Das and Tripathy

Iraqi Journal of Science, 2021, Vol. 62, No. 12, pp: 4830-4838 DOI: 10.24996/ijs.2021.62.12.21

ISSN: 0067-2904

Neutrosophic Simply *b*-Open Set in Neutrosophic Topological Spaces

Suman Das*, Binod Chandra Tripathy

Department Of Mathematics, Tripura University, Agartala, 799022, Tripura, India

Received: 16/7/2020

Accepted: 28/2/2021

Abstract

In this paper, we procure the notions of neutrosophic simply *b*-open set, neutrosophic simply *b*-open cover, and neutrosophic simply *b*-compactness via neutrosophic topological spaces. Then, we establish some remarks, propositions, and theorems on neutrosophic simply

b-compactness. Further, we furnish some counter examples where the result fails.

Keywords: Neutrosophic simply *b*-open, Neutrosophic simply *b*-closed, Neutrosophic *b*-compact, Neutrosophic simply *b*-compact. 2010 AMS Classification No: 03E72; 54A05; 54A40; 54J05

1. Introduction

Smarandache [1] introduced the concept of the neutrosophic set as a generalization of intuitionistic fuzzy set. From then, it became very useful in the areas of decision making, artificial intelligence, etc. In the year 2020, Das et al. [2] established a multi-criteria group decision making model using a single-valued neutrosophic set. The notion of neutrosophic topological space was presented by Salama and Alblowi [3] in the year 2012. Salama and Alblowi [4] also studied the generalized neutropsophic set and generalized neutrosophic topological spaces. Thereafter, Arokiarani et al. [5] defined the neutrosophic semi-open functions and established some relations between them. Rao and Srinivasa [6] presented the neutrosophic pre-open sets and pre-closed sets in neutrosophic topological spaces. Iswaraya and Bageerathi [7] grounded the notion of the neutrosophic semi-closed sets and neutrosophic semi-open sets. The idea of generalized neutrosophic closed sets in neutrosophic topological spaces was studied by Dhavaseelan and Jafari [8]. Dhavaseelan et al. [9] established the neutrosophic α ^m-continuity in neutrosophic topological spaces. Later on, Imran *et al.* [10] presented the neutrosophic semi- α -open sets in neutrosophic topological space. Imran *et al.* [11] also defined the notion of neutrosophic generalized alpha generalized continuity via neutrosophic topological spaces. Pushpalatha and Nandhini [12] grounded the concept of neutrosophic generalized closed sets in neutrosophic topological spaces. Later on, Ebenanjar et al. [13] introduced the neutrosophic b-open sets in neutrosophic topological spaces. In the year 2020, Page and Imran [14] established the neutrosophic generalized homeomorphism via neutrosophic topological spaces. The idea of neutrosophic generalized b-closed sets in neutrosophic topological spaces was established by Maheswari et al. [15]. Maheswari and Chandrasekar [16] also introduced the neutrosophic gb-closed sets and neutrosophic gbcontinuity in neutrosophic topological spaces. Thereafter, Bageerathi and Puvaneswari [17] defined the neutrosophic feebly connectedness and compactness of neutrosophic topological spaces. In the year 2020, Das and Pramanik [18] introduced the generalized neutrosophic bopen sets in neutrosophic topological spaces. Das and Pramanik [19] also grounded the notion

^{*}Email: sumandas18842@gmail.com

of neutrosophic Φ -open sets and neutrosophic Φ -continuous functions. Noori and Yousif [20] presented the soft simply compact space in soft topological spaces. The concept of neutrosophic soft structures was established by Arif *et al.* [21]. Later on, Das and Pramanik [22] introduced the notion of neutrosophic simply soft open set and neutrosophic simply soft compactness in neutrosophic soft topological spaces. Recently, the notion of pairwise neutrosophic-*b*-open set in neutrosophic bitopological spaces was presented by Das and Tripathy [23].

The main aim of this article is to procure the concepts of neutrosophic simply *b*-open set,

neutrosophic simply *b*-open cover, and neutrosophic simply *b*-compactness via neutrosophic topological spaces. We establish some remarks, propositions, and theorems on neutrosophic topological spaces. Further, we furnish some illustrative examples.

2. Preliminaries

Definition 2.1: [1]. A neutrosophic set (NS) *J* over a non-empty fixed set *W* is defined by: $J=\{(r, T_J(r), I_J(r), F_J(r)): r \in W \text{ and } T_J(r), I_J(r), F_J(r) \in]^0, 1^+[\}, \text{ where } T_J(r), I_J(r), F_J(r) \text{ denote,}$ respectively, the degree of truth-membership, indeterminacy-membership, and falsemembership of each $r \in W$. There is no restriction on the sum of $T_J(r), I_J(r), F_J(r)$. So $^-0 \leq T_J(r)+I_J(r)+F_J(r) \leq 3^+$, for each $r \in W$.

