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Abstract

This paper has the interest of finding the approximate solution (APPS) of a
nonlinear variable coefficients hyperbolic boundary value problem (NOLVCHBVP).
The given boundary value problem is written in its discrete weak form (WEFM) and
proved have a unique solution, which is obtained via the mixed Galerkin finite
element with implicit method that reduces the problem to solve the Galerkin
nonlinear algebraic system (GNAS). In this part, the predictor and the corrector
techniques (PT and CT, respectively) are proved at first convergence and then are
used to transform the obtained GNAS to a linear GLAS . Then the GLAS is solved
using the Cholesky method (ChMe). The stability and the convergence of the
method are studied. Some illustrative examples are used, where the results are given
by figures that show the efficiency and accuracy for the method.

Keywords: nonlinear hyperbolic boundary value problem; Galekin finite element
method; implicit method; convergence; stability.
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1.Introduction

Hyperbolic partial differential equations arise in many physical problems, such as vibrating
strings, and in many other fields such as fluid dynamics, optics, and others. In general, there
are many researchers who are interested in the solution of boundary value problems, in
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particular the solution of the nonlinear hyperbolic boundary value problem (NLHBVP). In
2015, Feller used the Lévy Laplacian to solve a NOLVCHBVP [1]. In 2017, Mardani et al.
used the Moving Least Squares method for the nonlinear hyperbolic telegraph equation with
variable coefficients [2]. Ashyralyev and Agirseven, in 2018, solved a NOLHBVP with a time
delay [3]. While in 2018, Ahmedatt et a.l looked at some nonlinear hyperbolic p(x,t)-
Laplacian equations [4]. Adewole, in 2019, found the APPS of a linear hyperbolic (LHBVP)
[5].

The finite element method has been studied by many researchers who are interested in
this field to solve LHBVP. For example, in 2014, Quarteroni studied in his book the
numerical solution for LHBVP and some especial types NOLHBVP by using GFEME [6]. In
2018, Wick studied in his book the GFEME for solving LHBVP and NOLHBVP with
constant coefficients [7].

In this paper, we care about the study of the APPS of the NOLVCHBVP. The given boundary
value problem is written in its WEFM, and then it is discretized using the mixed Galerkin
finite element method (GFEME) for the space variable with the implicit method (IM) for the
time variable (MGFEIM). It is proved that the discrete problem has a unique solution. The
problem then reduces for solving the GNAS. In this point, the PT and CT are used to
transform the GNAS to a GLAS, which is solved by using the ChMe. The stability and the
convergence of the method are studied. A computer program is codding in Matlap to find the
APPS for the problem. Some illustrative examples are given and the results are given by
figures, which show the efficiency and accuracy for the considered method .

2.Description of the NOLVCHBVP

Lety = {X¥ = (x;,x,) E R%:0 < ¥ < 1}, with boundary dy, o =y X1, T=0¢Y X1, I =
[0,T],0 < T < oo thenthe NOLVCHBVP is given by:

Wit = Dumi g |an G O 52 | + gR O W =hGELw),  VEOEY M
w(#,0) = wo(¥), VZEey )
we(%,0) =wl(X), VXiey (3)
w(x,t)= 0, on X 4)

where w = w(%,t) € HZ(Y),, a,(%,t),¢(%,t) € L) , with a,,,(X, t) are positive
functions and h € L?(y) isagiven function.
Now, let V = H}(¥)={ n:n € H(y), n =0 on oy}, w, = p, then the WEFM of (1-4) is:

(Wee,m) + a(t,w,n) = (h(w),n), YVneE V areon I, (5)
w(0),n) = WM VIeEypw’ eV (6)
(PO),n) = (whn) Viey, whe L*(p) (7)

where a(t,w,n) = (22 um1 @i (% 6) 2 2L + g (RO w)
3. Assumptions
(i) Let x; and x, be two positive constants such that the following are satisfied:

a) lat,w,n) | < xllwlilinlly ,Vwn€eV

b) a(t,w,w)> 2llwl? * YVweV
(i) The function h is defined on ¢ x R, continuous with respect to w;* which satisfies the
following:

a)|lh, t,w)| < B (X, t)+ &|lw|whered>0,w € ¢ andf € L*(¢).

b) |h(%,t,wy) — h(%,t,w,)| < L|w; —w,|, where L is a Lipchitz constant and w,,w, €
R.

