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Abstract

In this paper, we introduce a new type of Drazin invertible operator on Hilbert
spaces, which is called D-operator. Then, some properties of the class of D-
operators are studied. We prove that the D-operator preserves the scalar product, the
unitary equivalent property, the product and sum of two D-operators are not D-
operator in general but the direct product and tenser product is also D-operator.
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1. Introduction

Throughout this paper, H is a Hilbert space, B(H) is the space of all bounded linear operators on a
complex Hilbert spaceH. The Drazin inverse for a bounded linear operator on a complex Banach space
was introduced by Caradus [1]. LetT € B(H), the Drazin inverse of T, if it exists, is an operator
TP € B(H) such that
TTP? = TPT, TPTTP =TP, T*1iTD =Tk
For some integer numberk > 0, the smallest integer k > 0 is called the index of T which is denoted
by ind(T). It is easy to see that ind(T) = 0 if and only if T is an invertible operator. ThenT? = T~1,
In the following lemma, we collect some properties of Drazin operator which appeared in previous
studies [2, 3].
Lemma 1.1: Let S, T € B(H) be two Drazin invertible operators, then
(@) (T*)P = (TP)".
b (1) =TP)fore=12,..
(c) (§~1T1S$)P = s~1TPg,
(d) If ST =TS, then (ST)? = SPTP? =TPSP, SPT =TSP, and TPS = STP.
(e) If ST=TS =0,then(S+T)? =SSP +TP,
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Let T € B(H), T is called normal if TT* = T*T. The purpose of this paper is to introduce a new
operator to generalize the normal operator. Many authors presented generalizations of normal
operators. For examples, in an earlier work [4], the author introduced a class (Q) of operators acting
on a Hilbert space H : for any T € (Q), T*?(T)? = (T*T)2. Then, in another article [5], the authors
introduced some new classes of operators associated with Drazin invertible operator. In this section,
we give a new type of operators that are associated with Drazin invertible operator, that we call D-
operator.

The paper contains two sections. In section one, we investigate some basic properties that we
need. In section two, we study most of the properties of D-operators.
2. Main Results
Definition 2.1:

Let T € B(H) be Drazin invertible. T is called D-operator if
T*Z(TD)Z — (T*TD)Z
The class of all D-operators is denoted by [D]. By lemma (1.1) (d), it is easy to prove that every
normal operator is D-operator but the converse is not true in general. For example, let T be a nilpotent
operator, then T? = 0, hence it is clear that T is D-operator but the nilpotent is not necessary normal.

In this section, we investigate some basic properties of operators in [D].

Proposition 2.2:
Let T € [D], then the following assumptions hold:
1) aT € [D] for every scalar a.
2) S e [D]foreveryS € B(H) that is unitary equivalentto T.
3) Therestriction T|M of T to any closed subspace M of H that reduces T is in [D].
4) TP € [D].
Proof:
1) The proof is straight forward.
2) Since S is unitary equivalent to T, then S = UTU", where U is unitary operator. Thus,
$*2(sP)2 = (UT*U?(UTPU")?
= WUT*U)HWUT*U)HUTPU"(UTPU™) (u* =1
=UT*T*TPTPU*
= UT**(TP)?U*
= U(T*TP)2u*
=UT*TPT*TPU*
= WUT*UHWTPUHWT*U"UTPU")
= §*sPs*sb
— (S*SD)Z
Hence, S € [D].
3 (TIM)2UTIM)P)? = (TIM)*(T|M)*(T|M)P (T|M)P
= (T"|M)(T*|M)(TP|M)(TP|M)
= (T"T*|M)(TPTP|M)
= (T*IM)((TP)*|M)
= (T°*(1°)*) IM.
= (T°T°)*)|M
= ((T*T°)(T*TP))|M
= (((T*TPIM)((T*TP))IM)
= ((T*|M)(TP|M)(T*|M)(TP|M))
= (T |M)(TP M)
= ((T|M)*(T|M)")?.
Hence T|M € [D].
4) Since T € [D], then T*2(TP)? = (T*T?)2. Thus T*T*T°TP = T*TPT*TP
By taking the adjoint of both sides of the above equation, we have
(T*)D(T*)DTT — (T*)DT(T*)DT
Hence, ((TPY"?T?% = ((TP)*T)>2.
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Therefore, ((TP)*2((TP)P)% = ((TP)*(TP)P)2.
Thus, T? € [D]
Proposition 2.3:
The set of all D-operators on H is a closed subset of B(H).
Proof:
Let (T} ) be a sequence of D-operators such that T, — T. It is enough to show that T is D-operator.
Since T, —» T thenT,” = T* and T,” — TP.Hence, T,* T;,” = T*TP, then we get that
(1 TkD)Z - (T*TP)? 1)
On the other hand, we obtain that ;"> - T*2and ( T;,>)” - (TP)2. Hence, T, ?( T;,”)* -
T*Z(TD)Z (2)
Therefore, from equations (1) and (2), we conclude that
IT*2(TP)? — (T*TP)?|
= |2y - 1(re)” + A (1) - (TR
< ||r72@Py? - T(rP)?|| + || (rR)” - (rrTPy?||
= ||r2@?y? = T2 (rP)*|| + || (rem)” - (reP Y| -0 as
k — .

