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Abstract

The peristaltic transport of power-law fluid in an elastic tapered tube with
variable cross-section induced by dilating peristaltic wave is studied. The exact
solution of the expression for axial velocity, radial velocity, stream function, local
shear stress, volume of flow rate and pressure gradient are obtained under the
assumption of long wavelength and low Reynolds number. The effects of all
parameters that appear in the problem are analyzed through graphs. The results
showed that the flux is sinusoidal in nature and it is an increasing function with the
increase of n, k, ¢ and F, whereas it is a decreasing function with the increase of b.
An opposite behavior for shear strain is noticed compared to pressure gradient.
Finally, trapping phenomenon is presented to explain the physical behavior of
various parameters. It is noted that the size of the trapping bolus increases with
increasing n, b, ¢ and F whereas it decreases as k increases. MATHEMATICA
software is used to plot all figures.
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1. Introduction

The need to transport fluids through peristaltic channels/tubes has dramatically increased in recent
days due partly to its application in engineering and biological system. The peristaltic flow is
the transport of fluid generated by wave traveling with invariable speed along the elastic wall in a
channel or a tube.

The flow geometry plays an important role to understand the characteristics of different fluid flows.
Most of the earlier research works were concentrated on rigid channels. The biological systems deal
with elastic boundaries, so the non-Newtonian fluid flow through elastic walls gives some influential
applications like swallowing of food though esophagus, blood flow in a small blood vessel, movement
of chyme through intestine and colonic vessel, to understand the evolution of pathogen due to vessel
deformation. Some of the non-Newtonian fluid models which are accepted by researcher are Jeffery
fluid, Herschel-Bulkley fluid, Bingham fluid, power-law fluid etc. The power-law fluid is the simplest
and is accepted as a model to understand the rheological properties of physiological fluids in living
organisms [1- 3].

Srivastava and Srivastava [4] studied the peristaltic transport of a power-law fluid in a uniform and
non-uniform channel. The helical flow of a power-law fluid in a thin annulus with permeable walls is
discussed by Vajravelu et al. [5]. Pandey and Chaube [6] investigated the peristaltic transport of a
visco-elastic fluid in a tube of non-uniform cross section. Sadeghi and Jalali Talab [7] studied the
analytical investigation of peristaltic transport of power law fluid through a tube. Hina et al. [8]
examined the slip effects on the peristaltic flow of non-Newtonian fluid in a curved channel and found
that an intensification in the slip effect resulted in a larger axial velocity. Vajravelu et al. [9] studied
the peristaltic transport of a Casson fluid in an elastic tube. Maiti and Pandey [10] analyzed a
theoretical study of a nonlinear rheological fluid transport in an axisymmetric tube by cilia. Selvi et
al. [11] considered a mathematical model to study the influence of elasticity on the peristaltic flow of a
power-law fluid in a tube. Pandey and Singh [12] discussed the peristaltic transport of Herschel-
Bulkley fluids in tubes of variable cross sections induced by dilating peristaltic waves (application to
sliding hiatus hernia). The effect of elasticity on peristaltic transport of Herschel-Bulkley fluids in
tube of non-uniform cross-section was studied by Selvi and Srinivas [13]. Adnan and Abdulhadi [14]
investigated the effect of an inclined magnetic field on peristaltic flow of Bingham plastic fluid in an
inclined symmetric channel with slip conditions. Kareem and Abdulhadi [15] studied the impacts of
heat and mass transfer on magneto hydrodynamic peristaltic flow having temperature-dependent
properties in an inclined channel through porous media. Hasen and Abdulhadi [16] discussed the
MHD effect on peristaltic transport for rabinowitsch fluid through a porous medium in cilia channel.

In view of the above studies, a mathematical model is considered to analyze the peristaltic
transport of power-law fluid in an elastic tapered tube with variable cross-sections induced by dilating
peristaltic wave. The exact expressions for axial velocity, radial velocity, stream function, pressure
gradient, local shear stress and volume of flow rate are obtained. The effects of all pertinent
parameters on flow are explained through graphs.

