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Abstract 
     In the current paper, we study the structure of Jordan ideals of a 3-prime near-

ring which satisfies some algebraic identities involving left generalized derivations 

and right centralizers. The limitations imposed in the hypothesis were justified by 

examples. 
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المتضمنة مثاليات جوردان والمذتقات  3-وليةل ات المقتربة الحلقا على الدالية بعض المتداويات
اليداريةالمعممة   

 
 2فرحان انعام,2*عبد الكريم بوعة  ,1 النكادي عادل

مختبر علهم السهشدس, كلية متعددة التخررات, جامعة سيدي محمد بن عبد الله  , فاس , السغرب1  
قدم الاشراف الاختراص, تربية القادسية, القادسية, العراق. 2  

 

 الخلاصة
والتي تدتهفي بعض  -3مثاليات جهردان في الحلقات السقتربة الاولية بشيةندرس الحالي  السقال في      

الذروط التي وضعت في  .الستداويات الجبرية الستزسشة اشتقاقات معسسة يدارية و متسركزات يسيشية
  الفرضيات تم تبريرها من خلال الامثلة.

 

1. Introduction  

    A right near-ring (resp. left near-ring) is a nonempty set N equipped with two binary operations + 

and such that (i) (N, +) is a group (not necessarily abelian), (ii) (N,  ) is a semi group, (iii) For all x, y, 

z ϵ N, we have (x + y)  z = x z + y z (resp. z  (x + y) = z x + z y). We will denote the product of any 

two elements x and y in N ,i.e.; x y by xy. A right near-ring (resp. left near-ring) is called zero 

symmetric right near-ring (resp. zero symmetric left near-ring ) if x0 = 0 (resp. 0x = 0), for all x  N. 

Recall that in a right near ring ( resp. left near-ring ), 0x = 0 (resp. x0 = 0 ) for all x  N. The symbol 

Z(N) will denote the multiplicative centre of N and usually N will be 3-prime, that is, for x, y   N, 

xNy ={0} implies x = 0 or y = 0. Any pair of elements x, y   N, [x, y] = xy - yx and x  y = xy + yx 

stands for Lie product and Jordan product, respectively. Recall that N is called 2-torsion free if 2x = 0 

implies x = 0 for all x   N. For terminologies concerning near-ring theory and its applications, we 

refer to Pilz [1]. An additive mapping d : N   N is a derivation if d(xy) = xd(y) + d(x)y for all x, y   

N, or equivalently as noted earlier [2], d(xy) = d(x)y + xd(y) for all x, y   N. Let d be a derivation of 
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N, an additive mapping F : N → N is said to be a left generalized derivation associated with d if F(xy) 

= d(x)y + xF(y) for all x, y   N. In case where d = 0, F will be called right centralizer ( i.e., an additive 

mapping F : N → N satisfying F(xy) = xF(y) for all x, y   N). 

   The commutative property of 3-prime near-rings with some suitable constraints on derivations and 

generalized derivations was established by various authors (see [2-5] and [7-11] ). Some comparable 

results on appropriate subsets of near-rings were also obtained. Boua, et al. (2014) [3] initiated the 

study of the concept of Jordan ideals on near-rings; ‘An additive subgroup J of N is said to be Jordan 

left (resp. right) ideal of N if n   j   J (resp. j   n   J)  for all j   J, n   N, and J is said to be a Jordan 

ideal of N if n   j   J and j   n   J for all j   J , n   N’. The authors proved very interesting results, 

that is, if Jordan ideal satisfies suitable conditions, then the near-ring must be a commutative ring. 

Afterwards, studies continued in this field [4-8]. Boua et al. studied commutativity of 3-prime near-

rings admitting suitably constrained additive mappings, as derivations, generalized derivations and left 

multipliers, satisfying certain differential identities on Jordan ideals of 3-prime near-rings. It is natural 

to continue this line of investigation for comparable results for 3-prime near-rings having other 

additive mappings with Jordan ideals. In the present paper, we shall attempt to generalize the known 

result and study the commutativity of Jordan ideal in 3-prime near-rings satisfying certain functional 

identities involving left generalized derivations and right centralizers.  

