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Abstract 

     This paper has the interest of finding the approximate solution (APPS) of a 

nonlinear variable coefficients hyperbolic boundary value problem (NOLVCHBVP).  

The given boundary value problem is written in its discrete weak form (WEFM) and 

proved  have a unique solution, which is obtained via the mixed Galerkin finite 

element with implicit method that reduces the problem to solve the Galerkin 

nonlinear algebraic system  (GNAS). In this part, the predictor and the corrector 

techniques (PT and CT, respectively) are proved at first convergence and then are 

used to transform  the obtained GNAS to a linear GLAS . Then the GLAS is solved 

using the Cholesky method (ChMe). The stability and the convergence of the 

method are studied. Some illustrative examples are used, where the results are given 

by figures that show the efficiency and accuracy for the method. 

 

Keywords:  nonlinear hyperbolic boundary value problem; Galekin finite element 

method;  implicit method; convergence; stability.  

 

الضطظية لحل مدالة القيم الحدودية الزائدية الغير خطية ذات الطعاملات الطتغيرة-طريقة كاليركن   
 

 جطيل أمير علي الههاسي * ، نهى فرحان مظصهر
ققدم الخياضيات ، كلية العلهم ، الجامعة السدتشرخية ، بغجاد ، العخا  

 

 الخلاصة
ستغيخة السعاملات ة القيم الحجودية الدائجية الغيخ خظية ذات الي  لسدألحل التقخيبالبإيجاد  ييتم ىحا البحث     

 حيث يتم، وحيجعلى حل  يستلكأنو  حيث تست كتابة مدالة القيم الحجودية بذكليا الزعيف ، وتم بخىانو
والتي  قسات بتحهيل طخيقة العشاصخ السحجودة السختلظة  مع الظخيقة الزسشية  مدج الحرهل عليو عبخ 

 تقشية التشبأمدالة ايجاد حل لشظام كاليخكن الجبخي  الغيخ خظي وعشج ىحا الجدء تم بخىان تقارب  السدالة الى
لغيخ خظي الى نظام كاليخكن الجبخي اكاليخكن الجبخي   والترحيح  اولا ومن ثم تم استخجاميا لتحهيل الشظام

لتقارب لحل ىحه السدالة .اعظيت الخظي والحي تم حلو باستخجام طخيقة جهلدكي . تست دراسة الاستقخاية وا
 .الكفاءة والجقة للظخيقة  حيث بيشت اعظيت على شكل رسهمات الشتائج بعض الامثلة التهضحية 

 

1.Introduction 

Hyperbolic partial differential equations arise in many physical problems, such as vibrating 

strings, and in many other fields such as fluid dynamics, optics, and others. In general, there 

are many researchers who are interested in the solution of boundary value problems, in 
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particular the solution of the  nonlinear hyperbolic boundary value problem (NLHBVP). In 

2015, Feller used the Lévy Laplacian  to solve a NOLVCHBVP [1]. In 2017, Mardani et al.  

used the Moving Least Squares method for the nonlinear hyperbolic telegraph equation with 

variable coefficients [2]. Ashyralyev and Agirseven, in 2018, solved a NOLHBVP with a time 

delay [3]. While in 2018, Ahmedatt et  a.l looked at some nonlinear hyperbolic ὴὼȟὸ-

Laplacian equations [4]. Adewole, in 2019, found the APPS of a linear hyperbolic (LHBVP) 

[5].  

       The finite element method has been studied by many researchers who are interested in 

this field to solve LHBVP. For example, in 2014, Quarteroni studied in his book the 

numerical solution for  LHBVP and some especial types NOLHBVP by using GFEME [6]. In 

2018, Wick studied in his book  the GFEME for solving LHBVP  and NOLHBVP  with 

constant coefficients [7].   