Hence, T*?(T?)? = (T*TP)2. Thus T € [D]
Proposition 2.4:
LetS,T € [D]. If [T,S] = [T,S*] = 0, then ST € [D].
Proof:
Since [T, S] = [T,S*] = 0, then by lemma(1.1) (d) we have
[T,SP] =[TP,S] =[TP,S*] =[T* SP] = 0.
Moreover, since S,T € [D], then
T*2(TP)? = (T*TP)? and $*?(SP)? = (S*SP)2. Therefore,
(ST)2((ST)P)? = (ST)*(ST)*(ST)P (ST)"
=T*S*T*S*SPTPsPTP
= T*T*TPTPS*S*SPSP
— T*ZS*Z(TD)Z(SD)Z
= T*T*S*S*TPSPTPSP
=T*S*T*S*TPSPTPSP
= (ST)*(ST)*(ST)P(ST)"
= ((8T)*(ST)?)?

Thus ST € [D]
Proposition 2.5:
LetS,T € [D]. If ST =TS =0, then S+ T € [D].
Proof:
) Since S,T € [D], then T*2(TP)? = (T*TP)? and S*2(5P)? = (§*SP)2. Since ST =TS =0,
then S*T* = T*S* = 0, and by lemma (1.1)(e) we have (S + T)? = SP + TP. Hence
S+D2(S+T)P)Y2 =6 +T)*S+T)*(S+T)P°(S+T)P
=(S*+ TS + TSP +TPY(SP +TP)
— (5*2 + T*Z)((SD)Z + (TD)Z) (S*T* =T*S* = 0)
— S*Z(SD)Z + T*Z(TD)Z
— (S*SD)*Z + (T*TD)Z
= (§*SP 4+ T*TP)(S*SP 4+ T*TP)
=(S*+ TSP +TPYS*+TH(SP +TP)
=((S+T)(S+T)P)?
Thus S+ T € [D]
The following example shows that the propositions (2.4) and (2.5) are not necessarily true in
general.

Example 2.6:
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_(2 1 (1 0
1) LetS—(1 1)and T—(O 2).
Therefore,
p_ (1 -1 p_(1 O )
SY = (_1 2)and T —(0 1/2)
It can be easily checked that S,T € [D] and ST # TS. Note that,
p_ (2 -1
(ST) _(_1 2)
But, it is easy to compute that ST € [D].

2) LetT= ((1) (2)) Clearly T € [D],butT + I ¢ [D]

The following corollary is a straightforward result from proportion (2.4).
Corollary 2.7:
If T €[D],thenT™ € [D] for all positive integers n.
Theorem 2.8:
Let Ty, T,, ..., T, € [D], then
1) T,®T,® ...®T, €
2) T,®T,® ...®T, €
Proof:
1) Since T; € [D] Vi = 1,2, ...,n, then
T72(TP)® = (17TP)” . Hence,
(T,8T,® ... ®T,) 2 (T, ®T,® ... ®T,)")?
= (T7%@T3%® ... T 2) (TP)*S(17)*D ... &(T7)?)
= T2 (TP)? T2 (T2)*@ ... ®T;(T7)?
= (T{TY)?(T;T9)*O ... &(T, T )?
=T, TPTyTPOT; TP T, TP® ... ®T,; TP T, TP
= (T;TPOT;TP® ... ®T; TP)(T; TP T, TP ® ... ®T,; TP)
= (ryer;e..0T)(TPeTPo ... @T,{J))2
= (T19T;® ... 8T, (T, 8T,® ... ®T,,)")?
2) Let x4, x5, ..., X, € H, then
(Ty®T,® ...®T,) 2 (T, ®T,® ... ®T,))?)? (%, ® %, ... ®x;,,)
= (T72QT;%® ... QT 2) ((TP)?®(TP)?® ... ®(TP)?) (4,® x,® ... ®x,)
= T2 (TP)? (x)®T52(TP)? (x2)® .. T, (T,7)? ()
= (T{TP)? (x )O(T5T2)? (x2)® ... (T3 T )% (o)