2. Some preliminaries 

     To facilitate our discussion, we begin with the following known results which will be used 

extensively to prove our main results. We indicate that we used Lemmas in the context of right near-

rings which remain true in left near-rings. 

Lemma 2.1 Let N be a 3-prime near-ring and J is a nonzero Jordan ideal of N 

(i) [3, Lemma3] If J   Z(N), then N is a commutative ring 

(ii) [ 10, Lemma 1.2 (iii) ]  If z   Z(N) \{0} and x is an element of N such that xz   Z(N) or 

 zx  Z(N), then x   Z(N).  

Lemma 2.2 [ 5, Lemma 2.2 ] Let N be a 3-prime near-ring. If N admits a nonzero Jordan ideal J, then 

j
2
 ≠ 0 for all j   J/{0}.  

Lemma 2.3 [ 4, Corollary 3 ] Let N be a 2-torsion free 3-prime near-ring and J be a nonzero Jordan 

ideal of N. If N admits a derivation d such that d(J) = {0}, then d = 0 or the element of J commute 

under the multiplication of N. 

Lemma 2.4 [ 11 , Lemma 5 ] Let N be a near-ring. If N admits a left generalized derivation F 

associated with a derivation d, then 

         (d(x)y + xF(y)) z = d(x)yz + xF(y)z for all x,  y, z   N.  

3. Some polynomial identities in left near-rings 
      The present section is motivated by two previous works [8, Theorem 3.3, and 9, Theorem 2]. Our 

aim in the current paper is to extend these results of Jordan ideals on 3-prime near-rings admitting a 

nonzero left generalized derivation. 

Theorem 3.1 Let N be a 2-torsion free 3-prime near-ring, J be a nonzero Jordan ideal of N, and F be a 

left generalized derivation associated with a derivation d . If F(J
2
) ={ 0}, then d = 0 or the element of J 

commute under the multiplication of N. 

Proof :      By our hypothesis, we have  

                                                    F(ij) = 0  for all   i, j  J.                                                                    (3.1) 

By replacing i by 2i
2 
in (3.1), we get F(2i

2
j) = 0 for all i, j  J. Therefore F(i(i + i)j) = 0 for all i, j  J. 

By using the definition of F and our hypothesis, we can easily arrive at d(i)(i + i)j = 0 for all i, j   J, 

that is d(i)(2i)j = 0 for all i, j   J. By replacing j by j n in the last equation and using it, we obtain, 

d(i)(2i)Nj = {0} for all i, j   J. Since J ≠ {0}, then by 3-primeness of N and 2-torsion freeness of N, we 

get 

                                                   d(i)i = 0  for all  i   J.                                                                       (3.2) 

Since j(j   n)i = (j   jn)i, then by using our hypothesis we obtain F(j(j   n)i) = 0 for all i, j  J, n  N. An 

application of the definition of  F together with (3.1) in the last equation gives d(j)(j   n)i = 0 for all i, 

j  J, n  N. From (3.2), we get d(j)Nji = {0} for all i, j  J. Since N is 3-prime, we arrive at d(j) = 0 or ji 

= 0 for all  i, j   J. If there exists an element j0   J, such that j0i = 0 for all i   J, and by putting i n for i, 

thereby obtaining j0Ni = {0} for all i   J. Since N is 3-prime and J≠ {0}, we get j0= 0, which forces 

that d(J ) = {0}. Then d = 0 or the element of J commute under the multiplication of N by Lemma 2.3. 
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Corollary 3.1 [7,Theorem 3.3] Let N be a 2-torsion free 3-prime near-ring and J is a nonzero Jordan 

right ideal of N. If  N admits a nonzero derivation d such that d(J
2
) ={ 0}, then J is commutative. 