In this paper, we care about the study of the APPS of the NOLVCHBVP. The given boundary 

value problem is written in its WEFM, and then it is discretized using the mixed Galerkin 

finite element method (GFEME) for the space variable with the implicit method (IM) for the 

time variable (MGFEIM). It is proved that the discrete problem has a unique solution. The 

problem then reduces for solving the GNAS. In this point, the PT and CT are used to 

transform  the GNAS to a GLAS, which is solved by using the  ChMe. The stability and the 

convergence of the method are studied. A computer program is codding in Matlap to find the 

APPS for the problem. Some illustrative examples are given and the results are given by 

figures, which show the efficiency and accuracy for the considered method . 

2.Description of the NOLVCHBVP  

Let  ὼᴆ ὼȟὼ ᶰᴙȡπ ὼᴆ ρȟ with boundary  ȟ•  Ὅȟɫ  ὍȟὍ
πȟ4, π Ὕ Њ    then the NOLVCHBVP is given by: 

ύ  В ὥ ὼᴆȟὸ  ȟ  ᴍὼᴆȟὸ ύ Ὤὼᴆȟὸȟύ ,         ᶅὼᴆȟὸᶰ•                   (1)   

ύὼᴆȟπ  ύ ὼᴆȟ          ᶅὼᴆɴ                                                                                (2)   

ύ ὼᴆȟπ ύ ὼᴆȟ         ᶅὼᴆɴ                                                                                         (3) 

ύὼᴆȟὸ  π,  on  ɫ                                                                                                               (4)  

where  ύ ύὼᴆȟὸ  ɴὌ ȟ ,  ὥ ὼᴆ ȟὸȟᴍὼᴆȟὸ  ɴὒ   , with ὥ ὼᴆ ȟὸ are positive 

functions and  Ὤɴ  ὒ    is a given  function.  

Now, let ὠ = Ὄ ()={ –:–  ɴὌ (), – = 0 on  ∂}, ύ ὴ, then the WEFM of  (1- 4) is:  

ἂ ύ  ȟ–ἃ  ὥὸȟύȟ–  Ὤύȟ–,   ᶅ–ɴ  ὠ  are on  Ὅ,                                                     (5)  

ύπȟ–  ύȟ–  ᶅὼᴆɴ ȟύ ᶰ ὠ                                                              (6) 

ὴπȟ–  ύȟ–     ᶅὼᴆɴ ȟύ  ɴὒ •                                                       (7)  

 where ὥὸȟύȟ– В ὥ ὼᴆȟὸ  ȟ ᴍὼᴆȟὸ ύ – 

3. Assumptions  
 (i)  Let  κ1 and κ2  be two positive constants  such that the following are satisfied:  

    a)  ὥὸȟύȟ– ≤  κ1  ᷆ύ 1᷆  ᷆– 1᷆  ,  ᶅύȟ–  ɴὠ  

    b) ὥὸȟύȟύ  ≥  κ2  ᷆ύ ᷆
   ,    

 ᶅύ  ɴὠ                                                                                    
 

(ii) The function Ὤ is defined on  • × ᴙ , continuous with respect to ύ  which satisfies the 

following: 

    a)ȿὬὼᴆȟὸȟύȿ   ὼᴆȟὸ ȿύȿ where δ > 0, ύᶰ •  ÁÎÄ  ɴ ὒ   •Ȣ  
    b) ȿὬὼᴆȟὸȟύ Ὤὼᴆȟὸȟύ ȿ ὒȿύ ύȿ, where ὒ is a Lipchitz constant and ύȟύ ᶰ
 ᴙ. 