4. Discretization of The Continuity Equation (COE)
By setting w; = p in the WEFM of (5-7), then it is discretized by using the GFEME as

follows: let the domain ¢ is divided into sub regions ¢;; =i X I*, let {w?}’.v(f) be a

1=
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triangulation of 1, and let {I'}j=0 bea subdivision of the interval I into Y(n) intervals,
where [; =I' = [ t]+1] of equal length At = = . Also, let Vj, © V = HZ(3) be the space

of continuous piecewise affine functions in . The discrete equatlons (DES) are written as
follows:

(jv1—pj m) + Ata(wjiy,n) = At (h(wjiy),m) VN EW, (8)
WjT}i-l - an = At p]r_l+1 )
w(©),n) = W°n) VIEY (10)

(®0),n) = whn) VIieEy (11)

where w® € V, w! € L2(y) and (an = wh(x, tﬁ),p}? = pn(f,tn)) eV,,Vj=01,..,Y —
1.
5. The APPS of the NOLVCHBVP
To find the APPS w™ = (wl,w{', ...,wy ) for the DES (8)-(11), using the MGFEIM, the
following steps are used:
1) Let {n;: i=12,...N,withn;(X) = 0,on dy } be a finite basis of V;,, with using the
GFEME, let

wn(%, ") with (_"(55 t”) =p(%, t”)) be an APPS  of (8-11), then one has

"(x,t") = YW/ mand pn(%,67) = TN_ ulm Vo € W,
where n! = (/") and ul = ui(t'), foreach j =0,1,...,Y — 1 are unknown constants.
2) Using the APPs in (8-11)toget Vvj =0,1,..,Y —1:

(M + (At)?Q )R/t = MR/ + (At) MUJ‘ + (A2 L (¢, 3TRI*Y) (12)
Ut = = (RI*1 = R) (13)
MR% = s° (14)
MU°® = st (15)
where M = (my)nxn » Mik = Mo M), @ = (Qudvxnys Gik = (i M),
L=@wa o L=GTRM)0 ,
RIJ\le =), )T U = W ug, e ud)T,

- (S?)le, Slp = (Wofni)i Sl = (Sil)le and Si1 = (erni) ' Vi'k = 1r2r ,N

3) System (12)-(15) is GNAS and has a unique solution. To solve it, first we solve the GLAS

(14) and
(15) to obtain R° and U°, then the PT and the CT are utilized to solve (12) for each j(
j=01,. — 1) as follows:

In the PT we suppose that R/** = R/ in the components of L in the R.H.S of (12), then it
turns to a GLAS, solving this system to get the predictor solution R/**. Then, in the CT, we
resolve (12) with setting R/*1 = R/*1 (in the components of L of the R.H.S of it) to get the
corrector solution R/**. Then we substitute R’/*! in (13) to get U/*. We can repeat this
procedure if we want more than one time; this repetition can be expressed as follows:

(wsiVm:) + @2a(wiitme) = (whne) + At (pfns) + A2 (h(ef Py ) i)
(16)

wryy _ (Wi -wi)

j+1 At (17)

Equation (17) tells us the iterative method which depends only on ](+11) Thus, equation (16)

is reformulated as w1V = §wV) | where [ is the number of the iterations. And this
leads us to the following theorem.

3999



Al-Hawasy and Mansour Iragi Journal of Science, 2021, Vol. 62, No. 11, pp: 3997-4005

Theorem (1): The DES (8-11), for sufficiently small At, and for any fixed j (0 <j <Y —

1), has a unique solution w™ = (wg, wy, ....., wy"), and the sequence of the corrector solution
converges on R.

Proof: Let w(t*D = (wg””,wfl“), .....,wé”l)) and

W(l+1) _ (WS””,W?*”, o ;Wt(/lﬂ))

where w*D and W are two solutions of (16), so
(wii2om) + @02 (wiiPm) = (whn) + ac (o) + @02 (h (g wy) 0 ) @18)
and

(Wi m) + @o%a (wiim) = (i) + ac(pfn) + @02 (r (g9, ) i) (19)
By subtracting (19) from (18), and putting n; = (wj(l:) ](f{l)) in the obtained equation,
we get
(T - wits?, W —wits?) + @oa () - wl®, w0 —wls?)