Theorem 3.2 Let N be a 2-torsion free 3-prime near-ring and J be a nonzero Jordan ideal of N. If N 

admits a left generalized derivation F associated with a derivation d such that F(nj) = F(n)F(j) for all 

j  J, n  N, then d = 0 or the element of J commute under the multiplication of N. 

Proof :    Assume that  

                                                F(nj) = F(n)F(j)   for all  j  J, n  N.                                                     (3.3) 

By replacing n by jn in (3.3) and using the definition of F with Lemma 2.4, we get d(j)nj + jF(nj) = 

d(j)nF(j) + jF(n)F(j) for all j   J, n  N. From (3.3) we can simplify the last expression as follows: 

d(j)nj = d(j)nF(j) for all j   J, n   N. Equivalently, d(j)N(j - F(j)) = {0} for all j   J. By 3-primeness of 

N we obtain 

                                                d(j) = 0  or  F(j) = j  for all  j   J, n   N.                                              (3.4) 

Suppose that there exists an element j0   J such that F(j0) = j0. We have F(j0j0) = d(j0)j0 + j0F(j0) = 

d(j0)j0 + j0
2
. On the other hand, F(j0j0) = F(j0)F(j0) = j0

2
,
 
and by comparing the two last expressions 

forces, we have  

                                                d(j0)j0 = 0.                                                                                              (3.5)  

By replacing n by j0 and j by (j0   n) in (3.3), we get F(j0(j0   n)) = F(j0)F(j0   n) for all n   N. We use 

the definition of F and the fact that F(j0) = j0 to get d(j0)( j0   n) + j0F(j0   n) = j0F(j0   n) for all n   N. 

Hence we conclude that d(j0)( j0   n) = 0 for all n   N. It is immediate from (3.5) that d(j0)N j0 = {0}. 

Since N 3-prime, we conclude that d(j0) = 0. In this case (3.4) yields d(J) = {0}, then d = 0 or the 

element of J commute under the multiplication of N by Lemma 2.3. 

Corollary 3.2 Let N be a 2-torsion free 3-prime near-ring and J a nonzero Jordan ideal of N. If N 

admits a nonzero derivation d such that d(nj) = d(n)d(j) for all j   J , n   N, then the element of J 

commutes under the multiplication of N.  

The following example proves that the ”3-primeness of N” in Theorem 3.1 and Theorem 3.2 cannot be 

omitted. 

Example 3.1 Let S be a 2-torsion left near ring which is not abelian. We define N, J, d, F by 

  {(
   
   
   

)            }     {(
   
   
   

)        } 

 F (
   
   
   

)  (
   
   
   

)  and  d = F. 

Then N is a left near-ring which is not 3-prime, J is a nonzero Jordan ideal of N, and F is a left 

generalized derivation  associated with the derivation d of N. We easily can see that  

(i) F(ij) = 0 for all i, j  J. 

(ii) F(nj) = F(n)F(j) for all j  J, n  N. 

But neither d = 0 nor J is commutative. 

Theorem 3.3 Let N be a 2-torsion free 3-prime near-ring and J be a nonzero Jordan ideal of N. If N 

admits a left generalized derivation F associated with a derivation d such that F(jn) = F(n)F(j) for all 

j  J, n  N, then (d(J))
2
 = {0}. 

Proof :   Assume that 

                                               F(jn) = F(n)F(j) for all j  J, n  N.                                                         (3.6) 

By replacing n by jn in (3.6) and using the definition of F with Lemma 2.4 , we get  

                                              d(j)jn + jF(jn) = d(j)nF(j) + jF(n)F(j) for all j   J , n   N. 

By using (3.6) the last equation gives 

                                               d(j)jn = d(j)nF(j) for all j   J, n   N. 