 

4. Discretization of The Continuity Equation (COE) 

By setting ύ ὴ in the WEFM of (5-7), then it  is discretized  by using the GFEME as 

follows: let the domain  • is divided  into sub regions   •   Ὅ , let    be a 
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triangulation of   ,  and let  Ὅ   be a subdivision of the interval ὍӶ into ὣ(n) intervals, 

where   Ὅ Ὅḧ ὸȟὸ  of equal length ∆ὸ =   . Also, let ὠṒὠ  Ὄ ) be the space 

of  continuous piecewise affine functions in . The discrete  equations (DES) are written  as 

follows: 

ἂὴ ὴ ȟ– ἃ  ɝὸ ὥύ ȟ–  ɝὸ Ὤύ  ȟ–  ,  ᶅ–ɴ ὠ                                         (8)  

 ύ ύ   ɝὸ ὴ                                                                                                             (9) 

ύπȟ–  ύȟ–     ᶅὼᴆɴ                                                                     (10)  

ὴπȟ–  ύȟ–     ᶅὼᴆɴ                                                                                     (11)       

where ύ ᶰὠ, ύ ᶰὒ   and ύ  ύ ὼȟὸ ȟὴ ὴ ὼᴆ ȟὸ  ɴὠ , Ὦᶅ πȟρȟȣȟὣ

ρȢ   
5. The APPS of the NOLVCHBVP 

To find the APPS ύ ύ  ȟύ  ȟȣȟύ   for the DES (8)-(11), using the MGFEIM, the 

following steps are used: 

1) Let  { –Ḋ Ὥ ρȟςȟȣȢὔȟ×ÉÔÈ –ὼᴆ π ȟÏÎ Ћ  be a finite basis of ὠ, with using the  

GFEME, let   

      ύ ὼᴆ ȟὸ  with ύ ὼᴆ ȟὸ ὴӶὼᴆ ȟὸ  be an APPS    of (8-11), then one has  

          ύ ὼᴆ ȟὸ  В ὶ– and ὴӶὼᴆ ȟὸ  В ό–  ᶅ – ɴ ὠ, 

   where  ὶ ὶὸ  and   ό ό ὸ ȟ  for each Ὦ πȟρȟȣȟὣ ρ are unknown constants.  

2) Using the APPs in (8-11) to get    ᶅὮ πȟρȟȣȟὣ ρ:   

     ὓ ɝÔὗ Ὑ ὓὙ ɝÔ ὓὟ ɝÔ ὒᴆ ὸȟ ὺᴆὙ                              (12) 

     Ὗ  Ὑ  Ὑ)                                                                                            (13) 

     ὓὙ  ί                                                                                                                        (14) 

     ὓὟ  ί                                                                                                                       (15) 

     where  ὓ ά  , ά –ȟ–), ὗ ή ,   ή  ὥ–ȟ– , 

     ὒᴆ ὒ  ,  ὒ Ὤ ὺᴆὙ ȟ–  ,  

Ὑ ὶȟὶ ȟȣȟὶ ,Ὗ όȟό ȟȣȟό , 

      ί ί ,  ί  ύȟ–),  ί ί   and  ί  ύȟ–  ,  ᶅὭ ȟὯ ρȟςȟȣȟὔ. 

3) System (12)-(15) is GNAS and has a unique solution. To solve it, first we solve the GLAS 

(14) and 

    (15)  to obtain Ὑ  and Ὗ , then the PT and the CT are utilized to solve (12) for each Ὦ( 
Ὦ πȟρȟȣȟὣ ρ) as follows:  

 In the PT, we suppose that Ὑ Ὑ in the components of  ὒᴆ  in the R.H.S of (12), then it 

turns to a GLAS, solving this system to get the predictor solution Ὑ . Then, in the CT, we 

resolve (12) with setting Ὑ Ὑ  (in the components of  ὒᴆ  of the R.H.S of it)  to get the 

corrector solution  Ὑ . Then we substitute  Ὑ  in (13) to get Ὗ . We can  repeat this 

procedure if we want more than one time; this repetition can be expressed as follows: 

ύ ȟ– ɝὸὥύ ȟ– ύ ȟ–  ɝὸ ὴȟ–  ɝὸ Ὤὸȟύ  ȟ–                   

(16)                                                                     

ὴ  
 
                                                                                                       (17)    

Equation (17) tells us the iterative method which depends only on ύ . Thus, equation (16) 

is reformulated as  ύ ύ   , where  ὰ is the number of the iterations. And this 

leads us to the following theorem. 
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Theorem (1): The DES (8-11), for sufficiently small Δὸ, and for any fixed  Ὦ π Ὦ ὣ
ρȟ has a unique solution ύ ύ ȟύ ȟȣȢȢȟύ ȟ and the sequence of the corrector solution 

converges on ᴙ. 