= @07 (n (W ) = n( w2, ). w3~ wis? ) (20

From Assumption 3 (ib), the 2™ term in the L.H.S of (20) is positive. Then by applying
Assumption 3 (iib) on h in R.H.S of (20), and by using the Cauchy Schwarz inequality on
this side, we deduce that

o () = s(w ) ||, = " = wid]| = af[mivs = wia]), @
where 1 = (At)%L < 1, for sufficiently small At.

which implies that & is contractive. Also, since {w®} € RV [, then §(w+V) = wl+D €
RVI i.e §(w)€R, hence, by theorem (1) in [8], the sequence {w®} converges to a
point in R.

6. Stability
Lemma (2): For sufficiently small At, the following are satisfied:

WPl <d llepll; <d. Sjzlwha —wil; < d. and S5k -} <d
foreach j = 0,1,...,Y, where d represents a various constant.

Proof: By substituting n = p}, in (8) and rewriting the 15¢ term in the L.H.S of the obtained
equation, it becomes

2 2
||p;'1+1||0 - ”P;lllo + ||P?+1 ” + At a(W]+1:p]+1) —At(h( +1) P1+1) (22)
Since,
1
At a(wfiy, Pjhq) = 3 la(Wfis — Wit wivy — wi) + a(wfiy, wiiy) —a(wf wi)] - (29)
and by substituting (23) in the L.H.S of (22), then by summing both sides of the obtained
equation, forj = 0toj = [ — 1, and setting ¢ = max(l,%), the result leads to the inequality

clipf 13 + c21:1||p;-:1 =PI+ cllwit IZ + e Zizbllwha — w1} < Ip 113 +

Zlwg 113 + ZibAt(hW]y) D) (24)
Now, we use the assumptlons on h, to get that
|(h( Wi pje)| < “VJ” +|w +1|| +A”pJ+1” = A+1 (25)

t il = 2llwia = will; + 2wl

2 2 2
and [[pfsall) = 2llpfea =7 [l + 2lp7
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By substituting this equality in (25), then substituting the obtained inequality in the R.H.S. of
(24) after applying the Cauchy-Schwartz inequality, assuming that d = max(24, 26), we
conclude the inequality as

I3 + (c — dAt) S| [ph — PP + clwlliZ + (c — dat) T52b|lwhy — wi|l” <
lesls . i
+2 1wl + liylly + d@o) Zizplwill, +d@o Z5plpfl (26)

Now, let At < ¢/d, and the 2@ and 4" terms in the L.H.S of (26) are positives, by using
the discrete Gronwall’s (DGs) inequality [10], we deduce

1 aa
I 2 + Wl |12) < aeZi=04AD = geldD) < p

k
where a = ||p2I3 + = lwgllF + Iyl

which implies

Iwitllf <dy=2,and || pi*|I§ < d,, forany arbitrary index L.
Therefore, || w* || < dyand || p} |I§ < dy,foreach j=0,1,.....,Y — 1.
Thus,

@OATIZ WP IE + QOIS IP} I <2didAeY = 2¢T = d.
We return to (26) with substituting I = ¥ The 1% and the 3" terms in the L.H.S are positives.
Then by using the above results in the R.H.S. of it , keeping in mind that the first three terms
in this side are bounded, we obtain

S wh —wi | <d (27)

Soallpia - v, <d (28)
7. Convergence
The following definitions for the functions "almost everywhere on| " are useful in the proof
of the next theorem, so let
wh(t) := an, t € Ij-", vji=01,...,7Y,
wi() :==wjh,, tE ' Vj=01..,Y-1,
pt(t) := pj’-‘+1, t e Ij",‘v’j =01,...,Y—1,
pt(t) = p}.tf € I, Vj=01,....Y,
Let wx' (t) be an affine function on each I;*, such that wt (¢t) := wj* V,j =0,1,...,Y,
and p7 (t) be an affine function on each I;*, such that p' (t) := p} V,j=0,1,...,Y.

