

ISSN: 0067-2904

F- μ-Semiregular Modules

Eman mohammed*, Wasan Khalid

Department of Mathmetics, College of Science, University of Baghdad, Baghdad, Iraq
Received: 15/6/2020
Accepted: 25/7/2020

Abstract

: Let R be an associative ring with identity and let M be a left R -module . As a generalization of μ-semiregular modules, we introduce an F - μ-semiregular module. Let F be a submodule of M and $\mathrm{x} \in \mathrm{M}$. x is called F - μ-semiregular element in M , if there exists a decomposition $\mathrm{M}=\mathrm{A} \oplus \mathrm{B}$, such that A is a projective submodule of R_{x} and $R_{x} \cap B<_{\mu} F$. M is called F - μ-semiregular if x is $\mathrm{F}-\mu$-semiregular element for each $\mathrm{x} \in \mathrm{M}$. A condition under which the module μ-semiregular is $\mathrm{F}-\mu$-semiregular module was given. The basic properties and some characterizations of the F- μ semiregular module were provided.

Keywords: μ-small submodule, F- μ-semiregular module.

> F- مقاسات شبه المنتظمة من النمط
قسم الرياضيات, كلية العلوم, جامعة بغـة ، وسن خالداد, بغداد, العراق

الخلاصة

لتكن R حلقه ذات عنصر محايد وليكن M مقاسا ايسر معرف عليها . كتعميم لـقاسات شبه منتظمة
 يدعى العنصر X عنصر من النمط F- μ-semiregular اذا كان هنالك تحلل M=A A بحيث ان B , F-
 منتظم من النمط - μ هو مقاس شبه منتظم من النمط - F- م . وقد تم اعطاء الخصائص الاساسية للمقاس

شبه منظل من النمط - F- وقد تم اثبات بعض مكافئات المقاس شبه منتظم من النمط - F- .

1. Introduction

Throughout this paper, all rings have an identity and all modules will be unital left R-modules . Let M be a module and A be a submodule of M, then A is called small in M (denoted by $A \ll M)$ if $\mathrm{M} \neq \mathrm{A}+\mathrm{B}$, for any proper submodule B of M , see[1] and [2]. $Z^{*}(\mathrm{M})=\{\mathrm{m} \in \mathrm{M}: \mathrm{mR} \ll \mathrm{E}(\mathrm{M})\}$.A module M is called cosingular (non cosingular) module if $Z^{*}(\mathrm{M})=\mathrm{M}\left(Z^{*}(\mathrm{M})=0\right)$ [3] . As a generalization of small submodules, the concept of μ-small submodule was introduced in [4]; A submodule A of M is called μ-small submodule of M (denoted by $\mathrm{A} \ll_{\mu} M$) if whenever $\mathrm{M}=\mathrm{A}+\mathrm{X}, \frac{M}{X}$ is cosingular, then $\mathrm{M}=\mathrm{X}$. We write $E(M), \operatorname{Rad}(M)$, and $Z(M)$, for the injective envelope, the Jacobson radical, and the singular

[^0]submodule of M. respectively, for a left R-module M [3]. Define the submodule $Z^{*}(M)$ as a dual of singular submodule to be the set of all elements of $m \in M$ such that $m R$ is a small module.
An R-module M is called μ-semiregular module if there exists a decomposition $\mathrm{M}=\mathrm{A} \oplus \mathrm{B}$, such that A is projective submodule of N and $N \cap B \ll_{\mu} M$ [5]. This concept leads us to introduce the following concept; Let M be an R-module F be a submodule of M, and $x \in M$. x is called $F-\mu-$ semiregular element in M, if there exists a decomposition $M=A \oplus B$, such that A is a projective submodule of R_{x} and $R_{x} \cap B \ll_{\mu} F$. M is called an F - μ-semiregular if m is F - μ-semiregular element for each $\mathrm{m} \in \mathrm{M}$.
In this paper, we investigate the basic properties of F - μ-semiregular module and give the condition under which the μ-semiregular module is an F - μ-semiregular module .

2. F - μ-semiregular module

Definition 2.1: Let M be an R-module F be a submodule of M, and $0 \neq x \in M . x$ is called $F-\mu$ semiregular element in M. if there exists a decomposition $M=A \oplus B$, such that A is a projective submodule of R_{x} and $R_{x} \cap B<_{\mu} F$.
M is called an F - μ-semiregular module if x is F - μ-semiregular element for each $\mathrm{x} \in \mathrm{M}$.