Definition 2.2: [3]. A collection τ of neutrosophic spaces (NSs) over an universal set *W* is called a neutrosophic topology (NT) on *W* if the following axioms hold:

(*i*) 0_N , $1_N \in \tau$;

 $(ii) J_1, J_2 \in \tau \Longrightarrow J_1 \cap J_2 \in \tau;$

(*iii*) $\cup J_i \in \tau$, for every $\{J_i : i \in \Delta\} \subseteq \tau$.

The pair (W,τ) is called a neutrosophic topological space (NTS). Each element of τ is called a neutrosophic open set (NOS) in (W,τ) . The complement of a NOS is called a neutrosophic closed set (NCS) in (W,τ) .

Remark 2.3: [3]. The collection of all NOSs and NCSs in a NTS (W,τ) may be denoted by NOS(W) and NCS(W), respectively.

Definition 2.4: [3]. Assume that (W,τ) is a NTS and *J* is a NS over *W*. Then, the neutrosophic interior (N_{int}) and neutrosophic closure (N_{cl}) of *J* are defined by

 $N_{int}(J) = \bigcup \{Q : Q \text{ is a NOS in } W \text{ and } Q \subseteq J\}$

and $N_{cl}(J) = \bigcap \{R : R \text{ is a NCS in } W \text{ and } J \subseteq R \}.$

Definition 2.5: [5]. Let (W,τ) be a NTS and *J* be a NS over *W*. Then, *J* is called a neutrosophic α -open (N α -O) set if and only if $J \subseteq N_{int}(N_{cl}(N_{int}(J)))$.

Definition 2.6: [7]. Let (W,τ) be a NTS and J be a NS over W. Then, J is called a neutrosophic semi-open (NSO) set if and only if $J \subseteq N_{cl}(N_{int}(J))$.

Definition 2.7: [5]. Let (W,τ) be a NTS and J be a NS over W. Then, J is called a neutrosophic pre-open (NPO) set if and only if $J \subseteq N_{int}(N_{cl}(J))$.

Definition 2.8: [19]. Let (W,τ) be a NTS and J be a NS over W. Then, J is called a neutrosophic *b*-open (N-*b*O) set if and only if $J \subseteq N_{int}(N_{cl}(J)) \cup N_{cl}(N_{int}(J))$.

Remark 2.9: The collection of all neutrosophic α -open, neutrosophic semi-open, neutrosophic pre-open, neutrosophic *b*-open, and neutrosophic *b*-closed sets in a neutrosophic topological space (W,τ) may be denoted by N α -O(W), NSO(W), NPO(W), N-bO(W), and N-bC(W), respectively. Clearly, NOS(W) \subseteq N-bO(W) and NCS(W) \subseteq N-bC(W).

Definition 2.10: [13]. Let *J* be a NS over *W* and (W,τ) be a NTS. Then, the neutrosophic *b*-interior (N_{bint}) and neutrosophic *b*-closure (N_{bcl}) of *J* are defined by

(*i*) $N_{bint}(J) = \bigcup \{Q : Q \text{ is a N-}bO \text{ set in } W \text{ and } Q \subseteq J\};$

(*ii*) $N_{bcl}(J) = \bigcap \{ R : R \text{ is a N-}bC \text{ set in } W \text{ and } J \subseteq R \}.$

Definition 2.11: [5]. Let ξ be a function from a NTS (W, τ_1) to another NTS (M, τ_2) . Then, ξ is called as

(*i*) neutrosophic open function if $\xi(K)$ is a NOS in *M*, whenever *K* is a NOS in *W*;

(*ii*) neutrosophic α -open function if $\xi(K)$ is a N α -O set in *M*, whenever *K* is a NOS in *W*;

(*iii*) neutrosophic pre-open function if $\xi(K)$ is a NPO set in M, whenever K is a NOS in W;

(*iv*) neutrosophic semi-open function if $\xi(K)$ is a NSO set in *M*, whenever *K* is a NOS in *W*;

(v) neutrosophic b-open function if $\xi(K)$ is a N-bO set in M, whenever K is a NOS in W;

(*vi*) neutrosophic continuous function if $\xi^{-1}(K)$ is a NOS in *W*, whenever *K* is a NOS in *M*;

(*vii*) neutrosophic *b*-continuous function if $\xi^{-1}(K)$ is a N-bO set in *W*, whenever *K* is a NOS in *M*.

3. Main Results

Definition 3.1: A family $\{Z_{\alpha}: \alpha \in \Delta\}$, where Δ is an index set and Z_{α} is a N-bO set in (W,τ) , for each $\alpha \in \Delta$, is said to be a neutrosophic *b*-open cover of a neutrosophic set *Z* if $Z \subseteq \bigcup \{Z_{\alpha}: \alpha \in \Delta\}$.