Proof: Let  ύ ύ ȟύ ȟȣȢȢȟύ  and   

ύ ύ ȟύ ȟȣȢȢȟύ     

where  ύ   and  ύ  are two solutions of  (16), so 

ύ ȟ– ɝὸὥύ ȟ–  ύ ȟ–  ɝὸ ὴȟ–  ɝὸ Ὤὸȟύ  ȟ–    (18)                                                                                       

and 

ύ ȟ– ɝÔὥύ ȟ– ύ ȟ–  ɝÔ ὴȟ– ɝὸ Ὤὸȟύ  ȟ–            (19)   

By subtracting )19) from (18), and putting – ύ  ύ  in the obtained equation, 

we get 

 ύ ύ ȟ ύ ύ ɝÔὥύ ύ ȟ ύ ύ  

ɝÔ Ὤ ύ  Ὤ ύ  ȟ ύ ύ  
                                   (20)                       

From Assumption 3 (ib), the ς  term in the L.H.S of (20) is positive. Then by applying 

Assumption 3 (iib) on  Ὤ in R.H.S of  (20), and by using the Cauchy Schwarz inequality on 

this side, we deduce that 

ύ   ύ      ύ  ύ  ‗ ύ  ύ                       (21)                           

where  ‗  ɝÔὒ ρ, for  sufficiently small  Δὸ.                             

which implies  that  is contractive. Also, since { ύ ᶰᴙ ᶅ ὰȟ  then  ύ  ύ  ɴ

ᴙ  ᶅὰȟ  ὭȢὩ  ύ ᶰᴙ ȟ  hence, by theorem (1) in [8],  the sequence  { ύ   converges to a 

point in ᴙȢ 
6. Stability  

Lemma (2): For sufficiently small Ўὸ, the following are satisfied: 

  ύ 
 ὨӶȟὴ 

  ὨӶȟ   В ύ  
 ύ 

 ὨӶȟÁÎÄ  В ὴ  
 ὴ 

  ὨӶ   

 for each Ὦ πȟρȟȣȟὣȟ where ὨӶ represents a various constant. 

Proof: By substituting  – ὴ  in (8) and rewriting the ρ  term in the L.H.S of the obtained 

equation, it becomes  

ὴ   ὴ   ὴ ὴ  ɝÔ ὥύ ȟὴ  ɝὸὬύ  ȟὴ           (22) 

Since,   

 ῳὸ ὥύ ȟὴ  ὥύ  ύ  ȟύ  ύ ὥύ  ȟύ ὥύ  ȟύ        (23) 

and by substituting (23) in the L.H.S of (22), then by summing both sides of the obtained 

equation, ÆÏÒ Ὦ π ÔÏ Ὦ ὰ ρ, and setting  ὧ ÍÁØρȟ ȟ the result leads to the inequality   

 ὧᴁὴ 
 ᴁ ὧВ ὴ ὴ ὧᴁύ  ᴁ ὧВ ύ  ύ  ᴁὴ ᴁ

ᴁύ  ᴁ  В ɝὸὬύ  ȟὴ                                                                                    (24)  

Now, we use the assumptions on Ὤ, to get that    

 Ὤύ  ȟὴ  ‗ύ  ‗Ӷὴ  ȟ‗Ӷ  ‗ ρ                                   (25) 

But    ύ  ςύ  ύ ςύ                                                                              

and    ὴ ςὴ ὴ ςὴ         
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By substituting this equality in (25), then substituting the obtained inequality in the R.H.S. of 