Example 2.2

1- Consider the module Z_{6} as Z_{6}-module. One can easily show that Z_{6} is F - μ-semiregular, for every submodule F of Z_{6}.
2- Consider the module Z as Z -module. Claim that Z is not F - μ-semiregular, for every proper submodule F of Z . Let R_{x} be nonzero submodule of Z .
Since Z is an indecomposable module, then $\{0\}$ is only projective summand of Z contained in R_{x}. $\mathrm{Z}=\{0\} \oplus \mathrm{Z}$ and $R_{x} \cap \mathrm{Z}=R_{x}$ is not μ-small in F , so Z is not $\mathrm{F}-\mu$-semiregular . $\forall \mathrm{F} \subsetneq \mathrm{Z}$.
Note : Every F - μ-semiregular module is μ-semiregular module, but the converse is not true in general. For example, for Q as Z -module, let Z be a submodule of $\mathrm{Q} \mathrm{Q}=\{0\} \oplus \mathrm{Q}$. Since Q is indecomposable, then $\{0\}$ is only projective summand of Z and $Q \cap Z=Z$ is not μ-small in Z. Then Q is not $F-\mu-$ semiregular but is μ-semiregular.

Recall that a submodule A of M is called coclosed submodule of M (denoted by $\left.\mathbf{A} \leq_{c c} \mathbf{M}\right)$ if whenever $\frac{A}{X} \ll \frac{M}{X}$ for some submodule X of M implies that $\mathrm{X}=\mathrm{A}$ [6].
Definition 2.3: [4]. Let M be an R-module and let A be a submodule of M, then we say that A is a $\boldsymbol{\mu}$ coclosed submodule of M denoted by $\left(\boldsymbol{A} \leq_{\mu c c} \boldsymbol{M}\right)$, if whenever $\frac{A}{X}$ is cosingular and $\mathrm{X} \leq_{\mu c e} \mathrm{~A}$ in M for some submodule X of A , we have $\mathrm{X}=\mathrm{A}$.
The followings are some properties of μ-coclosed submodule [4].
Remark 2.4: [4]. 1- Let M be an R-module and A be a coclosed submodule of M, then A is a μ coclosed in M.
2- Let M be a cosingular R-module and A be submodule of M, then A is a μ-coclosed if and only if it is coclosed in M.
3- Every direct summand of an R-module M is μ-coclosed.
Proposition 2.5 : [4]. Let A be a μ-coclosed submodule of an R-module M . If $\mathrm{X} \leq \mathrm{A} \leq \mathrm{M}$ and X $<_{\mu} M$, then $X \ll_{\mu} A$.
Remark 2.6 : Let M be a μ-semiregular R -module. If F is μ-coclosed submodule of M , then F is $\mathrm{F}-\mu$ semiregular.
Proof : Let $0 \neq \mathrm{x} \in \mathrm{F}$ and $R_{x} \subseteq \mathrm{~F}$, then $R_{x} \subseteq \mathrm{M}$. Since M is μ-semiregular module, then \exists is a projective submodule A of R_{x} such that $\mathrm{M}=\mathrm{A} \oplus \mathrm{B}$ and $B \cap R_{x} \ll_{\mu} M$. Now, $\mathrm{F}=\mathrm{F} \cap \mathrm{M}=\mathrm{F} \cap(\mathrm{A} \oplus \mathrm{B})$ $=\mathrm{A} \oplus(\mathrm{F} \cap \mathrm{B})$ (modular law) . $\mathrm{F} \cap \mathrm{B} \cap R_{x} \leq \mathrm{F}$, but $\mathrm{F} \cap \mathrm{B} \cap R_{x}=\mathrm{B} \cap R_{x}<_{\mu} \mathrm{M}$. Since F is $\mu-$ coclosed, then $\{$ by prop.(2.5) $\} \mathrm{B} \cap R_{x}<_{\mu} F$. Thus, F is $\mathrm{F}-\mu$-semiregular.
Remark 2.7: Let M be an R-module . If M is $\{0\}-\mu$-semiregular, then M is μ-semiregular.
Proof : Suppose that M is $\{0\}-\mu$-semiregular and let R_{x} be a submodule of M .
Since M is $\{0\}-\mu$-semiregular, then there exists a projective submodule P of R_{x},
such that $\mathrm{M}=\mathrm{P} \oplus \mathrm{S}$ and $R_{x} \cap S=\{0\} \ll_{\mu}\{0\}$. Thus, $\mathrm{M}=R_{x} \oplus S$ and $R_{x} \cap S=\{0\} \ll_{\mu}$ M. Then, M is μ-semiregular.
Remark 2.8: Let M be an $R-$ module and F and L be submodules of M such that $F \leq L$.
If M is F - μ-semiregular, then M is $\mathrm{L}-\mu$-semiregular.
Proof : It is clear.