Definition 3.2: A NTS (W,τ) is said to be a neutrosophic *b*-compact space if each neutrosophic *b*-open cover of *W* has a finite sub-cover.

Definition 3.3: A neutrosophic subset *B* of a NTS (W,τ) is said to be a neutrosophic *b*-compact relative to *W* if every neutrosophic *b*-open cover of *B* has a finite sub-cover.

Proposition 3.4: Every neutrosophic *b*-compact space is a neutrosophic compact space.

Proof: Let (W,τ) be a neutrosophic *b*-compact space. Therefore, every neutrosophic *b*-open cover of (W,τ) has a finite sub-cover. Suppose that (W,τ) may not be a neutrosophic compact space. Then, there exists a neutrosophic open cover $\mathcal{H}(say)$ of W, which has no finite sub-cover. Since every neutrosophic open set is a neutrosophic *b*-open set, so we have a neutrosophic *b*-open cover \mathcal{H} of W, which has no finite sub-cover. This contradicts our assumption that (W,τ) is a neutrosophic *b*-compact space. Hence, (W,τ) is a neutrosophic compact space.

Definition 3.5: A neutrosophic set Z over a non-empty fixed set W is called a neutrosophic simply *b*-open (N^s-*b*O) set iff it is a neutrosophic *b*-open set and $N_{int}N_{cl}(Z) \subseteq N_{cl}N_{int}(Z)$.

The complement of a N^s-bO set is called a neutrosophic simply b-closed (N^s-bC) set. The family of all N^s-bO and N^s-bC sets may be denoted as N^s-bO(W) and N^s-bC(W), respectively.

Theorem 3.6: In a NTS (W, τ), every NOS is a N^s-bO set.

Proof: Let *J* be a NOS in a NTS (*W*, τ). Therefore, $N_{int}(J)=J$. Since every NOS is a N-*b*O set, so *J* is a N-*b*O set in (*W*, τ). It is known that $J \subseteq N_{cl}(J)$. This implies that $J \subseteq N_{cl}N_{int}(J)$.

Now, $J \subseteq N_{cl}N_{int}(J)$

 $\Rightarrow N_{cl}(J) \subseteq N_{cl}N_{cl}N_{int}(J)$

= $N_{cl}N_{int}(J)$ [since $N_{cl}N_{int}(J)$ is a NCS in (W,τ)]

(1)

(2)

Further, we have $N_{int}N_{cl}(J) \subseteq N_{cl}(J)$

From (1) and (2), we get $N_{int}N_{cl}(J) \subseteq N_{cl}N_{int}(J)$.

Hence, *J* is a N-*b*O set in (W,τ) and $N_{int}N_{cl}(J) \subseteq N_{cl}N_{int}(J)$. Therefore, *J* is a N^s-*b*O set in (W,τ) . **Remark 3.7:** The converse of the above theorem may not be true in general, which follows from the following example.

Example 3.8: Let us consider a NT $\tau = \{0_N, 1_N, \{(x, 0.2, 0.4, 0.6), (y, 0.3, 0.5, 0.7)\}, \{(x, 0.4, 0.2, 0.4), (y, 0.5, 0.3, 0.5)\}, \{(x, 0.6, 0, 0.2), (y, 0.7, 0.1, 0.3)\}\}$ on a non-empty set $W = \{x, y\}$. Let $B = \{(x, 0.2, 0.3, 0.5), (y, 0.5, 0.4, 0.6)\}$ be a NS over *W*. Clearly, *B* is a N-bO set in (W,τ) and $N_{int}N_{cl}(B) \subseteq N_{cl}N_{int}(B)$. Hence, *B* is a N^s-bO set in (W,τ) . But it is not a NOS in (W,τ) . **Proposition 3.9:** In a NTS (W,τ) , every NSO set is a N^s-bO set. **Proof:** Assume that Q is a neutrosophic semi-open set in a NTS (W,τ) . Therefore, $Q \subseteq N_{cl}N_{int}(Q)$. Since every NSO set is a N-bO set, so Q is a N-bO set in (W,τ) .

Now,
$$Q \subseteq N_{cl}N_{int}(Q)$$

 $\Rightarrow N_{cl}(Q) \subseteq N_{cl}N_{int}(Q)$ $= N_{cl}N_{int}(Q) \qquad [Since N_{cl}N_{int}(Q) is a NCS in (W,\tau)]$ $\Rightarrow N_{cl}(Q) \subseteq N_{cl}N_{int}(Q) \qquad (3)$ We have $N_{int}N_{cl}(Q) \subseteq N_{cl}(Q)$ (4)

From (3) and (4), we have $N_{int}N_{cl}(Q) \subseteq N_{cl}N_{int}(Q)$. Therefore, Q is a N-bO set in (W,τ) and $N_{int}N_{cl}(Q) \subseteq N_{cl}N_{int}(Q)$. Hence, Q is a N^s-bO set.