2. Mathematical Formulation

Consider an axisymmetric peristaltic flow of an incompressible power-law fluid through a cylinder,
with variable cross sections, of an elastic tapered tube of length L and radius H(z). The tube walls are
subjected to infinite sinusoidal wave with dilating amplitude movement and constant speed c, as
shown in Figure-1.

In a cylindrical coordinate system (R, ¢, Z), where Z — axis lies along the center line of the tube
and R is the radius of the tube, at axial station Z, the instantaneous radius of the tube is given by [12]

ﬁ=fﬂZﬂE)=a+Ef—6J@mﬂ%(Z—CD, . (D
where H,Z ,k ,t,a,b,® and A, respectively, denote radial displacement of the wall from the center
line, axial coordinate, dilation parameter, time parameter, radius of the tube at the inlet (in the absence
of elasticity ), slope of the tube wall (non-uniform parameter), amplitude of the wave, and the
wavelength . Because of the axisymmetric condition, the angle ¢ in the cylindrical coordinate is
eliminated.
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Figure-1 Geometry of the problem

3. The Basic and Constitutive Equations
The basic governing equations of non-Newtonian power-law fluid flow are given by: [17]
the equation of mass conservation

v.V=0, . (2)
and the equations of momentum conservation (Navier-Stokes equations)
av —
d

in which V is the velocity, p is the density, p is the material time derivative and & is the Cauchy stress
tensor.

~ Leﬂ? = (U,V,W) be the velocity components in the fixed frame cylindrical coordinate system
(R, @, Z). According to the assumption of the problem, the velocity components can be written as

V= (URR,Z,5),0,W(R,Z,D)) . (4
The power-law fluid model of Ostwald-De Waele is chosen and the constitutive equations can be
expressed as: [11,17]

o=-Pl+1, .. (5)
T =-m({y)" 1S, ..(6)
S=2D, (7

where T is the extra stress tensor, I is the identity tensor, P is the pressure, S is the rate of
deformation (the rate of strain), m is the consistency parameter (the consistency index of non-
Newtonian viscosity), D = {% [L+LT]:L = gradV} is the symmetric part of the velocity gradient
(first Rivin-Ericksen tensor), and y is defined as:
1 1

V:(%ZiZjSijSij)z = (%Fsij)zr - (8)
where Is,; is the second invariant of strain-rate tensor §l-j (i,j=1,2,3 ), where the numbers 1,2 and 3 are
the coordinates R, ¢ and Z, respectively.

Now, from equations (2) and (3) the continuity and Navier-Stokes equations in the fixed frame are
given by
The continuity

19(RO) |, W _
R oR +-7=0. .. (9)
The R component of Navier-Stokes equations

U, GO0, 20) = _0F _[Lo(RTy) | 0Ts Ty
p(af+_Uaﬁ+Waz)‘ R [R ok T oz R]' - (10)
The Z component of Navier-Stokes equations
o GO W _ 0P [10@T) | 0Ts
p(aE+U6R+W62)_ 0z [R oR +az‘]' - (A1)

The corresponding boundary conditions are
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P=0, U=0 atR=0
W=0 atR=H . . (12)
From equation (7), the rate of strain tensor S |n the fixed frame has the following components [18]
U
511:2ﬁ 522—2—1533—2 '
- - au | oW = - — -
513 = 531 = %4‘ ﬁ B SlZ = 521 = 523 = 532 = 0. (13)

The flow is unsteady in the laboratory frame (fixed frame) and it becomes steady in the wave frame
(move frame). The transformation between stationary coordinates (R, Z) and move coordinates (7, 2)

is given by
z=7Z—ct, T=R , w(,2)=W(R,Z,t) —c
u(r,z) =U(R,Z,t), p(F,2)=P(R,Z1), .. (14)

where & and w are the radial and axial velocity components in the moving coordinates.
We introduce the dimensionless quantities that are used to find out the non-dimensional analysis as

_ _ _ acu _ _ 1 _ "ma
z=Az,r=ar,u=T w= ,t=Et»P=WP,
pa™ a _ _ 5 _c
Re = m ¢ agp , 6—1 H =aH ,q = ma“cF :VZEYI
_k _ a _ "m L c"m .
k= Z ,b = /1b Tij:_a Tij fOTl¢] Tij:_lan_l‘[ij fOTl=],