By putting tn instead of n, where t   N, we obtain d(j)N[F(j), n] = {0} for all j   J, n   N. By 3-

primeness of N we obtain 

                                              d(j) = 0 or F(j)   Z(N) for all j   J.                                                        (3.7) 

Suppose that there exists an element j0   J such that F(j0)   Z(N). By the assumption we get F(j0n) = 

F(n)F(j0) for all n   N. By replacing n by jn, where j   J, in the last equation, we get  

 F(j0jn)= F(jn)F(j0) 

            = F(n)F(j)F(j0) 

            = F(j0n) F(j) 
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            =  d(j0)nF(j) + j0F(n) F(j) 

            = d(j0)nF(j) + j0F(jn) for all j   J, n   N.                                                                                  (3.8) 

Also  

 F(j0jn)  =  d(j0)jn + j0F(jn) for all j   J, n   N.                                                                                    (3.9) 

By combining (3.8) and (3.9),  we obtain d(j0)nF(j) = d(j0)jn for all j   J, n   N. By putting tn, where t 

  N, instead of n in the last equation, we conclude that d(j0)N[F(j) , n] = {0} for all j   J, n   N and 3-

primeness of N, implies that d(j0) = 0 or F(J)   Z(N). Hence from (3.7) we conclude that  

                                                     d(J) = {0} or F(J)   Z(N)                                                              (3.10) 

Now,  if F(J)   Z(N), we get 

F(j(kn)) = F(kn)F(j) 

              = F(n)F(k)F(j) 

              = F(k) F(n) F(j) 

              =  F(k) F(jn)  

              = F(k)d(j)n + F(k)jF(n)  

              = d(j) F(k)n + jF(kn) for all j, k   J, n   N.                                                                          (3.11) 

Also  

F(j(kn)) = d(j)kn +  jF(kn) for all j,k   J, n   N.                                                                                (3.12) 

Combining (3.11) and (3.12) implies d(j)F(k)n = d(j)kn for all j, k   J, n   N. Replacing n by F(n) in 

the previous equation and using the hypothesis gives d(j)(F(kn)- kF(n)) = 0 for all j, k   J, n   N. It 

follows that d(j)(d(k)n - kF(n)- kF(n)) = 0 for all j, k   J, n   N, hence we get d(j)d(k)n  = 0 for all j, k 

  J, n   N, and 3- primeness of N, implies d(j)d(k)= 0 for all j, k   J. By returning to (3.10) we 

conclude that (d(J))
2
= {0}. 

Remark 1: We tried to use (or treat) (d(J))
2
 = {0} in Theorem 3.3 to determine the structure of J, but 

unfortunately, we cannot find the required formulation of our theorem. This naturally allows us to ask 

questions that will help the reader in the future to obtain better results. 

Open question 1: Let N be a 2-torsion free 3-prime near-ring and J be a nonzero Jordan right ideal of 

N. If N admits a nonzero derivation d such that (d (J))
 2
 = {0}, then J is commutative. 

Open question 2: Let N be a 2-torsion free 3-prime near-ring and J be a nonzero Jordan right ideal of 

N. If N admits a left generalized derivation F associated with a nonzero derivation d such that F (jn) = 

F (n) F (j) for all j  J, n  N, then J is commutative. 

4. Some results for Jordan right ideals involving right centralizers in a left near-ring 

     In this section, our objective is to establish similar preciously reported results [6, Theorems 3.1 and 

3.11] and explore the commutativity of a 3-prime near-ring N admitting a nonzero right centralizer T 

satisfying any one of the identities: (i) T(J )    Z(N), (ii) T(j   n)   Z(N), (iii) T([j, n])    Z(N). 

Theorem 4.1. Let N be a 2-torsion free 3-prime near-ring and J a nonzero Jordan right ideal of N. If N 

admits a nonzero right centralizer T, then the following assertions are equivalent: 

(i) T(J )   Z(N); 

(ii) T(j   n)   Z(N) for all j   J , n   N; 

(iii) T([j, n])   Z(N) for all j  J , n   N; 

(iv) N is a commutative ring. 

Proof. It is easy to see that (iv )   (i), (iv)   (ii) and (iv)   (iii). 