Remark 3.10: The converse of the above proposition may not be true in general. This follows from the following example.

Example 3.11: Let us consider a NT $\tau = \{0_N, 1_N, \{(d_1, 0.3, 0.7, 0.5), (d_2, 0.2, 0.6, 0.4)\}, \{(d_1, 0.5, 0.5, 0.3), (d_2, 0.4, 0.4, 0.2)\}, \{(d_1, 0.7, 0.3, 0.1), (d_2, 0.6, 0.2, 0)\}\}$ on $W = \{d_1, d_2\}$. Let $Q = \{(d_1, 0.5, 0.6, 0.4), (d_2, 0.2, 0.5, 0.3)\}$ be a NS over W. It is clear that Q is a N-bO set in (W,τ) and $N_{int}N_{cl}(Q) \subseteq N_{cl}N_{int}(Q)$. Therefore, Q is a N^s-bO set in (W,τ) . But $Q \not\subseteq N_{cl}N_{int}(Q)$. Hence, Q is not a NSO set in (W,τ) .

We formulate the following result in view of Definition 3.4.

Lemma 3.12: Let (W,τ) be a NTS. Then, every N^s-*b*O set is a N-*b*O set.

Remark 3.13: The converse of Lemma 3.12. may not be true in general. This follows from the following example.

Example 3.14: Let us consider a NT $\tau = \{0_N, 1_N, \{(x, 0.2, 0.4, 0.6), (y, 0.3, 0.5, 0.7)\}, \{(x, 0.4, 0.2, 0.4), (y, 0.5, 0.3, 0.5)\}, \{(x, 0.6, 0, 0.2), (y, 0.7, 0.1, 0.3)\}\}$ on $W = \{x, y\}$. Let $A = \{(x, 0.3, 0.5, 0.7), (y, 0.2, 0.4, 0.6)\}$ be a NS over W. It is clear that $N_{cl}N_{int}(A)=0_N$ and $N_{int}N_{cl}(A)=1_N$. Therefore, $N_{int}N_{cl}(A) \cup N_{cl}N_{int}(A)=1_N$. This implies, $A \subseteq N_{int}N_{cl}(A) \cup N_{cl}N_{int}(A)$ i.e., A is a N-bO set. But $N_{int}N_{cl}(A) \nsubseteq N_{cl}N_{int}(A)$. Hence, A is not a N^s-bO set in (W, τ) .

Proposition 3.15: If *A* is both neutrosophic pre-open set and neutrosophic simply *b*-open set in a NTS (W,τ) , then it is a neutrosophic semi-open set in (W,τ) .

Proof: Assume that Q_1 is both neutrosophic pre-open set and neutrosophic simply *b*-open set in a NTS (W,τ) . Since Q_1 is neutrosophic pre-open set, so $Q_1 \subseteq N_{int}N_{cl}(Q_1)$. Again, since Q_1 is neutrosophic simply *b*-open set, so Q_1 is a neutrosophic *b*-open set and $N_{int}N_{cl}(Q_1) \subseteq N_{cl}N_{int}(Q_1)$. This implies that $Q_1 \subseteq N_{cl}N_{int}(Q_1)$. Therefore, Q_1 is a neutrosophic semi-open set.

By figure 1, we connect all the relations among NOS, NSO, N-bO, and N^S-bO sets.

Figure 1- Relations among NOS, NSO, N-bO and N^S-bO sets

Remark 3.16: If $Z_1, Z_2 \in N^s$ -bO(W), then $Z_1 \cap Z_2$ may not belong to N^s -bO(W).

Proof: Assume that Z_1 , Z_2 are two N^s-bO sets in a NTS (W,τ) . Therefore, Z_1 and Z_2 are N-bO sets in (W,τ) and $N_{int}N_{cl}(Z_1) \subseteq N_{cl}N_{int}(Z_1)$, $N_{int}N_{cl}(Z_2) \subseteq N_{cl}N_{int}(Z_2)$. It is known that, the intersection of two N-bO sets may not be a N-bO set in (W,τ) . This implies that $Z_1 \cap Z_2$ may not be a N-bO set in (W,τ) . Therefore, $Z_1 \cap Z_2$ is not a N^s-bO set in (W,τ) .

Definition 3.17: A function $\xi:(W,\tau_1) \rightarrow (M,\tau_2)$ is called a neutrosophic simply *b*-continuous function if for each neutrosophic open set *Z* in *M*, $\xi^{-1}(Z)$ is a N^s-*b*O set in *W*.

Definition 3.18: A function $\xi:(W,\tau_1) \rightarrow (M,\tau_2)$ is said to be a neutrosophic simply *b*-open function if $\xi(K)$ is a N^s-*b*O set in *M*, whenever *K* is a NOS in *W*.