Sij = ESU- fori#j, §;= Sl] fori=j ,=ca*y, ..(15)
where § is the wave number and Re is the Reynolds number (Re « 1). p, F, tj;, Sj; and  are the
pressure, the flux, the extra stress tensor, the rate of deformation, and the stream function in non-

dimensional form, respectively.
Equations (1) and (9)-(13) in the move frame of non-dimensional form are given by:

r=H(z,k) =1+ bz — ¢pe*?cos?nz, ..(16)
10(ru) N ((’)W) _ 0 17
r or 0z) 7’ - (17)

Re 83 (ua—u+( + 1)2—2) =
—2_[52 2000y 5200 g2l ..(18)

ar r r

ow ow
ReS(ua—r+ (w+ 1)6—2) =

_0p _[10(rT13) | 20733

0z [r or +4 0z ] ! (19)

ow

a—r—O , u=20 atr—O}, . (20)
w=-1 at r=H

ou u ow
511=26—r ,522:2; ) 533:26_2 ) (21)
ou , 0 —= = —= = -
S13 = 831 = 526—1;4'6—‘:, S12 = S21= S23= 53, =0
By applying low Reynolds number and long wavelength approximation (i.e. neglecting wave
number), an assumption which is based on the fact that the radius of the tube is small compared to the
wavelength of the peristaltic wave, then equations (17)-(19) reduces to

10(0rw)

24 (2) =0, . (22)
opP
—=0, ..(23)
ar

dp _ _la(rle)

- ..(24)
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The local shear stress can be calculated from equation (6) as follows:
The dimensionless of equation (6), in view of equation (21), is given by

T13 =
—()n1 (g2 L v
(8255 +25), ..(25)

Sincef = %Zl Z] §L]§l] then

andif i=j theny = \/%62 2i2%jSiSij - - (27)

As mentioned in the previous § — 0 that implies y = 0 at i = j, otherwise substituting equation
(21) into equations (26), in view of § > 0 ,to get y = Z—‘: and the shear rate has been assumed to be
negative throughout the moving frame, thus: [3]

r=—% --(28)
Now, by substituting equation (28) into equation (25), keeping in mind that § — 0, we have
9 n
T13 = (_ a_‘:/) . e (29)
From equations (24) and (29), we get
o(r(-2 "
o _ _ EM ..(30)

0z r or '
4. Solution of the Problem

Rearrange and integrate equation (30) with respect to r, in view of equation (23), and apply the first
and third boundary conditions of equation (20), then the axial velocity, in view of equation (16), gives
1

1 op\n [ 1 1

w= —#<— (’)_Z)n (rﬁ“ - (1+bz- ¢ekzcosznz)”+1>
2n (E + 1)

-1. ...(3D)

Introducing the axial velocity given in equation (31) into continuity equation (22) and solving it

together with the second boundary condition of equation (20) and then dividing the result by 7,
introduces the radial velocity as

1
_ 1 1/ ap\n lo?p Kz 2 e+l
u—lﬂ—lz(—a) ﬁ(1+bz—¢e cos TL'Z)n r—
2ntt (41)
1 1/ opynlozp 1 1 ap\n
1 1f op\n "0°p 42 1 ([ OP\n,
2% (%_'_1)(%_‘_3) n( 62) 922 | 2%+1 ( az)
1
(1 + bz — pe*?cos?nz)" (b — pke**cos?nz + npe*?sin2nz) r . ..(32)

The relationship between the stream function and the velocity components is

_ 1o __lop
w=o—" U= oo ..(33)

By using the conditions (¥ = 0 at r = 0) and from equations (31) and (33), the stream function is
defined as

1 1
Y= _;)(_ al)"( ! r%+3 —(1+bz- (;l)ekzcoszrcz)?r1 r2—2> - ..(34)

2 (%+1 0z %? 2
The volume flux g through any cross-section is given by
_ H__
qg=2m fo wr dr,
and the non-dimensional volume flux F is given by
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F=2["wradr. .. (35)
Applying equation (31) into equation (35), gives
1 1
F=—4 (— a_p)n (1+bz— d)ekzcosznz)#?) —(1+bz- ¢ekzcosznz)2. ..(36)
2n (3+3) 0z