(24)   after applying the Cauchy-Schwartz inequality, assuming that Ὠ  ÍÁØςȟςӶ, we 

conclude the inequality as                                                                        

ὧᴁὴᴁ ὧ ὨɝὸВ ὴ ὴ ὧᴁύ ᴁ ὧ ὨɝὸВ ύ  ύ

ᴁὴᴁ    

 ᴁύ ᴁ  ᴁᴁ  ὨɝὸВ ύ ὨɝὸВ ὴ                          (26) 

Now, let Ўὸ ὧὨϳȟ  and the  ς   and  τ   terms in the L.H.S of (26) are positives, by using 

the discrete Gronwall’s (DGs) inequality [10], we deduce 

c(ᴁ ὴ ᴁ   ᴁύ  ᴁ  ὥὩВ  ὥὩ ὦ,  

 where ὥ ᴁὴᴁ ᴁύ ᴁ  ᴁᴁ  

which implies  

ᴁ ύ  ᴁ Ὠ   , and  ᴁ ὴ ᴁ Ὠȟ  for any arbitrary index ὰ.  

Therefore, ᴁ ύ  ᴁ  Ὠ and ᴁ ὴ ᴁ  Ὠ, for each   Ὦ πȟρȟȣȢȢȟὣ ρ. 

Thus, 

  ɝὸὨВ ᴁύ  ᴁ  ɝὸὨВ ᴁὴ ᴁ  ςὨ Ὠ ɝὸ ὣ  ςÃὝ  ὨӶ Ȣ   

We return to (26) with substituting ὰ ὣ The 1
st
 and the 3

rd
 terms in the L.H.S are positives. 

Then by using the above results in the R.H.S. of it , keeping in mind that the first three terms 

in this side are bounded, we obtain    

В ύ  ύ  ὨӶ                                                                                           (27)  

В ὴ ὴ  ὨӶ                                                                                              (28) 

7. Convergence 

The following definitions for the functions "almost everywhere on I " are useful in the proof 

of the next theorem, so let  

ύ  ὸ Ḋ ύ  ȟὸɴ  Ὅ ȟᶅ  Ὦ πȟρȟȣȢȟὣȟ   

 ύ  ὸ Ḋ ύ    ȟ   ὸɴ  Ὅ ȟᶅ Ὦ πȟρȟȣȢȟὣ ρȟ    

 ὴ ὸ Ḋ ὴ ȟὸɴ  Ὅ ȟᶅ Ὦ πȟρȟȣȢȟὣ ρȟ   

 ὴ ὸ  Ḋ ὴ ȟὸ  ɴὍ ȟᶅ  Ὦ πȟρȟȣȢȟὣȟ   

Let  ύͮ  ὸ  be an affine function on each Ὅ , such that  ύͮ  ὸ Ḋ ύ    ᶅȟὮ πȟρȟȣȢȟὣ,  

ÁÎÄ ὴͮ ὸ  be an affine function on each Ὅ , such that ὴͮ ὸ Ḋ ὴ     ᶅȟὮ πȟρȟȣȢȟὣ. 

Theorem (3): The discrete solutions ύ  ὸ ȟύ  ὸ ȟÁÎÄ ύͮ  ὸ  converge strongly in ὒ • , 

as  ὲ  Њȟ 
proof:  From Lemma (2), we have for any  Ὦ πȟρȟȣȢȟὣȟ that 

ύ 
  ὨӶ   ÁÎÄ ὴ 

  ὨӶȟ  

which makes      

ᴁύ ᴁ ȟ ȟᴁ ύ  
 ᴁ ȟȟᴁύͮ 

 ᴁ ȟȟᴁὴ 
 ᴁ  ȟᴁὴ 

 ᴁ  ȟÁÎÄ ᴁὴͮᴁ   are bounded. 