Definition 3.19: A family $\{Z_{\alpha}: \alpha \in \Delta \text{ and } Z_{\alpha} \text{ is a } N^{s}-bO \text{ set in } (W,\tau)\}$, where Δ is an index set, is called a neutrosophic *b*-open cover of a neutrosophic set *Z* if $Z \subseteq \bigcup_{\alpha \in \Delta} Z_{\alpha}$.

Definition 3.20: A NTS (W,τ) is called a neutrosophic simply *b*-compact space if each neutrosophic simply *b*-open cover of *W* has a finite sub-cover.

Definition 3.21: A neutrosophic subset K of (W,τ) is said to be a neutrosophic simply *b*-compact set relative to W if every neutrosophic simply *b*-open cover of K has a finite subcover.

Theorem 3.22: Every neutrosophic simply *b*-closed subset of a neutrosophic simply *b*-compact space (W,τ) is neutrosophic simply *b*-compact relative to *W*.

Proof: Let (W,τ) be a neutrosophic simply *b*-compact space and *K* be a neutrosophic simply *b*-closed set in (W,τ) . Therefore, K^c is a neutrosophic simply *b*-open set in (W,τ) . Let $U=\{U_i: i \in \Delta$ and $U_i \in \mathbb{N}^s$ -*b*O(*W*) be a simply *b*-open cover of *K*. Then, $\mathcal{H}=\{K^c\}\cup U$ is a neutrosophic simply *b*-open cover of *X*. Since *X* is a neutrosophic simply *b*-compact space, so it has a finite sub-cover say $\{H_1, H_2, H_3, \ldots, H_n, K^c\}$. This implies that $\{H_1, H_2, H_3, \ldots, H_n\}$ is a finite neutrosophic simply *b*-open cover of *K*. Hence, *K* is a neutrosophic simply *b*-compact set relative to *W*.

Theorem 3.23:

(*i*) Every neutrosophic *b*-compact space is a neutrosophic simply *b*-compact space.

(*ii*) Every neutrosophic simply *b*-compact space is a neutrosophic compact space. **Proof:**

(*i*) Let (W,τ) be a neutrosophic *b*-compact space. Suppose that (W,τ) is not a neutrosophic simply *b*-compact space. Then, there exists a neutrosophic simply *b*-open cover $\mathcal{H}(say)$ of *W*, which has no finite sub-cover. Since every neutrosophic simply *b*-open set is a neutrosophic *b*-open set, so we have a neutrosophic *b*-open cover \mathcal{H} of *W*, which has no finite sub-cover. This contradicts our assumption. Hence, (W,τ) is a neutrosophic simply *b*-compact space.

(*ii*) Let (W,τ) be a neutrosophic simply *b*-compact space. Suppose that (W,τ) is not a neutrosophic compact space. Then, there exists a neutrosophic open cover $\Re(say)$ of *W*, which has no finite sub-cover. Since every neutrosophic open set is a neutrosophic simply *b*-open set, so we have a neutrosophic simply *b*-open cover \Re of *W*, which has no finite sub-cover. This contradicts our assumption. Hence, (W,τ) is a neutrosophic compact space.

By figure 2, we connect all the relations among the neutrosophic *b*-compact space, neutrosophic simply *b*-compact space, and neutrosophic compact space.

Figure2-Relations among neutrosophic compact space, neutrosophic *b*-compact space and neutrosophic simply *b*-compact space.

Theorem 3.24:

(*i*) If $\xi:(W,\tau_1) \rightarrow (M,\tau_2)$ is a neutrosophic *b*-open function and (M,τ_2) is a neutrosophic *b*-compact space, then (W,τ_1) is also a neutrosophic compact space.

(*ii*) If $\xi:(W,\tau_1) \rightarrow (M,\tau_2)$ is a neutrosophic simply *b*-open function and (M,τ_2) is a neutrosophic simply *b*-compact space, then (W,τ_1) is also a neutrosophic *b*-compact space.

Proof:

(*i*) Let $\xi:(W,\tau_1) \rightarrow (M,\tau_2)$ be a neutrosophic *b*-open function and (M,τ_2) be a neutrosophic *b*-compact space. Let $\mathcal{H} = \{H_i: i \in \Delta \text{ and } H_i \in \mathbb{N}\text{-}bO(W)\}$ be a neutrosophic open cover of *W*. Therefore, $\xi(\mathcal{H}) = \{\xi(H_i): i \in \Delta \text{ and } \xi(H_i) \in \mathbb{N}\text{-}bO(M)\}$ is a neutrosophic *b*-open cover of *M*.

Since (M,τ_2) is a neutrosophic *b*-compact space, so there exists a finite sub-cover say $\{\xi(H_1), \xi(H_2), \ldots, \xi(H_n)\}$ such that $M \subseteq \bigcup \{\xi(H_i): i=1, 2, \ldots, n\}$. This implies that $\{H_1, H_2, \ldots, H_n\}$ is a finite sub-cover for *W*. Hence, (W,τ_1) is a neutrosophic compact space.