Solving equation (36) for Z—Z , yields the pressure gradient as

ap 2 (1+3)n (F+(1+bz—¢ekzcosz7tz)2)n
> = = 3n+1 - (37)
0z (1+bz—¢pe*Zcos?nz)
5. Result and Discussion
This section deals with the computational results of the peristaltic transport of non-Newtonian
power-law fluid in an elastic tapered tube with variable cross sections induced by dilating peristaltic
wave. The effect of various parameters that appear in the problem, such as power-law index n, slope

of the tube wall (non-uniform parameter) b, dilation parameter k and amplitude ratio ¢, on the axial
velocity w, radial velocity u, pressure gradient Z—P volume flux F , local shear stress 7,3, and trapping

—
of the flow, are discussed graphically. MATHEMATICA software is used to plot all figures.
5.1 Axial Velocity w

The variation of axial velocity along the radial direction at z = 0.1 for different values of
n, k,¢ and b are analyzed in Figures-2 — 6, respectively. Note that the axial velocity exhibits an
oscillating behavior with the increase of n, k and ¢, as shown in Figures-2 — 4. It is observed that an
increase in n, k and ¢ leads to an increase in the axial velocity at the center of the tube along with a
decrease near the boundary. Also, as shown in Figure-5, the non-uniform parameter b exerts the
greatest impact on the axial velocity. It is found that, at the center of the tube, the axial velocity
decreased with increasing b while it is increasing at the boundary. The axial velocity increased with
increasing F, as explained in Figure-6.

— n=08

‘o

[ ]
T

0.0 02 04 06 08 00 01 02 03 04 05 06

Figure 2- Effect of n dn the axial velocity w Figure 3- Effect of k on the axial velocity w
at at

k=01 b=0.05¢=02 F=2 z= n=11 b=0.05¢=02 F=2, z=
0.1 n1
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E, R 0 :—. L L 1 17
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

T T
Figure 4- Effect of ¢ on the axial velocity w at Figure 5- Effect of b on the axial velocity
n=11 b=005 k=02, F=2,z=0.1 watn=11, k=01, ¢ =02, F =2,
z=10.1

iy

Figure 6- Effect of F on the axial velocity w at
n=11 b=0.05 k=01, ¢ =02, z=
0.1

5.2 Radial Velocity u

Figures 7 —10 present the behavior of various parameters involved in the radial velocity u along the
radial direction. Figure -7 shows the effect of power law index n on radial velocity. It is clear that the
radial velocity reduces with an increase in n. Figure -8 elucidates the effect of ¢ on the radial velocity.
It is noted that an increase in ¢ causes the greatest decreases in the radial velocity. The increase in
amplitude ratio ¢ means a powerful peristaltic movement effect, which causes faster movement in the
radial direction for the radial velocity. The impact of the non-uniform parameter b on radial velocity is
shown in Figure -9. It is observed that radial velocity increases with increasing b. An opposite trend
is observed in the case of k, as shown in Figure -10.
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0.03f
= 0.02f =
0.01
00 02 04 06 08 1.0 0.0 0.2 04 0.6 0.8 1.0
T T
Figure 7- Effect of n on the radial velocity Figure 8- Effect of ¢ on the radial velocity u
uath=0.05 k=01, ¢ =02, p=1, atn=1.1, b=0.05, k=01, p=1, z=
7 = 7 2
0.04f
0.03}
= 0.02 -
0.01f
0.00f
0.0 0.2 0.4 0.6 0.8 1.0
T T
Figure 9- Effect of b on the radial velocity Figure 10- Effect of k on the radial
uatn=11, k=01, ¢ =02, p=1, velocityu atn = 1.1, b =0.05, ¢ =
z=2 02, p=12z=2

