   

     
    

  . 

Therefore, according to Sotomayor’s theorem, system (2) undergoes a saddle node bifurcation if, in 

addition to   
 ,  (     

 )-     the value of    
 ,   (    

 )(     )-     too. Hence, 

straightforward computation shows that 

   
 ,   (    

 )(     )-       
    0     

, -
      

, -
    

, -
1,  

where     
, -
 [(  

    

  
   

   

  
  )  

  
  

  
       

  

  
    ], 

   
, -
 [

    

  
    

  
    

  
       

    

   
    

     ], 

    
, -
 [

      

  
    

  
    

  
         

     

  
  ]. 

Clearly,   
 ,   (    

 )(     )-    under condition (32c). Thus, the proof follows.         

5. Simulation of the system 

In this section, system (2) is simulated numerically using the following set of hypothetical data. The 

objective is to specify the types of attractors in system (2) and detect the control parameters. 

  
                                 
                             

                  (35) 

For the data given by equation (35), it is observed that the solution of system (2) approaches 

asymptotically (APAS) the periodic attractor in the interior of   
   as shown in Figure (1).  
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Figure 1- The trajectory of system (2) using equation (35) APAS the periodic attractor in the interior 

of   
 . (a) Periodic attractor of system. (2). (b) Trajectory of  . (c) Trajectory of  . (d) Trajectory of  .  

 

According to Figure (1), system (2) coexists at a periodic attractor using equation (35). Now, for the 

same data with decreasing the parameter   in the range         , system (2) loses its persistence 

and the trajectory APAS to the periodic attractor in the interior of the first quadrant of    plane. 

While upon increasing it in the range           , system (2) loses its persistence, too, and the 

trajectory APAS the periodic attractor in the interior of the first quadrant of    plane. However, for 

the range        , the trajectory of system (2) APAS the fourth steady-state point in the interior 

of the first quadrant of    plane. Otherwise, the system (2) still has periodic dynamics in the interior 

of   
   see Figure (2) for the selected values of the  parameter.      

 
Figure 2-The trajectory of system (2) using equation (35) with different values of  , so that it APAS 

to: (a) Periodic attractor in the interior of first quadrant of    plane for       . (b) Periodic 

attractor in the interior of   
  for       . (c) Periodic attractor in the interior of first quadrant of 

   plane for      . (b) The fourth steady-state point     ( ̂    ̂) for      .  

 

Now, it is noted that decreasing the parameter   in the range        , with the other parameters 

being as in equation (35), leads to losing the persistence of system (2) and the solution APAS the 

periodic dynamics in the interior of the first quadrant of    plane. However, increasing   in the 
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range         causes an extinction in   species and the solution APAS the periodic dynamics in 

the interior of the first quadrant of    plane. Otherwise, the solution of system (2) still approaches 

the periodic attractor in the interior of   
 ; see Figure (3) for the selected values of  . 

 
Figure 3-The trajectory of system (2) using equation (35) with different values of  , so that it APAS 

to: (a) Periodic attractor in the interior of the first quadrant of    plane for      . (b) Periodic 

attractor in the interior of   
  for       . (c) Periodic attractor in the interior of the first quadrant of 

   plane for       .  

 

It is noted that, for the range         with the other parameters being as in equation (35), system 

(2) faces extinction in   species and it APAS the periodic dynamics in the interior of the first quadrant 

of    plane. Otherwise, system (2) still persists at periodic dynamics in the interior of   
 ; see Figure 

(4) for the selected values of  . 

 
Figure 4-The trajectory of system (2) using equation (35) with different values of  , so that it APAS 

to: (a) Periodic attractor in the interior of   
  for       . (b) Periodic attractor in the interior of the 

first quadrant of    plane for      . 

 

Also, it is noted that, for the range         with the other of parameters being as in equation (35), 

system (2) loses the persistence and the solution APAS the periodic dynamics in the interior of the 

first quadrant of the    plane. However, for          system (2) faces extinction in   species 
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and it APAS the periodic dynamics in the interior of the first quadrant of the    plane. While, 

otherwise, the solution of system (2) still approaches to the periodic attractor in the interior of   
 , see 

Figure (5) for selected values of  . 

 
Figure 5- The trajectory of system (2) using equation (35) with different values of   , so that it APAS 

to: (a) Periodic attractor in the interior of the first quadrant of    plane for        . (b) Periodic 

attractor in the interior of the first quadrant of    plane for       . 