(*ii*) Let $\xi:(W,\tau_1) \rightarrow (M,\tau_2)$ be a neutrosophic simply *b*-open function and (M,τ_2) is a neutrosophic simply *b*-compact space. Let $\mathcal{H} = \{K_i: i \in \Delta \text{ and } K_i \in \mathbb{N}\text{-}bO(W)\}$ be a neutrosophic *b*-open cover of *W*. Therefore, $\xi(\mathcal{H}) = \{\xi(K_i): i \in \Delta \text{ and } \xi(K_i) \in \mathbb{N}\text{-}bO(M)\}$ is a neutrosophic simply *b*-open cover of *M*. Since (M,τ_2) is a neutrosophic simply *b*-compact space, so there exists a finite sub-cover say $\{\xi(K_1), \xi(K_2), \dots, \xi(K_n)\}$ such that $M \subseteq \bigcup \{\xi(K_i): i=1, 2, \dots, n\}$. Therefore, $\{K_1, K_2, \dots, K_n\}$ is a finite sub-cover for *W*. Hence, (W,τ_1) is a neutrosophic *b*-compact space.

Theorem 3.25:

(*i*) If $\xi:(W,\tau_1) \rightarrow (M,\tau_2)$ is a neutrosophic *b*-continuous function, then for each neutrosophic *b*-compact set *Q* relative to *W*, $\xi(Q)$ is a neutrosophic simply *b*-compact set in *M*.

(*ii*) If ξ : $(W,\tau_1) \rightarrow (M,\tau_2)$ is a neutrosophic *b*-continuous function, then for each neutrosophic *b*-compact set *Z* relative to *W*, $\xi(Z)$ is a neutrosophic compact set in *M*.

Proof:

(*i*) Assume that $\xi:(W,\tau_1) \rightarrow (M,\tau_2)$ be a neutrosophic *b*-continuous function and *Q* be a neutrosophic *b*-compact set relative to *W*. Let $\mathcal{H} = \{H_i: i \in \Delta \text{ and } H_i \in \mathbb{N}^s \text{-}bO(M)\}$ be a neutrosophic simply *b*-open cover of $\xi(Q)$. Since every $\mathbb{N}^s \text{-}bO$ set is a N-*b*O set, so $\mathcal{H} = \{H_i: i \in \Delta \text{ and } H_i \in \mathbb{N}^{-b}O(M)\}$ is a neutrosophic *b*-open cover of $\xi(Q)$. By hypothesis, $\xi^{-1}(\mathcal{H}) = \{\xi^{-1}(H_i): i \in \Delta \text{ and } \xi^{-1}(H_i) \in \mathbb{N}^{-b}O(M)\}$ is a neutrosophic *b*-open cover of $\xi^{-1}(\xi(Q)) = Q$. Since *Q* is a neutrosophic *b*-compact set relative to *W*, so there exists a finite sub-cover of *Q*, say $\{H_i, H_2, H_3, \dots, H_n\}$, such that $Q \subseteq \bigcup_i \{H_i: i=1, 2, \dots, n\}$.

Now
$$Q \subseteq \bigcup_i \{H_i: i=1,2,\ldots,n\}$$

 $\Longrightarrow \xi(Q) \subseteq \bigcup_i \{\xi(H_i): i=1,2,\ldots,n\}$

Therefore there exists a finite sub-cover $\{\xi(H_1), \xi(H_2), \xi(H_3), \dots, \xi(H_n)\}$ of $\xi(Q)$ such that $\xi(Q) \subseteq \bigcup_i \{\xi(H_i): i=1,2,\dots,n\}$. Hence, $\xi(Q)$ is a neutrosophic simply *b*-compact set relative to *M*.

(*ii*) Assume that $\xi:(W,\tau_1) \rightarrow (M,\tau_2)$ is a neutrosophic *b*-continuous function and *Z* is a neutrosophic *b*-compact set relative to *W*. Let $\mathcal{H} = \{H_i: i \in \Delta \text{ and } H_i \in \mathbb{N}\text{-}bO(M)\}$ be a neutrosophic open cover of $\xi(Z)$. By hypothesis, $\xi^{-1}(\mathcal{H}) = \{\xi^{-1}(H_i): i \in \Delta \text{ and } \xi^{-1}(H_i) \in \mathbb{N}\text{-}bO(M)\}$ is a neutrosophic *b*-open cover of $\xi^{-1}(\xi(Z)) = Z$. Since *Z* is a neutrosophic *b*-compact set relative to *W*, so there exists a finite sub-cover of *Z* say $\{H_1, H_2, H_3, \dots, H_n\}$ such that $Z \subseteq \bigcup_i \{H_i: i=1, 2, \dots, n\}$.