           (i)   (iv).  Assume that  

                                   T(j)   Z(N)  for all  j   J.                                                                                  (4.1) 

It follows that T(j(2j))   Z(N) for all j   J, which implies that jT(2j)   Z(N) for all j   J, so that (4.1) 

together with Lemma 2.1(ii)give either T(2j) = 0 or j   Z(N) for all j   J. By using the 2-torsion 

freeness of N, we get 

                                 T(j) = 0  or  j   Z(N)  for all  j   J.                                                                      (4.2) 

Suppose that there exists j0   J such that T(j0) = 0. By using our hypothesis, we have T(j0   n)   Z(N) 

for all n  N, which gives j0T(n)   Z(N) for all n   N. By putting j0n in place of n and using Lemma 

2.1(ii), we obtain j0T(n) = 0 or j0   Z(N) for all n   N. By substituting yt instead of n, where y, t     
we arrive at j0NT(t) = {0} or j0   Z(N) for all t   N. Since T ≠ 0, the last expression leads to j0   Z(N), 

and (4.2) can be reduced to J   Z(N), which forces that N is a commutative ring by Lemma 2.1(i). 

            (ii)   (iv). Assume that  

                                T(j   n)   Z(N)  for all   j   J, n   N.                                                                   (4.3)     
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By substituting jn instead of n, we arrive at T(j(j   n))   Z(N) for all j   J , n  N. Then jT(j   n)   Z(N) 

for all j   J , n   N. From (4.3) with Lemma 2.1(ii), we obtain  

                                             T(j   n) = 0  or  j   Z(N)  for all  j   J , n   N.                                        (4.4) 

Suppose that there exists j0   J such that  

                                              T(j0   n) = 0  for all  n   N.                                                                     (4.5) 

By substituting j0 instead of n in (4.5) and by 2-torsion free of N, we arrive at: 

                                                j0 T( j0) = 0                                                                                            (4.6) 

By substituting T(j0)n instead of n in (4.5) and using (4.6), we obtain T(j0)NT(j0) = {0}. Hence T(j0) = 

0 by 3-primeness of N. By returning to (4.5), we get j0T(n) = 0 for all n   N. By substituting nm 

instead of n, we get j0NT(m) = {0} for all m   N. Since N is 3-prime and T ≠ 0, we conclude that j0 = 

0. Therefore (4.4) can be reduced to  J    Z(N), which forces that N is a commutative ring by Lemma 

2.1(i). 

         (iii)   (iv).  Suppose that  

                               T([j, n])   Z(N)   for all   j   J , n   N. 

By substituting jn instead of n, we obtain jT([j, n])   Z(N). According to Lemma 2.1(ii), we conclude 

that T([j, n])= 0  or  j   Z(N) for all j   J , n   N, which means that 

                  T([j, n]) = 0  for all  j   J , n   N                                                                                        (4.7) 

By substituting [i, n] instead of n in (4.7), we can easily arrive at 

                 [i, n]T(j) = 0  for all  i, j   J , n   N                                                                                    (4.8) 

By taking j   m, where m   N, instead of j in (4.8), we obtain [i, n]T(jm) + [i, n]T(mj)  = 0 for all i, j   

J, n   N, and using (4.7) lastly gives 2[i, n]T(mj) = 0 for all i, j   J and n, m   N. The 2-torsion 

freeness of N implies that [i, n]mT(j)= 0 for all i, j   J , n, m   N. Equivalently, [i, n] N T(j) = {0} for 

all i, j   J, n   N and by 3-primeness of N, we get  

                               i  Z(N)  or  T(j) = 0  for all  i, j   J. 

If T(j) = 0 for all  j   J, then (4.7) produces jT(n) = 0 for all j   J, n   N. Putting mn, where m   N in 

place of n in the last result, implies that jNT(n) = {0}  for all j   J, n   N. By the 3-primeness of N, we 

get either J = 0 or T = 0, which contradicts our assumptions. 

Therefore we conclude that J   Z(N), which forces that N is a commutative ring by Lemma 2.1 (i). 

The following example proves that the 3-primeness hypothesis in Theorem 4.1 is not superfluous. 