From the inequality (27), we get  

ɝὸВ ύ  ύ  ɝὸὨӶ π, as ɝὸ π,  

ύ  ύ    is strongly (ST) in  ὒ Ὅȟὠ  and in ὒ • .                                                (29) 

Also, by using the same way into the inequality (28), we get 

 ὴ ὴ 
  is ST in ὒ •                                                                                            (30) 

By using theorem 3.2 in [9], there are subsequences of ( ύ 
 , ύ , ύͮ   and of ὴ 

 , 

ὴ , ὴͮ ,). Using the same notations again, they converge weakly to some ύ in  ὒ Ὅȟὠ , to 

some ὴ in ὒ • , which means that 

 ύ ύ ȟύ ύȟύͮ 
 ύ  ÉÓ ×ÅÁËÌÙ  ÉÎ  ὒ Ὅȟὠ  and 
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            ὴ ὴ ȟὴ ὴȟὴͮ  ὴ  ÉÓ ×ÅÁËÌÙ  ÉÎ  ὒ •ȟ 
By using the first compactness theorem[9], we get , ύͮ ύ ST in ὒ • . Also,  ύ ύ 

and ύ ύ ST  in ὒ •Ȣ 
Now, let   ὠ  be a sequence of subspaces of ὠ, where  ὠ is as defined above. Then by 

using the Galerkin approach, for each –ɴ ὠ, there exists a sequence – , with  – ɴ  ὠ    
for each ὲ,  such that  – – ST in ὒ •Ȣ  
Consider that ‚ὸ  ɴὅ πȟὝȟ for which   ‚Ὕ  ‚Ὕ π ÁÎÄ  ‚π  ‚π
π Ȣ,ÅÔ  ‚ ὸ  be a piecewise continuous (CP) interpolation  of    ‚ὸ with  respect to Ὅ, and 

let  ‒ – ‚ὸ, with  ‒  – ‚ ὸ, with  

‒ 
  Ḋ – ‚ ὸ ȟὸɴ  Ὅ ȟὮ πȟρȟȣȢȟὣ ρ ȟ– ɴ  ὠ ȟ  

‒ 
  Ḋ – ‚ ὸȟὸɴ  Ὅ ȟ   Ὦ πȟρȟȣȢȟὣ ρ ȟ– ɴ  ὠ  ȟ 

‒ͮ 
  Ḋ – ‚ ὸȟὸɴ  Ὅ ȟ    – ɴ  ὠ ȟ     

By substituting –  ‒  
  in eq.(8), then summing both sides of the obtained equation for 

Ὦ π, to Ὦ ὣ ρ , and  by using the discrete integrating by parts (DIBP) for the ρ  term in 

the L.H.S., eq.(8) one can get  that     

᷿ ὴ 
  ȟ‒ͮ  Ὠὸ   ᷿ ὥύ  

 ȟ‒ 
  Ὠὸ᷿ Ὤὸ  

 ȟύ  
 ȟ‒ 

  Ὠὸ ὴ 
 ȟ–   ‚π   (31)                                                                                                                         

On the other hand, from (9), one has 

   ύͮ  ȟ– ‚ ὴ 
 ȟ– ‚  

By integrating both sides on πȟὝ, and by applying the DIBP for the ρ  term in the L.H.S of 

the obtained equation, we have 

᷿ ύ  ȟ– ‚ ὸ Ὠὸ  ᷿ ὴ 
  ȟ– ‚ Ὠὸ ύ 

 ȟ– ‚ π                      (32) 

Also, since 

 ‚ ὸ  ‚ὸ   in ὅὍṒὒ Ὅ, – –  ST  in ὒ Ὅȟὠ  and in  ὒ ȟ then we get that 

‒ 
  – ‚ – ‚ ‒    ST in ὒ Ὅȟὠ  and in ὒ •ȟ– ‚ π  – ‚π  ST  in ὒ • ,  

 ‒ͮ ᴂ   – ‚  – ‚  –‒ ST  in ὒ Ὅȟὠ . 

And since  ὸ ὸ   ST  in ὒ Ὅ,  ύ  ȟύ ȟ ύͮ ύ  ST   in ὒ • ,  ύ   ύ   ST  in  

ὠ and  ὴ  ύ  ST  in ὒ  .  