Theorem (3): The discrete solutions w™ (t) ,w? (t) ,and wi (t) converge strongly in L?(¢),
as n — oo,

proof: From Lemma (2), we have forany j = 0,1, ....,Y, that
2 - 2 —

Wil <d and|lp} | <4,

which makes

From the inequality (27), we get

At Yo llwihy —w)t ||(2) < Atd — 0,as At — 0,

wl — wnm isstrongly (ST) in L?(1,V) and in L?(¢). (29)
Also, by using the same way into the inequality (28), we get
pt — p is ST in L?(¢) (30)

By using theorem 3.2 in [9], there are subsequences of ({w”}, {w}}, {wl}) and of ({p"},
{p?}, {p"},). Using the same notations again, they converge weakly to some w in L2(1,V), to
some p in L?(¢), which means that

wlt — w,wl - w,wl® — w isweakly in L?(I,V) and
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p" — p,p} — p,p? — p isweakly in L*(p),

By using the first compactness theorem[9], we get , w® — w ST in L?(¢). Also, w} —» w
and w® — w ST in L?(¢).
Now, let {V, },—; be a sequence of subspaces of V/, where V;, is as defined above. Then by
using the Galerkin approach, for each n € V, there exists a sequence {n, }, with n,, € V,
for each n, such that n,, — 1 ST in L?(¢).
Consider that &(t) € €?[0,T], for which E(T) = é'(T)=0and é(0) = ¢'(0) #
0.Let ¢"(t) be a piecewise continuous (CP) interpolation of ¢(t) with respect to I}, and
let ¢ =né&(t), with " = 5, &™(t), with
¢ = &), te I, j=01,....,Y —=1,n, € V,
F =, 80, te I, j=01,....,Y—=-1,n, €V, ,
{’7‘1 = Unf"(t), tel, n, € In,
By substituting n = {7, in eq.(8), then summing both sides of the obtained equation for
j=0,t0j =Y —1,and by using the discrete integrating by parts (DIBP) for the 15¢ term in
the L.H.S., eq.(8) one can get that
—Jy @, @) dt + [)a(w,¢R) de = [ (h(t ,wi), () dt+ (pfn,) (0) (31)
On the other hand, from (9), one has

(W), mE™) = @y, mE™)
By integrating both sides on [0, T], and by applying the DIBP for the 15¢ term in the L.H.S of
the obtained equation, we have

—fOT(Wf ) E"()"de = fOT(P? ,ME™)'dt + (wg ,m)(§"(0)) (32)
Also, since
En(t) — &(t) inc() cL*(I),n, —n ST inL?(1,V)andin L?(y), then we get that
(F =np &} —né&=¢ STinL?(,V)andin L*(¢),n, {"(0) — 1 &(0) ST inL?(¢),
@) = nu&™ —ng = nd ST inL*(,V).
Andsince t* —t ST inL®(), w}, w*, wl > w ST inL%(p), wy@ — w°® ST in

Vand pff — w! ST inL?(¥).
GO RN RESUBHORSII  on- can passage to the limit in (31)

and in (32), then we get

— [y @.m) &dt + [] alw, ) §dt = [J(h(t,w),n) Edt+ whn) §0)  (33)
and
— [y w.mE"©) dt = [ (p & ©dt + w°,mE 0) (34)
The following cases appear:
Case (I): Choose &(t) € C2[0,T], with &(T) = &'(T) =&(0) = &'(0) =0, and put
&'(0) =0 in eq.(33) and é(0) = 0in eq.(34), then using IBP for the 15¢ term for each
resulted equation, we have

[ we,mE@® dt = [ (p,mE®dt = w,=p,

[y wee,m) € dt + [ alw,n) & dt = [} (h(t,w),m)E dt, (35)
Then

Wee,n) +alw,n) = (h(t,w),n),n €Va.e.onl.

Case (I1) : Choose the é(t) € D[0,T], with &(0) # 0, é(T) = 0, and use IBP for the 15¢
term in the L.H.S of (35), we obtain

— Jy (we,m) Edt + [ a(w,m) & dt = [ (h(t,w),mE dt +w,(0), ME(0) (36)
Let p = w; in eq.(33), we subtract the resulting equation from (36) to yield

(w:(0),mE(0) = wh, ME0) = (w(0),m) = (w', n),Vn
then w.(0) = wt(0).
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Case (I1I): Choose the &(t) € D[0,T], such that ¢'(0) # 0, £(0) =0, and &(T) =
&'(T) = 0. Using twice the IBP for the 1* term in the L.H.S. of (35), we get

[ w,mE"de + [ a(w,m) € dt = [] (h(t,w),mE dt — (w(0),m)E (0) (37)
We rewrite (34) in the following form
— [ (0. mE® dt = [ (w,mE"(@©)dt + WO, 1)E'(0) (38)

By substituting (38) in (33), with £(0) = 0, then subtracting the resulting equation from (37),
we get

(w(0),m3'(0) = (w®, 1n)§'(0) = (w(0),n) = (w°, n) foreachn, then w(0) = w°(0)
That is, the limit point w is a solution to the WEFM in the COE.