Example 4.1: Let S be a 2-torsion free left near-ring. We define  N, J and T by : 

0
/ ,

0

x
N x y S

y

  
   

  
,

0 0
/

0
J k S

k

  
   

  
and 

0 0

0 0 0

x x
T

y

   
   

   
 

    It is easy to see that N is a 2-torsion free left  near-ring which is not 3-prime, J is a nonzero Jordan 

right  ideal of N, and T is a nonzero right centralizer such that: 

(i) T(J )   Z(N); 

(ii) T(j   n)   Z(N) for all j   J , n   N; 

(iii) T([j, n])   Z(N) for all j  J , n   N. 

    But N is not a commutative ring. 

5. Results in right near-ring involving right Jordan ideals and right centralizes 

Theorem 5.1. Let N be a 2-torsion free 3-prime near-ring and J be a nonzero Jordan right ideal of N. 

Then there is no nonzero right centralizer T satisfying T(i   j) = 0 for all i, j   J. 

Proof. Assume that               

                                                T(i   j) = 0  for all  i, j   J.                                         

For i = j , we have jT(j) = 0 for all j   J by 2-torsion freeness of N. By substituting i ni instead of j and 

using i   ni = (i   n)i in the last equation, we can easily arrive at (i   ni)iNT(i) = {0} for all i   J, n   N. 

By 3-primeness of N, we get 

                                (i   ni)i = 0  or  T(i) = 0  for all   i   J , n   N                                                      (5.1) 

Suppose that there exists an element i0   J\{0}, such that (         )     = 0. Then       
    -

    
  for all 

n   N. By substituting nm instead of n in last equation, we get 

                                                   
         

   

                                                             
               

  for all n, m   N. 

So we get             
  { } for all n   N. By the 3-primeness of N and Lemma 2.2, we obtain 

             for all n   N, which means that        Z(N). By returning to the hypothesis and 
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substituting     instead of i, we conclude that 2jT(     ) = 0 for all j   J. The 2-torsion freeness of N 

leads to               for all j   J. By replacing j   n instead of j in the last equation, we get  

             { } for all j   J. Since J ≠ { }, then 3-primeness of N implies that          = 0 and 

hence         = 0. Therefore, from (5.1) we obtain  

                                            T(j) = 0   for all   j   J                                                                               (5.2) 

By substituting j   n instead of j in (5.2) and using it, we get jT(n) = 0 for all j   J , n   N, and by 

putting nm instead of n, we obtain jNT(m) = {0} for all j   J , m   N. Since T ≠ 0, by 3-primeness of 

N, we conclude that J = { }; which is a contradiction.  

Theorem 5.2 Let N be a 2-torsion free 3-prime near-ring and J is a nonzero Jordan right ideal of N. If 

N admits a nonzero right centralizer T, then the following assertions are equivalent: 

(i)  T([j, n]) = 0 for all j   J, n   N; 

(ii)  N is a commutative ring. 

Proof. It is easy to see that (ii)   (i) 

                    (ii). Assume that T ([j, n]) = 0 for all j   J, n   N. Then 

                              T (jn) = T (NJ)   for all   j   J, n   N                                                                      (5.3) 

By substituting nm instead of n in (5.3) and using it, we get  jT(nm) = nT(mj) = nT(jm) for all j   J, n 

  N. 

It follows that 

                                jnT(m) = njT(m)   for all   j   J , n, m   N                                                           (5.4) 

By substituting mt instead of m in (5.4), we get [j, n]NT(t) = { } for all j   J,  n, t   N. Since T ≠ 0, the 

3-primeness of N implies that J  Z(N). Therefore N is a commutative ring by Lemma 2.1(i).  

 

The following example proves that the 3-primeness hypothesis in Theorem 5.2 is not superfluous. 

 

Example 5.1:    Let S be a 2-torsion free right near-ring. We define  N, J and T by 

0
/ ,

0

x
N x y S

y

  
   

  
, 

0
/

0 0

k
J k S

  
   

  
and 

0 0 0

0 0

x
T

y y

   
   

   
 

It is easy to see that N is a 2-torsion free right near-ring which is not 3-prime, J is a nonzero Jordan 

right ideal of N, and  T is a nonzero right centralizer such that T([j, n]) = 0 for all j   J, n   N. But N is 

not a commutative ring. 