2
= (TP G)BTTP ()@ . ST TP ()

[D].
[D].

2
= (170738 .. 0T (TPOTP® .. ®TP)) (1,8 1,8 .. ®x,)

= ((T,®T,® ...QT,)) (T, T, ® ... QT,))P)? (,® x,® ... ®x;,)
In the following theorem, we compute the Drazin invertible operator for some special matrix.
Theorem 2.9:

Let T = (g g) where a, b, ¢ are non-zero complex numbers such that a # b, then one of the
following forms of Drazin invertible can be satisfied:

1) TP=o.
_ (0 —c/((a—b)b)
2 T"= (0 1/b )
3 TP= (1(/)a c/((ao— b)a)).
_(1/a —c/(ab)
4 TP _( 0 1/b )
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Proof:
m m
LetTP = (m; mi) where m;, m,, my, m, € C, then
TTP = TPT (1)
TPTTP = TP (2)

Thus, from eq (1), it is easy to conclude that
(am1 +cmz am, + cm4) _ (am1 cmy + bmz)

bm, bm, am; cmz+bmy
Therefore we get that
am; + cm; = amy 3)
am, + cmy = cmq + bm, 4)

From (3), we get m; =0.
This implies that, from eq (2), the following matrix equation:
(amlz amim, + my(cmy + bm2)> _ (m1 mz)

0 bm,? msz My
Thus we get the following equations:
my(am; —1) =0 )
my(bmy —1) =0 (6)
amym, + my(cm; + bm,) = m, (7

Thus, from equations (5), (6) and (7), we obtain the following cases:
Case 1: If m; = m, = 0, then we have from eq (7) that m, = 0. Thus T? is the zero matrix.
Case 2: If m; =0, my = %, then we have from eq (4) that m, = —c/((a — b)b). Thus TP
0 —c/((a—Db)b)
(0 "5 "")
Case 3: If my = 1/a, m, = 0,then we have from eq (4) that m, = ¢/((a — b)a). Thus TP
(Yo e/(@=ba))
0 0
Case 4: If m; =1/a, my = 1/b, then we have from eq (4) that m, = —c/(ab). Thus TP
1/a —c/(ab)
(5" ")
Remark 2.10:
Note that, from theorem (2.9), the case (1) satisfies when T is nilpotent matrix ( T? = 0) and case
(4) satisfies when T is invertible (T? = T~1).
Corollary 2.11:
Let T = (g g) where a, b, ¢ are non-zero complex numbers such that a = b. If T? =0, then T

is not D-operator.
Proof:
We discuss case (2) in theorem (2.8) and the other cases can be proved similarly. Note that

T=0 )= O)andTD=(0 _C/((a_b)b)).

0 b b 0 1/b
Hence
2_( a 0 _ (0 —c/((a=b)bp?)
T = (c(a + b) bz) and (1%)* = (0 1/b? >
Thus
. (0 —ca?/((a—b)b?)
T = (0 (—c*(a+b)/((a — b)b?)) + 1> ?
On the other hand,

—c? — b)b?) —ca/((a — b)b)

T*TD 2 — c a/((a 9
( ) ( c/b (—=c?a/((a—b)b?)) +1 ©)
Assume that T is D-operator, then T*2(T?)? = (T*TP)2. Therefore, from egs (8) and (9), we obtain
that ¢/b=0. Since b # 0, then ¢ = 0, which is a contradiction. Hence M cannot be D-operator
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Conclusions

The present paper discusses some elementary properties of a new class of operators, namely the D-
operators. The D-operators is some generalization of normal operators. Some properties of normal
operator may not be satisfied in D-operators, such as the property of the sum and the product of two
D-operators, which we proved that it is not necessarily true.
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