Remark 2.9 : Let M be an R-module and F and L be submodules of M such that $F \leq L$ and F is μ-coclosed in M . If M is $\mathrm{L}-\mu$-semiregular, then M is $\mathrm{F}-\mu$-semiregular.
Proof : Let M be $L-\mu$-semiregular, $F \leq L$, and $x \in M$. Since M is $L-\mu$-semiregular, then there exists $\mathrm{M}=\mathrm{A} \oplus \mathrm{B}$, where A is projective of R_{x} and $R_{x} \cap B<_{\mu} L$.
Since F is μ-coclosed and $R_{x} \cap B \ll_{\mu} L$, then $\{$ by prop.(2.5) $\} R_{x} \cap B \ll_{\mu} F$.
Thus, M is F - μ-semiregular.
Remark 2.10: Let M be an R-module and K be a submodule of M. If M is F - μ-semiregular, then K is $(\mathrm{K} \cap \mathrm{F})-\mu$-semiregular, when $\mathrm{K} \cap \mathrm{F}$ is μ-coclosed.
Proof : Let $0 \neq R_{x} \leq K$, then $R_{x} \leq \mathrm{M}$. Since M is $\mathrm{F}-\mu$-semiregular, then $\exists \mathrm{A}$ is a direct summand submodule of M , where A is projective of R_{x} and $\mathrm{A} \leq R_{x} \leq \mathrm{K}$, then $\mathrm{M}=\mathrm{A} \oplus \mathrm{B}$ and $\mathrm{B} \cap R_{x} \ll_{\mu} F$. Hence, $\mathrm{K}=\mathrm{K} \cap \mathrm{M}=\mathrm{K} \cap(\mathrm{A} \oplus \mathrm{B})$, since $\mathrm{A} \leq \mathrm{K}$ and by modular law, $\mathrm{K}=\mathrm{A} \oplus(\mathrm{K} \cap \mathrm{B})$.
Hence $(\mathrm{K} \cap \mathrm{B}) \cap R_{x} \leq \mathrm{F}$, but $\mathrm{K} \cap R_{x} \leq \mathrm{K} \cap \mathrm{F} \leq \mathrm{F}$ and $\mathrm{K} \cap \mathrm{F}$ is μ-coclosed, hence $(\mathrm{K} \cap \mathrm{B}) \cap R_{x} \ll_{\mu} \mathrm{K} \cap \mathrm{F}$. Then K is $(\mathrm{F} \cap \mathrm{K})-\mu$-semiregular.
Proposition 2.11: Let M be an $F-\mu$-semiregular and K be a submodule of M such that $F \leq K$. Then K is $\mathrm{F}-\mu$-semiregular.
Proof : Let $0 \neq R_{x}$ be a cyclic submodule of K. Since M is $\mathrm{F}-\mu$-semiregular, then $\mathrm{M}=\mathrm{A} \oplus \mathrm{B}$, where A is a projective submodule of R_{x} and $R_{x} \cap B \ll_{\mu} F$. Since $\mathrm{A} \leq \mathrm{K}$, then by the modular law, we have $\mathrm{K}=\mathrm{A} \oplus(\mathrm{B} \cap \mathrm{K})$. But $R_{x} \cap(B \cap K)=R_{x} \cap B \ll_{\mu} F$. Therefore, K is F - μ-semiregular.
Recall that M is called μ-semi hollow module if every finitely generated proper submodule of M is μ-small submodule of M [5] .
Remark 2.12 : Let M be an R-module, where M is μ-semi hollow module . Then M is $\mathrm{M}-\mu$ semiregular module.
Proof : Let $0 \neq R_{x}$ be a proper cyclic submodule of M , then $\mathrm{M}=\{0\} \oplus \mathrm{M}$, where $\{0\}$ is a projective submodule of R_{x} and $R_{x} \cap M=R_{x} \ll_{\mu} M$ \{since M is μ-semi hollow\}. Thus M is $\mathrm{M}-\mu$-semiregular.
Proposition 2.13 : Every semisimple projective R -module M is F - μ-semiregular , for every submodule F of M .
Proof : Let $0 \neq R_{x}$ be a cyclic submodule of M . Since M is semisimple, then $M=R_{x} \oplus B$, for some submodule B of M . Since M is a projective, then R_{x} is a projective submodule of R_{x} and $R_{x} \cap B=$ $0 \ll{ }_{\mu} F$. So, M is F- μ-semiregular module.
Proposition 2.14: Let M be an indecomposable R-module and F be a proper submodule of M.If M is $\mathrm{F}-\mu$-semiregular, then M is a projective module.