Then from these convergences and the assumptions on Ὤ, one can passage to the limit in (31) 

and in (32), then we get 

᷿ ὴȟ– ‚Ὠὸ᷿ὥύ ȟ– ‚ Ὠὸ᷿ Ὤὸȟύȟ– ‚ Ὠὸ ύȟ– ‚π            (33)     

and  

᷿ ύȟ–‚ ὸ Ὠὸ ᷿ ὴ ȟ–‚ὸὨὸ ύ 
 ȟ–‚π                                                 (34) 

The following cases appear: 

Case (I):  Choose  ‚ὸ  ɴὅ πȟὝ, with ‚Ὕ  ‚Ὕ ‚π  ‚π π, and put  

‚π π in eq.(33) and ‚π π in eq.(34), then using IBP for the ρ  term for each 

resulted equation, we have 

᷿ ύȟ–‚ὸ Ὠὸ  ᷿ ὴȟ–‚ὸὨὸ  ύ ὴ ȟ   

᷿ ύ ȟ– ‚  Ὠὸ᷿ὥύȟ– ‚ Ὠὸ᷿ Ὤὸȟύȟ–‚ Ὠὸ,                                                  (35) 

Then 

ύ  ȟ– ὥύ ȟ–   Ὤὸȟύȟ– ȟ–ɴ ὠ ÁȢÅȢÏÎ ὍȢ   
Case (II) : Choose the ‚ὸᶰ ὈπȟὝ, with  ‚π  πȟ‚Ὕ π, and use IBP for  the ρ  

term in the L.H.S of (35),  we obtain  

᷿ ύȟ– ‚Ὠὸ᷿ὥύ ȟ– ‚ Ὠὸ ᷿ Ὤὸȟύȟ–‚ Ὠὸύ πȟ–‚π                   (36)       

Let ὴ  ύ in eq.(33), we subtract the resulting equation from (36) to yield 

ύ π ȟ–‚π ύȟ–‚π  ύ π ȟ– ύȟ– ȟᶅ–  
then  ύ π  ύ πȢ 
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Case (III): Choose the  ‚ὸᶰ ὈπȟὝ, such that ‚ᴂπ  πȟ‚π π, and  ‚Ὕ
 ‚Ὕ π. Using twice the IBP for the 1

st
 term in the L.H.S. of (35), we get  

᷿ ύȟ–‚Ὠὸ᷿ὥύ ȟ–‚ Ὠὸ᷿ Ὤὸȟύȟ–‚ Ὠὸ ύπȟ–‚ᴂπ                         (37) 

 We rewrite (34) in the following form 

᷿ ὴȟ–‚ὸ Ὠὸ  ᷿ ύȟ–‚ ὸὨὸ ύ 
 ȟ–‚π                                         (38) 

 By substituting (38) in (33), with ‚π π, then subtracting the resulting equation from (37), 

we get 

 ύπ ȟ–‚ᴂπ ύȟ–‚π  ύπ ȟ– ύȟ– for each – , then  ύπ ύ π  

That is,  the limit point  ύ is a solution to the WEFM in the COE. 

8. Cholesky Factorization  
The Cholesky decomposition is used to solve the GLAS with  two conditions, in which the 

coefficient matrix ὄ must be a symmetric and positive definite. Then the matrix ὄ can be 

factorized into the product  of  an Upper triangular matrix Ὗand Lower triangular matrix Ὗ  

[8],  and Ὗ can be determined as shown in the following steps: 

Step 1: ό  ὦ В ό         ÆÏÒ Ὥ ρȟςȟȣȟὲ  

Step 2: ό  ὦ В ό  ό  Ⱦ ό   for Ὦ Ὥ ρȟȣȟὲ. 