8. Cholesky Factorization

The Cholesky decomposition is used to solve the GLAS with two conditions, in which the
coefficient matrix B must be a symmetric and positive definite. Then the matrix B can be
factorized into the product of an Upper triangular matrix Uand Lower triangular matrix U”
[8], and U can be determined as shown in the following steps:

Step L uy = (by — Xk u2): fori=12,..,n

Step 2: U = (bl] - Zf;lluki Uk )/ Ui forj =i+1,..,n

9. Numerical Examples

The problems in the following examples are coded by Matlap software:

Example 1: Consider the following NOLVCHBVP:

Wi = D2y se (@B O 35) + gE D w = hGE L w),

with the variables coefficients are:

a1 (x1,%,) =1 —x; + e/ a,,(x1, %) =1 —x, +e®2/D g(x;,x,) = 1+ e07%1%2)
where o =y x1,p=1(01)x%x(0,1), I =[0,1]
we(%,0) = wl (@), in ¢

w(%,t) =0,0n Y =0y XI

h(X,t,w) =,/cos(e?) [xl (x; — 1) ((xz -1) (xz (e(7x1%2/10) 4 1) — (szex% — 1)) —
(xz(xzex% — 1) + Z(ex% — X, + 1))) —x,(x, — 1) (2((3("1/2) — X + 1) + (((xl -1+

x;)(e®/D /2 — 1))) — Xx1%, sin (xlxz,/cos(e‘t)(x1 —1)(x, — 1))] + w sin(w)

The exact solution (EXS) of this problem is w(X,t) = x;x,(1 — x;)(1 — x,)/cos(e™t) .
Using the MGFEIM to solve this problem for K =9, Y = 20 and T = 1, then the results are

shown in Figure 1. (a) which shows the APPS, and Figure 1.(b) which shows the EXS at £ =
0.5
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0.06

0.04

0.02

=

Figure 1-(a) The APPS for the NOLVCHBVP at £ =0.5and (b) the EXS for the equation at
t =0.5.

Example 2: Consider the following NOLVCHBVP:

Wi = Z2umi e (arE D 25) + gE D w = h(Z t,w),

with the variables coefficients are:

ar1(xg,x3) = e (1+¥D) , Q2 (X1, X3) = e(1+x2) , g (x1, %) = e(IFHH+x2)

where o =y x1,=1(01)x%x(0,1), I =[01] and
we(%,0) = wl (@), in ¢

w(x,t) =0,0n Y =0y XI

h(Z, t,w) = —2x2 (x, — 1)2e 31O+ (E+ ) [x2 — (x — 1)% — 4xy (x; — 1) + 23 (g —
1D+ 2x2(x; — 1)2] = 2(x; — 1)2e3/10+(x3+1) 25253 (x, — 1) + (2x2x2) (x, — 1)% +
x2(xy — 1) 4 x2x3 + 4x2x,(x, — 1)] + 2252 (3, — 1)2(x, — 1)2e(-3t/10) [e("1+x2+1) -
sin(x2x2 (x; — 1)2(x, — 1)2e310)] + w sin(w).

The exact solution (EXS) of this problem is w(X,t) = x2x2(1 — x; — x, + x,%,)?e030
Using the MGFEIM to solve this problem for =9, Y =20 and T = 1, then the results are
shown in Figure 2. (a) which shows the APPS , and Figure 2.(b) which shows the EXS at
t =0.5.

Figure 2- (a) The APPS for the NOLVCHBVP at £ =0.5 and (b) the EXS for the equation
at £ =0.5.

10. Numerical Discussion and Conclusions

The MGFEIM is used successfully to solve the discrete of the WEFM of a certain type of
NOLVCHBVP. The existence theorem of a unique convergent APPs is proved. The
convergence of the PT and CT, which are used to solve the GNAS that is obtained from
applying the MGFEIM, is proved and the ChMe, which is used inside these technique, is
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highly efficient for solving large GAS. The discrete of the WEFM proved that it is stable and
convergent. The results of the considered examples showed the efficiency and accuracy of the
method.
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