5.3 Volume of Flow Rate (Flux) F

In this subsection, the variation of flux F for different values of parameters, such as power-law
index n, non-uniform parameter b, dilation parameter k, and amplitude ratio ¢, are discussed. Figures
11 — 15 show that the flux along non-uniform tube radius for different values of pertinent parameters
are sinusoidal in nature. Figure -11 illustrates the effect of power-law index n on the flux. It is noticed
that the flux in an elastic tube increases with the increase in n. This result is in conformity with the
result in Sadeghi and Jalali Talab [7]. The influence of non-uniform parameter b on flux variation is
explained in Figure -12. It is found that the flow rate decreases with the increase in b. The opposite
behavior is observed in the case of dilation parameter k, as shown in Figure -13. The effect of
amplitude ratio ¢ on flux variation is described in Figure -14. It is clear that the flow rate enhances for
increasing values of ¢, due to an increase in maximum displacement of the fluid particles. Hence, the
increases in fluid velocity yields an enhanced flow rate. This result is in agreement with the result
obtained by Selvi et al. [9]. Figure -15 shows that the flux increases with the increase in the pressure
gradient.
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Figure 11- Effect of n on the volume flow
rateF at b=10.05 k=01, ¢ =
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Figure 13- Effect of k on the volume flow rate F
atn=1.1, h=0.05 ¢ =02, p=2

1.0 L5
z

Figure 12- Effect of b on the volume flow
rateFatn=11, k=01, ¢ =02, p=
2

0 0.3

—_— =1
— $=015

0.0 03

Figure 14- Effect of ¢ on the volume flow
rate Fat n=1.1, b =0.05, k =

01. n=2

Figure 15- Effect of p on the volume flow rate F
at n=11, b =005 k=01, ¢ =0.2

5.4 Pressure Gradient %
dp

The influence of physical parameters on pressure gradient 3, is represented in Figures 16 — 20. As

a result of peristaltic property of the tube wall, it may expand or contract. Due to this property of the
tube wall, there exist changes in the shape of cross-section of the tube. It can be noticed that, in the
wider part of the tube z € [0,0.2] and [0.8,1], the pressure is relatively small, that is, the flow is easily
passing throughout the tube. On the other hand, in a narrow part of the tube z € [0.2,0.8], a much
higher pressure is required to maintain the same flux to pass it, especially at approximately z =
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0.5.The impact of fluid behavior index n on pressure gradient is illustrated in Figure -16 and it is clear
that the pressure gradient is reduced with increasing n. The effect of the non-uniform parameter b on
Z—Z is shown in Figure -17. It is observed that ‘;—’Z’ increase with the increase in b. Figure -18 displays the

impact of the dilation parameter k on pressure gradient, where it is noted that the pressure gradient
decreases with the increase of k. Figures -19 and 20 show that pressure gradient is inversely
proportional to the increase of the amplitude of the wave ¢ and rate of flux .

B R VR TR TR T 00 02 04 05 08 10
z z
Figure 16- Effect of n on the pressure gradient Z_Z Figure 17- Effect of b on the pressure
at b=0.05 k=01 ¢=02 F=2 gradientZ—’Z’at n=11 k=01, ¢ =
02, F=2

Ap

0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0

z Z
Figure 18- Effect of k on the pressure Figure 19- Effect of ¢ on the pressure
gradient 22 at n = 1.1, b = 0.05, ¢ = 0.2, gradient 22 at n = 1.1, b = 0.05, k = 0.1,
F=2 F=2

Figure 20- Effect of F on the pressure gradient Z—Z
atn=11, b=0.05 k=01, ¢ =0.2
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5.5 Shear Stress 713
The behavior of shear stress 7,5 at the wall of the tube (i.e. at r = H ) for the variation of different

parameters is illustrated in Figures 21 — 25. It can be observed from Figures 21 — 24 that the shear
stress increases with the increase of n, k, ¢, and F. Figure -25 shows that the shear stress decreases

with the increase of the non-uniform parameter b.

F'gL;:e;l_' Eg?t IS f_n g q the s_hegr;tress Figure 22- Effect of k on the shear stress 7,3
;13_2 =005 k=01, ¢=02 atn=11 b=005 ¢=02 F=2

00 02 04 08 08 10 00 02 04 0.6 0.8 1.0
z Z

Figure 23- Effect of ¢» on the shear stress Figure 24- Effect of F on the shear stress

T;3at n=1.1, b =0.05 k=0.1, T;zat n=1.1, b =0.05 k=0.1,

F=2 ¢ =02

T13

Zz

Figure 25- Effect of b on the shear stress 7,3
atn=11 k=01 ¢=02 F=2
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5.6 Trapping Phenomenon