9. Numerical Examples  

The problems in the following examples are coded by Matlap software:  

Example 1: Consider the following NOLVCHBVP:  

 ύ  В ὥ ὼᴆȟὸȟ  ᴍὼᴆȟὸ ύ Ὤὼᴆȟὸȟύȟ  

 with the variables coefficients are: 

 ὥ ὼȟὼ ρ ὼ Ὡ ϳ  ȟὥ ὼȟὼ ρ ὼ Ὡ ϳ  ȟᴍὼȟὼ ρ Ὡ Ȣ   

 where  •    Ὅ ȟ πȟρ πȟρȟὍ πȟρ                                                                                        

 ύ ὼᴆȟπ  ύ ὼᴆȟ  in                                                                                                                

 ύὼᴆȟὸ π, on   В  Ὅ 

Ὤὼᴆȟὸȟύ ÃÏÓ Ὡ ὼ ὼ ρ ὼ ρ ὼ Ὡ ϳ ρ ςὼὩ ρ

 ὼ ὼὩ ρ ςὩ ὼ ρ ὼ ὼ ρ ςὩ ϳ ὼ ρ ὼ ρ

 ὼ Ὡ ϳ ςϳ ρ  ὼὼÓÉÎὼὼ ÃÏÓ Ὡ ὼ ρ ὼ ρ ύÓÉÎύ       

The exact solution (EXS) of this problem is ύὼᴆȟὸ  ὼὼ ρ ὼ ρ ὼ ÃÏÓ Ὡ   .   

Using the MGFEIM to solve this problem for ὑ ω ,  ὣ ςπ and Ὕ ρ, then the results are 

shown in Figure 1. (a) which shows the APPS, and Figure 1.(b) which shows the EXS at  ὸǶ

 0.5 
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Figure 1-(a) The APPS for the NOLVCHBVP at  ὸǶ 0.5 and  (b) the EXS for the equation at  

ὸǶ 0.5. 

 

Example 2: Consider the following NOLVCHBVP:     

 ύ  В ὥ ὼᴆȟὸȟ  ᴍὼᴆȟὸ ύ Ὤὼᴆȟὸȟύȟ  

 with the variables coefficients are: 

 ὥ ὼȟὼ Ὡ  ȟὥ ὼȟὼ Ὡ  ȟᴍὼȟὼ Ὡ   

 where  •    Ὅ ȟ πȟρ πȟρȟὍ πȟρ and                                                                                     

 ύ ὼᴆȟπ  ύ ὼᴆȟ  in                                                                                                                

 ύὼᴆȟὸ π, on   В  Ὅ 

 Ὤὼᴆȟὸȟύ ςὼ ὼ ρ Ὡ ϳ ὼ ὼ ρ τὼ ὼ ρ ςὼ ὼ

ρ  ςὼ ὼ ρ ςὼ ρ Ὡ ϳ ςὼὼ ὼ ρ ςὼὼ ὼ ρ

 ὼ ὼ ρ ὼὼ τὼὼ ὼ ρ ὼὼ ὼ ρ ὼ ρ Ὡ ϳ  Ὡ

 ÓÉÎὼὼ ὼ ρ ὼ ρ Ὡ ϳ ύÓÉÎύȢ       

The exact solution (EXS) of this problem is ύὼᴆȟὸ ὼὼ ρ ὼ ὼ ὼὼ Ὡ Ȣ  .   
Using the MGFEIM to solve this problem for ω ,  ὣ ςπ and Ὕ ρ, then the results are 

shown in Figure 2. (a) which shows the APPS , and Figure 2.(b) which shows the EXS  at  

ὸǶ 0.5.  

 
Figure 2- (a) The APPS for the NOLVCHBVP at  ὸǶ 0.5 and  (b) the EXS for the equation 

at  ὸǶ 0.5. 

 

10. Numerical Discussion and Conclusions 
     The MGFEIM is used successfully to solve the discrete  of the WEFM of a certain type of 

NOLVCHBVP. The existence theorem of a unique convergent APPs is proved. The 

convergence of the PT and CT, which are used to solve the GNAS that is obtained from 

applying the MGFEIM, is proved and  the ChMe, which is used inside these technique, is 
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highly efficient for solving large GAS. The discrete  of the WEFM proved that it is stable and 

convergent. The results of the considered examples showed the efficiency and accuracy of the 

method.  
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