 

Furthermore, the effect of harvesting on the   species is shown in Figure (6), so that for           

with other parameters being as in equation (35), the solution of system (2) still persists at a periodic 

dynamics in the interior of   
 . However, increasing the parameter   further leads to extinction in the 

  species and the solution approaches the periodic dynamics in the interior of the first quadrant of the 

   plane. 

On the other hand, varying the parameters   and  , with the other parameters being as in equation (35), 

has quantitative effects on the level of population density of   and    respectively, in the 3D periodic 

dynamics of system (2). Also, it is noted that varying the parameters   and   has similar effects on the 

solution of system (2) as those shown in the case of varying   and    respectively. 

Now, for           with the other parameters being as in equation (35), system (2) faces an 

extinction in the   species and the solution of system (2) APAS the periodic dynamics in the interior of 

the first quadrant of the    plane. Otherwise, system (2) still persists at the periodic dynamics in the 

interior of   
 ; see Figure (7) for the selected values of  . 

Finally, Figure (8) explains the effect of varying  , keeping other parameters as in equation (35). It is 

noted that, for          the solution of system (2) still persists at periodic dynamics in the interior 

of   
 . However, increasing this parameter further causes an extinction in   species, and the solution 

APAS the periodic  dynamics in the interior of the first quadrant of the    plane.  
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Figure 6-The trajectory of system (2) using equation (35) with different values of  , so that it APAS 

to: (a) Periodic attractor in the interior of   
  for       . (b) Periodic attractor in the interior of the 

first quadrant of    plane for      .  

 

 

 
Figure 7- The trajectory of system (2) using equation (35) with different values of  , so that it APAS 

to: (a) Periodic attractor in the interior of   
  of    plane for       . (b) Periodic attractor in the 

interior of   
  for      . 
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Figure 8-The trajectory of system (2) using equation (35) with different values of  , so that it APAS 

to: (a) Periodic attractor in the interior of   
  for       . (b) Periodic attractor in the interior of   

  

of    plane for      . 

 

6. Discussion and conclusions 

     In this paper, an eco-epidemiological model is suggested and studied. The model is combining a 

prey-predator system with an infectious disease in the predator. It is assumed that the disease is 

transmitted vertically, in addition to the natural horizontal transmission within predator individuals. 

Moreover, there is a harvesting event on the predator using Micheal-Mentence type of harvesting 

function. The stability analysis of all possible steady-states is investigated using the linearization 

technique and Lyapunov functions. The possibility of the occurrence of local bifurcation around the 

steady-states of the system is investigated. Finally, the paper is ended with the numerical simulation of 

the model using a hypothetical set of data, as given in equation (35). Regarding the numerical 

simulation results that depend on the data given by equation (35), different sets of data can be used 

too. The following conclusions are obtained. 

1. System (2) APAS the periodic dynamics in the interior of   
 . In fact, due to the complexity of 

the stability conditions given by (21a)-(21f), it is difficult to find data that satisfy all these conditions 

and then obtain an asymptotically stable coexistence equilibrium point, but it still exists analytically. 

2. Decreasing the half saturation constant ( ) below a specific value or increasing it above 

another specific value causes an extinction in one compartment of the predator species (susceptible or 

infected) and, then, system (2) loses its persistence and APAS the periodic dynamics or steady-state 

point in the boundary planes. However, it still persists at a periodic dynamics otherwise. 

3. Similar behavior as that observed in the half saturation constant is also obtained regarding the 

conversion rates (  and  ) and the death rates of predator compartments (  and  ). 
4. Increasingthecontact’sinfectionrate( ) above a specific value leads to an extinction in the 

susceptible predator and the solution APAS the periodic dynamics in the boundary    plane. 

Otherwise, the system (2) persists at periodic dynamics in the interior of   
 .  

5. Similar behavior as that observed in the contact’sinfectionrateisalsoobtainedregardingeach

of the maximum harvesting rates (  and  ). 
6. The parameters which stand for the prevention of the harvesting process, represented by (  

and  )  have quantitative effects on the levels of predator curves in the periodic dynamics that fall in 

the interior of    
 . 

7. Decreasingthecontact’stransmission rate ( ) below a specific value leads to an extinction in 

the infected predator and the solution APAS the periodic dynamics in the boundary    plane. 

Otherwise, the system (2) still persists at periodic dynamics in the interior of   
 .  
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