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Abstract 

     In this paper, we introduce a new type of Drazin invertible operator on Hilbert 

spaces, which is called D-operator. Then, some properties of the class of D-

operators are studied. We prove that the D-operator preserves the scalar product, the 

unitary equivalent property, the product and sum of two D-operators are not D-

operator in general but the direct product and tenser product is also D-operator. 
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 Dحهل بعض خهاص المؤثر على فضاء هلبرت 
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قدم الرياضيات ، كلية العلهم، جامعة بغداد، بغداد، العراق 1  
علهم البنات، جامعة بغداد، بغداد، العراق ةقدم الرياضيات ، كلي 2   

 

 الخلاصه
  تدميتهوتم  على فضاءهلبرتمن النمط قابلة للعكس درازاين نهع جديد من المؤثرات  قدمنا في هذا البحث

 المؤثر -Dض الخهاص.وبعد ذلك درسنا بع  
 

1. Introduction 

     Throughout this paper,   is a Hilbert space,      is the space of all bounded linear operators on a 

complex Hilbert space . The Drazin inverse for a bounded linear operator on a complex Banach space 

was introduced by Caradus [1]. Let      , the Drazin inverse of    if it exists, is an operator 

        such that  

                   ,              

For some integer number   , the smallest integer     is called the index of   which is denoted 

by         It is easy to see that          if and only if   is an invertible operator. Then       . 

In the following lemma, we collect some properties of Drazin operator which appeared in previous 

studies [2, 3].  

Lemma 1.1: Let        ) be two Drazin invertible operators, then  

(a)                

(b)  (  )
 

       for         

(c)                   
(d)   If       , then                           and           
(e)   If         , then               
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     Let       ,   is called normal if         . The purpose of this paper is to introduce a new 

operator to generalize the normal operator. Many authors presented generalizations of normal 

operators. For examples, in an earlier work [4], the author introduced  a class (Q) of operators acting 

on a Hilbert space H : for any T   (Q),               . Then, in another article [5], the authors 

introduced some new classes of operators associated with Drazin invertible operator. In this section, 

we give a new type of operators that are associated with Drazin invertible operator, that we call D-

operator. 

          The paper contains two sections. In section one, we investigate some basic properties that we 

need. In section two, we study most of the properties of D-operators. 

2. Main Results 

Definition 2.1: 

     Let        be Drazin invertible.    is called D-operator if  

                . 

The class of all D-operators is denoted by [D]. By lemma (1.1) (d), it is easy to prove that every 

normal operator is D-operator but the converse is not true in general. For example, let   be a nilpotent 

operator, then      , hence it is clear that   is D-operator but the nilpotent is not necessary normal. 

     In this section, we investigate some basic properties of operators in [D]. 

Proposition 2.2:  

     Let      , then the following assumptions hold: 

1)        for every scalar  . 

2)       for every        that is unitary equivalent to  . 

3) The restriction     of   to any closed subspace   of   that reduces   is in [D].  

4)       . 
Proof:  

1) The proof is straight forward. 

2) Since S is unitary equivalent to T, then        , where   is unitary operator. Thus,   

                                

                                                                 ) 

                          

                         

                         

                          

                                           

                       

                       
     Hence,       . 
3)                                            

                                                                      

                                                         

                                  (     )          

                                        (   (  )
 
)    

                                                    

                                        (            )   

                                        (                 )    

                                        (                        ) 

                   (            )
 
 

                              
      Hence        .  
4) Since      , then                               Thus                    

By taking the adjoint of both sides of the above equation, we have 

                          

     Hence,                                                   .  
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Therefore,                                                   
     Thus,           
Proposition 2.3:  

     The set of all D-operators on   is a closed subset of     . 

Proof:   

     Let 〈  〉 be a sequence of D-operators such that     . It is enough to show that   is D-operator. 

Since        then   
      and    

      Hence,    
    

        then we get that 

 (   
    

 )
 

                                                                                                       (1) 

On the other hand, we obtain that       
       and  (   

 )
 

      . Hence,    
  (   

 )
 

 

                                                                                                                                                        (2)  

Therefore, from equations (1) and (2), we conclude that 

‖                ‖  

                               ‖           
  (  

 )
 
   

  (  
 )

 
        ‖  

                               ‖           
  (  

 )
 
‖  ‖  

  (  
 )

 
        ‖ 

                               ‖           
  (  

 )
 
‖  ‖(  

   
 )

 
        ‖                               0  as  

   . 

Hence,                 . Thus               
Proposition 2.4: 

     Let        . If               , then        . 
Proof: 

Since               , then by lemma(1.1) (d) we have 

                               . 