Proof : Let M be an indecomposable R-module, and let F be a proper submodule of M . Since M is F -μ-semiregular, then for every $0 \neq \mathrm{x} \in \mathrm{M}$, there exists a decomposition $\mathrm{M}=A_{x} \oplus B_{x}$, where A_{x} is a projective submodule of R_{x} and $B_{x} \cap R_{x}<_{\mu} F$. But M is an indecomposable R-module. Then for every $\mathrm{x} \in \mathrm{M}$, either $A_{x}=0$ or $A_{x}=M$. If $A_{x}=0$, for every $\mathrm{x} \in \mathrm{M}$, then $B_{x}=M$, for every $\mathrm{x} \in \mathrm{M}$, and hence $B_{x} \cap R_{x}=M \cap R_{x}=R_{x}<_{\mu} F$, for every $\mathrm{x} \in \mathrm{M}$ and $\mathrm{M}=\mathrm{F}$. Which is a contradiction.
Then, there exists $x_{0} \in M$, such that $M=A_{x 0}$, and hence M is projective.
Recall that a submodule A of M is called a fully invariant if $g(A) \leq A$, for $g \in \operatorname{End}(M)$, and M is called duo module if every submodule of M is fully invariant [7] .
Proposition 2.15: Let M be an R-module and F be a fully invariant submodule of M, then for any submodule N of M , the following conditions are equivalent:
1- There exists a decomposition $\mathrm{M}=\mathrm{A} \oplus \mathrm{B}$ such that A is projective submodule of N and $\mathrm{N} \cap$ $\mathrm{B}<{ }_{\mu} \mathrm{F}$.
2- There exists a homomorphism $\alpha: \mathrm{M} \longrightarrow \mathrm{N}$ such that $\alpha^{2}=\alpha, \alpha(\mathrm{M})$ is a projective and (I$\alpha)(\mathrm{N}) \ll_{\mu} \mathrm{F}$.
3- N can be written as $\mathrm{N}=\mathrm{A} \oplus \mathrm{S}$, where A is a projective summand of M and $\mathrm{S} \ll_{\mu} \mathrm{F}$.
Proof $: \mathbf{1} \Rightarrow \mathbf{2}$: Let N be a submodule of M, then by our assumption, $M=A \oplus B$, where A is projective submodule of N and $\mathrm{N} \cap \mathrm{B}<{ }_{\mu} \mathrm{F}$. By the modular law, we have that $\mathrm{N}=\mathrm{A} \oplus(\mathrm{B} \cap \mathrm{N})$. Let $\alpha: \mathrm{M} \longrightarrow \mathrm{A}$ be the projection map. It is clear that $\alpha^{2}=\alpha$ and $\alpha(\mathrm{M})$ is projective. Now, consider the map $(\mathrm{I}-\alpha)$. It is clear that $(\mathrm{I}-\alpha): \mathrm{M} \longrightarrow \mathrm{B}$ and $(\mathrm{I}-\alpha)(\mathrm{N}) \leq \mathrm{B}$. Now let $\mathrm{x} \in(\mathrm{I}-\alpha)(\mathrm{N})$
, then $\mathrm{x}=\mathrm{n}-\alpha(\mathrm{n})$ for some $\mathrm{n} \in \mathrm{N}$. But $\alpha(\mathrm{x}) \in \mathrm{A} \leq \mathrm{N}$, therefore $\mathrm{x} \in \mathrm{N}$ and hence $\mathrm{x} \in \mathrm{N} \cap \mathrm{B}<{ }_{\mu} \mathrm{F}$. Thus $(\mathrm{I}-\alpha)(\mathrm{N}) \leq \mathrm{N} \cap \mathrm{B} \ll_{\mu} \mathrm{F}$.
$\mathbf{2} \Rightarrow \mathbf{1}:$ Assume that there exists a homomorphism $\alpha: M \longrightarrow N$ such that $\alpha^{2}=\alpha, \alpha(M)$ is projective and $(\mathrm{I}-\alpha)(\mathrm{N}) \ll_{\mu} \mathrm{F}$. Claim that $\mathrm{M}=\alpha(\mathrm{M}) \oplus(\mathrm{I}-\alpha)(\mathrm{M})$ to show that: Let $\mathrm{m} \in \mathrm{M}$, then $\mathrm{m}=\mathrm{m}+\alpha(\mathrm{m})-\alpha(\mathrm{m})=\alpha(\mathrm{m})+\mathrm{m}-\alpha(\mathrm{m})=\alpha(\mathrm{m})+(\mathrm{I}-\alpha)(\mathrm{m})$. Thus $\mathrm{M}=\alpha(\mathrm{M})+(\mathrm{I}-\alpha)$
(M). Now, let $x \in \alpha(M) \cap(I-\alpha)(M)$, then $x=\alpha\left(m_{1}\right)$ and $x=(I-\alpha)\left(m_{2}\right)$ for some m_{1}, m_{2} $\in \mathrm{M}$.