The formation of an internally circulation bolus of fluid by the closed streamlines is known as
trapping. Trapping is an interesting phenomenon of peristalsis mechanism in the wave frame which is
pushed ahead with the peristaltic wave. The influences of different parameters on the size of trapped
bolus are shown in Figures 26 - 30. It is noted from Figure -26 that the size of the trapped bolus
increases as the power-law index n increases. This result is in agreement with the result obtained by
Selvi et al. [9]. The impact of the non-uniform parameter b is explained in Figure -27. It is observed
that the trapped bolus increases with increasing b. It is clear from Figure -28 that the bolus size is
reduced with increasing values of dilation parameter k. The bolus size enhances with increasing
values of amplitude ratio ¢, as illustrated in Figure -29. This result is in agreement with the result
obtained by Selvi et al. [9] and Selvi and Srinivas [11]. Figure -30 displays the effect of increasing
flux on streamlines. It is noted that the number and size of the trapped bolus increases.

0.0 05 0 s 22 23 30 ”C.O 05 0 15 22 23 kK]

z: (e} z. (b:

Figure 26- Effect of (a)n = 1.1, (b) n = 1.15, (¢)n = 1.250n
the stream line at b = 0.05, k =0.1, ¢ =0.2, F=0.2

. w f,.,' ' ‘%,.-,.*

09 05 12 15 20 z5 32 it ah 10 14 in 250 an o ah 1 14 20 25 a0

7 (A 1) Z (&}

Figure 27- Effect of (a) b = 0.03, (b) b = 0.05, (c)b = 0.06 on the stream line at n =
11, k=01, ¢ =02, F=0.2

45k . H -
a0 [E 12 15 e 25 <] no 0ne e 15 20 25 34 aa I 1 i 20 ?h 30

LG Sl
= ¢ bl z k)

Figure 28- Effect of (a) k = 0.1, (b) k = 0.15, (c) k = 0.19 on the stream line at n = 1.1,
h = 0.05. fé»O=4 0.2. F=0.2
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a3 o 05E 22 L o araiPl — 3 05
0 05 0 9

20 25 30 00 05 10 15 20 25 30 00 ©5 10 35 20 25 ac
7 (h

Figure 29- Effect of (a) ¢ = 0.15, (b) ¢ = 0.18, (c) ¢ = 0.2 on the stream fine at n =
1.1, b =0.05, k=0.1, F = 0.2

Figure 30- Effect of (a) F = 0.1, (b) F = 0.15, (c¢) F = 0.2 on the stream line at n =
1.1, b=10.05 k=01, ¢ =0.2

6. Conclusions

The present study deals with the peristaltic transport of power-law fluid in an elastic tapered tube of
variable cross sections induced by dilating peristaltic wave . The biological systems deal with elastic
boundaries, so that the non-Newtonian fluid flow through elastic walls gives some influential
applications such as the swallowing of food through the esophagus. The presented investigation can be
applicable for the patients suffering from sliding hiatus hernia, which happens when the esophagus is
divided into two parts. First we consider that the esophagus gets diverged near the distal end, while the
second consideration is that, at the distal end, some part of the esophagus gets diverged and then
converged. The exact solutions of the problem are obtained under the assumptions of low Reynolds
number and long wavelength . The influence of various parameters in the problem is explained
graphically. From the above results, we concluded that the increase in n, k and ¢ leads to an increase
in the axial velocity at the center of the tube, which is decreased near the boundary. Whereas the
opposite behavior is noted for b which is increased with increasing F in all cross sections of the tube.
Also, we concluded that the radial velocity distribution is parabolic in nature and it is reduced with
increasing n, k, ¢ and F, it is increased with increasing b, and it is very sensitive to the variation of ¢.
The volume flow rate is sinusoidal in nature and it is an increasing function with the increase of
n, k, ¢ and F, whereas it is a decreasing function with the increase of b. It is noted that the pressure

gradient decreases with the increase of n, k, ¢ and Z_Z' while it increases with the increase of b. An

opposite behavior for shear strain is noticed compared to pressure gradient. The size of the trapping
bolus increases with increasing n, b, ¢ and F, whereas it decreases as k increases.
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