Moreover, since        , then  

                 and                   Therefore,  

                                     

                                               

                                               

                                               

                                              

                                               

                                                   

                                            

Thus                
Proposition 2.5: 

     Let        . If         , then         . 
Proof: 

(f) Since          , then                  and                    Since        , 

then              and by lemma (1.1)(e) we have               Hence 

                                           

                                     =                             

                                                                                          )   

                                                         

                                                         

                                                              

                                                                     

                                                       

Thus                
     The following example shows that the propositions (2.4) and (2.5) are not necessarily true in 

general. 

 

Example 2.6: 



Abood and Kadhim                                Iraqi Journal of Science, 2020, Vol. 61, No. 12, pp: 3366-3371 

                

3369 

1) Let    (
  
  

) and     (
  
  

). 

         Therefore,  

              (
   

   
) and      (

  
    

).  

        It can be easily checked that          and       . Note that, 

      (
   

   
)  

          But, it is easy to compute that         . 

2) Let    (
  
  

). Clearly        but                  

The following corollary is a straightforward result from proportion (2.4). 

Corollary 2.7: 

     If        , then        for all positive integers  . 

Theorem 2.8:  

     Let               , then  

1)                 
2)                 
Proof: 

1) Since                  , then 

       
  (  

 )
 

 (  
   

 )
 
 . Hence, 

                                     

                          
     

       
       

       
         

      

                         
     

      
     

        
     

     

                          
   

       
   

         
   

     

                         
   

   
   

    
   

   
   

      
   

   
   

   

                          
   

    
   

      
   

     
   

    
   

      
   

    

                       (   
    

      
     

    
      

  )
 
  

                                                      

2) Let             , then  

                                                  

    
     

       
       

       
         

                   

   
     

          
     

            
     

         

    
   

           
   

             
   

         

 (  
   

        
   

          
   

     )
 
  

 (   
    

      
     

    
      

  )
 
              

                                                 
In the following theorem, we compute the Drazin invertible operator for some special matrix. 

Theorem 2.9: 

     Let    (
  
  

), where       are non-zero complex numbers such that     , then one of the 

following forms of Drazin invertible can be satisfied: 

1)       

2)    (
            
    

)   

3)    (
             
  

). 

4)    (
          
    

)  

 

 

 

 



Abood and Kadhim                                Iraqi Journal of Science, 2020, Vol. 61, No. 12, pp: 3366-3371 

                

3370 

Proof:  

Let    (
    

    
), where              , then 

                                                                                                              (1) 

                                                                                                             (2) 

Thus, from eq (1), it is easy to conclude that 

(
              

      
)  (

          

          
).  

Therefore we get that   

                                                                                                           (3) 

                                                                                                    (4) 

From (3), we get    0. 

This implies that, from eq (2), the following matrix equation: 

(
   

                  

    
 )  (

    

    
).  

Thus we get the following equations: 

                                                                                                              (5)                                                      

                                                                                                              (6) 

                                                                                              (7) 

Thus, from equations (5), (6) and (7), we obtain the following cases: 

Case 1: If          then we have from eq (7) that       Thus    is the zero  matrix. 

Case 2: If     ,    
 

 
  then we have from eq (4)  that                 Thus    

(
            
    

)   

Case 3: If        ,           we have from eq (4)  that                Thus    

(
             
  

)   

Case 4: If        ,       , then we have from eq (4) that             Thus    

(
          
    

)                

Remark 2.10:  

    Note that, from theorem (2.9), the case (1) satisfies when T is nilpotent matrix (     ) and case 

(4) satisfies when T is invertible (       ). 

Corollary 2.11: 

     Let    (
  
  

), where       are non-zero complex numbers such that     . If      , then T 

is not  D-operator. 

Proof: 

   We discuss case (2) in theorem (2.8) and the other cases can be proved similarly. Note that  

  (
  
  

)     (
  
  

) and    (
            
    

).  

Hence 

    (
   

        ) and       (
             

     ).  

Thus 

         (
               

                       
)                                            (8) 

On the other hand, 

          (
                          

                     
)                         (9) 

Assume that T is D-operator, then                  . Therefore, from eqs (8) and (9), we obtain 

that    =0. Since      , then    , which is a contradiction. Hence M cannot be D-operator   
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Conclusions 

     The present paper discusses some elementary properties of a new class of operators, namely the D-

operators. The D-operators is some generalization of normal operators. Some properties of normal 

operator may not be satisfied in D-operators, such as the property of the sum and the product of two 

D-operators, which we proved that it is not necessarily true.                  
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