Now, $Z \subseteq \bigcup_i \{H_i: i=1, 2, ..., n\}$

 $\Longrightarrow \xi(Z) \subseteq \bigcup_i \{\xi(H_i): i=1,2,\ldots,n\}$

Therefore, there exists a finite sub-cover { $\xi(H_1), \xi(H_2), \xi(H_3), \dots, \xi(H_n)$ } of $\xi(Z)$ such that $\xi(Z) \subseteq \bigcup_i \{\xi(H_i): i=1,2,\dots,n\}$. Hence, $\xi(Z)$ is a neutrosophic compact set relative to *M*.

Theorem 3.26: Every neutrosophic continuous function from a NTS (W,τ_1) to a NTS (M,τ_2) is a neutrosophic simply *b*-continuous function.

Proof: Let $\xi:(W,\tau_1) \rightarrow (M,\tau_2)$ be a neutrosophic continuous function. Let Q be any arbitrary NOS in (M,τ_2) . By hypothesis, $\xi^{-1}(Q)$ is a NOS in (W,τ_1) . Since every NOS is a N^s-bO set, so $\xi^{-1}(Q)$ is a N^s-bO set in (W,τ_2) . Therefore, $\xi^{-1}(Q)$ is a N^s-bO set in (W,τ_2) , whenever Q is a NOS in (M,τ_2) . Hence, $\xi:(W,\tau_1) \rightarrow (M,\tau_2)$ is a neutrosophic simply *b*-continuous function.

Theorem 3.27: Every neutrosophic simply *b*-continuous function from a NTS (W, τ_1) to a NTS (M, τ_2) is a neutrosophic *b*-continuous function.

Proof: Let $\xi:(W,\tau_1) \to (M,\tau_2)$ be a neutrosophic simply *b*-continuous function. Let *Q* be any arbitrary NOS in (M,τ_2) . By hypothesis, $\xi^{-1}(Q)$ is a N^s-*b*O set in (W,τ_1) . Since every N^s-*b*O set

is a N-bO set, so $\xi^{-1}(Q)$ is a N-bO set in (W,τ_2) . Therefore, $\xi^{-1}(Q)$ is a N-bO set in (W,τ_2) , whenever Q is a NOS in (M,τ_2) . Hence, $\xi:(W,\tau_1) \rightarrow (M,\tau_2)$ is a neutrosophic *b*-continuous function.

Theorem 3.28: If $\xi:(W,\tau_1) \rightarrow (M,\tau_2)$ is a neutrosophic simply *b*-continuous mapping and $\gamma:(M,\tau_2) \rightarrow (L,\tau_3)$ is a neutrosophic continuous mapping, then the composition mapping $\gamma \circ \xi: (W,\tau_1) \rightarrow (L,\tau_3)$ is a neutrosophic simply *b*-continuous mapping.

Proof: Let Q be a neutrosophic open set in (L,τ_3) . Since $\gamma:(M,\tau_2) \rightarrow (L,\tau_3)$ is a neutrosophic continuous mapping, so $\gamma^{-1}(Q)$ is a neutrosophic open set in (M,τ_2) . Again, since $\xi:(W,\tau_1) \rightarrow (M,\tau_2)$ is a neutrosophic simply *b*-continuous mapping, so $\xi^{-1}(\gamma^{-1}(Q)) = (\gamma \circ \xi)^{-1}(Q)$ is a neutrosophic simply *b*-open set in (W,τ_1) . Hence, $(\gamma \circ \xi)^{-1}(Q)$ is a neutrosophic simply *b*-open set in (W,τ_1) , whenever Q is a neutrosophic open set in (L,τ_3) . Therefore, $\gamma \circ \xi: (W,\tau_1) \rightarrow (L,\tau_3)$ is a neutrosophic simply *b*-continuous mapping.

4. Conclusions

In this paper, we present the concepts of neutrosophic *b*-open cover, neutrosophic *b*-compactness, neutrosophic simply *b*-open cover, and neutrosophic simply *b*-compactness in neutrosophic topological spaces. By defining the neutrosophic *b*-open cover, neutrosophic *b*-compactness, neutrosophic simply *b*-open cover, and neutrosophic simply *b*-compactness, we prove some remarks and theorems on neutrosophic *b*-compactness and neutrosophic simply *b*-compactness and neutrosophic simply *b*-compactness and neutrosophic simply *b*-compactness.

It is hoped that the notion of neutrosophic simply *b*-compactness in neutrosophic topological spaces can be applied in neutrosophic bi-topological spaces and by researcher working in other areas of research.

Funding

The work of the first author is financially supported by the University Grants Commission Fellowship F.No. 16-6(DEC.2018)/2019(NET/CSIR).

Conflict of interest

Authors declare that they have no conflict of interest.