Theorem 5.3 Let N be a 2-torsion free 3-prime near-ring and J be a nonzero Jordan right ideal of N. 

T1 and T2 are nonzero right centralizers of N. If T1(i)T2(j)   Z(N) for all i, j   J, such that T1(N)J ≠{0} 

and T2   T1 ≠ 0, then N is a commutative ring. 

Proof.   Suppose that 

                        T1(i)T2(j)   Z(N)   for all   i, j   J                                                                                 (5.5) 

By replacing i by i   ni, where n   N, in (5.5) and using the fact that i   ni = (i   n)i, we find that 

(i   n)T1(i)T2(j)   Z(N) for all i, j   J, n   N. By Lemma 2.1(ii), we obtain 

                        T1(i)T2(j) = 0  or  (i   n)   Z(N)  for all  i, j   J, n   N.                                               (5.6)                  

If there exists a nonzero element i0   J such that i0   n   Z(N) for all n   N, we substitute ni0 instead of 

n and use Lemma 2.1 (ii), we obtain  

                          i0   n = 0  or  i0   Z(N)  for all  n   N                                                                         (5.7) 

For n = i0, in (5.7) and using 2-torsion freeness of N, it can be reduced to   
  = 0 or  i0   Z(N)  for all  n 

  N. Since (i0   n)i0 = 0 for all  n   N, we obtain i0  i0 = {0}, which cannot hold because i0 ≠ 0. 

Therefore, i0   Z(N). Since i0   n   Z(N) for all n   N, we conclude that (2n)i0   Z(N) for all n   N. 

By Lemma 2.1(ii) we obtain 2n   Z(N) for all n   N, then 2n
2
   Z(N) for all n   N. Since 2n

2
 = (2n)n 

  Z(N), then Lemma 2.1(ii) and the 2-torsion freeness of N force that N   Z(N), which assures that N 

is a commutative ring by Lemma 2.1(i). 

Now, suppose that  

                                 T1(i)T2(j) = 0 for all i, j   J, n   N.                                                                      (5.8) 

By taking i n instead of i, where n    N, in (5.8) we get   T1(n)T2(j) = 0 for all i, j   J , n   N. By 

replacing n by mn in the last equation we arrive at iNT1(n)T2(j) = { }  for all i, j   J, n   N. Since J ≠ 0, 

then by the 3-primeness of N, we get  

                                 T1(n)T2(j) = 0 for all j   J , n   N.                                                                       (5.9)             
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By putting j   t, where t   N, instead of j , we find that T1(n)(jT2(t) + tT2(j)) = 0 for all j   J , n, t   N. 

By replacing t by tT1(m), where m   N, and using (5.9), we get T1(n)jtT2(T1(m)) = 0 for all i   J , m, t, 

n   N. That is, T1(n)jNT2(T1(m)) = {0} for all i   J , m,  n   N. By the 3-primeness of N, we conclude 

that either T1(N)J ={0} or T2   T1 = 0, which contradicts our hypothesis. 

The following example proves that the 3-primeness hypothesis in Theorem 5.3 is necessary. 

Example 5.2:    Let S be a 2-torsion free  right near-ring. We define  N, J , 
1T  and 

2T by: 

  {(
   
   
   

)            }          {(
   
   
   

)        } 

T1 (
   
   
   

)  (
   
   
   

), T2  (
   
   
   

)  (
   
   
   

). 

It is easy to see that N is a 2- torsion free right near-ring which is not 3-prime, J is a nonzero Jordan 

right ideal of N, and  T1 , T2  are nonzero right centralizers of  N. Moreover, T1(i)T2(j)   Z(N) for all i, 

j   J, T1(N)J ≠{0} and T2   T1 ≠ 0. However, N is not a commutative ring. 
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