References

- [1] F. Smarandache, "A unifying field in logics, neutrosophy: neutrosophic probability, set and logic," *Rehoboth: American Research Press.*
- [2] S. Das, R. Das and B. C. Tripathy, "Multi-criteria group decision making model using single-valued neutrosophic set," *LogForum*, vol. 16, no. 3, pp. 421-429, 2020.
- [3] A. A. Salama and S. A. Alblowi, "Neutrosophic set and neutrosophic topological space," *ISOR Journal of Mathematics*, vol. 3, no. 4, pp. 31-35, 2012.
- [4] A. A. Salama and S. A. Alblowi, "Generalized neutrosophic set and generalized neutrosophic topological space," *Computer Science and Engineering*, vol. 2, no. 7, pp. 129-132, 2012.
- [5] I. Arokiarani, R. Dhavaseelan, S. Jafari and M. Parimala, "On some new notations and functions in neutrosophic topological spaces," *Neutrosophic Sets and Systems*, vol. 16, pp. 16-19, 2017.
- [6] V. V. Rao and R. Srinivasa, "Neutrosophic pre-open sets and pre-closed sets in neutrosophic topology," *International Journal of Chem Tech Research*, vol. 10, no. 10, pp. 449-458.
- [7] P. Iswarya and K. Bageerathi, "On neutrosophic semi-open sets in neutrosophic topological spaces," *International Journal of Mathematical Trends and Technology*, vol. 37, no. 3, pp. 214-223, 2016.
- [8] R. Dhavaseelan and S. Jafari, "Generalized neutrosophic closed sets," *New trends in neutrosophic theory and applications*, vol-2, pp. 261-273, 2018.
- [9] R. Dhavaseelan, R. Narmada Devi, S. Jafari and Q. H. Imran, "Neutrosophic α[^]m-continuity," *Neutrosophic Sets and Systems*, vol. 27, pp. 171-179, 2019.

- [10] Q. H. Imran, F. Smarandache, R. K. Al-Hamido and R. Dhavaseelan, "On neutrosophic semi-αopen sets," *Neutrosophic Sets and Systems*, vol. 18, pp. 37-42, 2017.
- [11] Q. H. Imran, R. Dhavaseelan, A. H. M. Al-Obaidi and M. H. Page, "On neutrosophic generalized alpha generalized continuity," *Neutrosophic Sets and Systems*, vol. 35, pp. 511-521, 2020.
- [12] A. Pushpalatha and T. Nandhini, "Generalized closed sets via neutrosophic topological spaces," *Malaya Journal of Matematik*, vol. 7, no. 1, pp. 50-54, 2019.
- [13] E. Ebenanjar, J. Immaculate and C. B. Wilfred, "On neutrosophic *b*-open sets in neutrosophic topological space," *Journal of Physics Conference Series*, vol. 1139, no. 1, pp. 012062, 2018.
- [14] M. H. Page and Q. H. Imran, "Neutrosophic generalized homeomorphism," *Neutrosophic Sets* and Systems, vol. 35, pp. 340-346, 2020.
- [15] C. Maheswari, M. Sathyabama and S. Chandrasekar, "Neutrosophic generalized b-closed sets in neutrosophic topological spaces," *Journal of Physics Conference Series*, vol. 1139, no. 1, pp. 012065.
- [16] C. Maheswari and S. Chandrasekar, "Neutrosophic gb-closed Sets and Neutrosophic gb-Continuity," *Neutrosophic Sets and Systems*, vol. 29, pp. 89-100, 2019.
- [17] K. Bageerathi and P. Jeya Puvaneswari, "Neutrosophic feebly connectedness and compactness," *IOSR Journal of Polymer and Textile Engineering*, vol. 6, no. 3, pp. 07-13, 2019.
- [18] S. Das and S. Pramanik, "Generalized neutrosophic *b*-open sets in neutrosophic topological space," *Neutrosophic Sets and Systems*, vol. 35, pp. 522-530, 2020.
- [19] S. Das and S. Pramanik, "Neutrosophic Φ-open sets and neutrosophic Φ-continuous functions," *Neutrosophic Sets and Systems*, vol. 38, pp. 355-367, 2020.
- [20] S. Noori and Y. Y. Yousif, "Soft Simply Compact Space," *Iraqi Journal of Science*, Special Issue, pp. 108-113, 2020.
- [21] M. Arif, W. Ullah, S. Broumi, M. I. Khan, H. Qureshi, M. I. Abbas, H. Kalsoom and F. Nadeem, "Neutrosophic Soft Structures," *Neutrosophic Sets and Systems*, vol. 33, pp. 23-58, 2020.
- [22] S. Das and S. Pramanik, "Neutrosophic simply soft open set in neutrosophic soft topological space," *Neutrosophic Sets and Systems*, vol. 38, pp. 235-243, 2020.
- [23] S. Das and B. C. Tripathy, "Pairwise neutrosophic-b-open set in neutrosophic bitopological spaces," *Neutrosophic Sets and Systems*, vol. 38, pp. 135-144, 2020.