So, $\alpha(\mathrm{x})=\alpha\left(\mathrm{m}_{1}\right)=\alpha\left(\mathrm{m}_{2}\right)-\alpha\left(\mathrm{m}_{2}\right)=0$, then $\alpha\left(\mathrm{m}_{1}\right)=0$ and hence $\mathrm{x}=0 . \alpha(\mathrm{M})$ is projective. Let $d \in N \cap(I-\alpha)(M)$, then $d \in N$ and $d \in(I-\alpha)(M)$. Since $d \in(I-\alpha)(M)$, then $d=(I-\alpha)$ (m), where $m \in M$. Now, $d=m-\alpha(m)$ and hence $m \in N$, so $d \in(I-\alpha)(N)$. Thus $N \cap(I-\alpha)$ $(\mathrm{M}) \leq(\mathrm{I}-\alpha)(\mathrm{N}) \ll{ }_{\mu} \mathrm{F}$.
$\mathbf{1} \Rightarrow \mathbf{3}$: Let N be a submodule of M, then by our assumption, $M=A \oplus B$, where A is a projective submodule of N and $\mathrm{N} \cap \mathrm{B} \ll_{\mu} \mathrm{F}$. By the modular law, $\mathrm{N}=\mathrm{A} \oplus(\mathrm{N} \cap \mathrm{B})$, where A is projective summand of M , and $\mathrm{N} \cap \mathrm{B} \ll_{\mu} \mathrm{F}$.
$\mathbf{3} \Rightarrow \mathbf{1}$: Let N be a submodule of M , then by our assumption, $\mathrm{N}=\mathrm{A} \oplus \mathrm{S}$, where A is a projective summand of M and $\mathrm{S} \ll_{\mu} \mathrm{F}$. Hence $\mathrm{M}=\mathrm{A} \oplus \mathrm{B}$, for some submodule B of M . By the modular law, $\mathrm{N}=\mathrm{A} \oplus(\mathrm{N} \cap \mathrm{B})$. Let $\mathrm{P}: \mathrm{M} \longrightarrow \mathrm{B}$ be the projection map. Claim that $\mathrm{P}(\mathrm{S})=\mathrm{P}(\mathrm{N} \cap \mathrm{B})$ to show that: $\mathrm{P}(\mathrm{N})=\mathrm{P}(\mathrm{A}) \oplus \mathrm{P}(\mathrm{S})=\mathrm{P}(\mathrm{S})$. On the other hand, $\mathrm{P}(\mathrm{N})=\mathrm{P}(\mathrm{A}) \oplus \mathrm{P}(\mathrm{N} \cap \mathrm{B})=\mathrm{P}(\mathrm{N} \cap$ B). Thus $\mathrm{N} \cap \mathrm{B}=\mathrm{P}(\mathrm{N} \cap \mathrm{B})=\mathrm{P}(\mathrm{S}) \ll_{\mu} \mathrm{P}(\mathrm{F})$. But F is a fully invariant submodule of M , therefore $\mathrm{P}(\mathrm{F}) \ll_{\mu} \mathrm{F}$ and hence $\mathrm{N} \cap \mathrm{B} \ll_{\mu} \mathrm{F}$.
Corollary 2.16: Let F be a fully invariant submodule of an R -module, then the following statements are equivalent:
$1-\mathrm{M}$ is $\mathrm{F}-\mu$ - semiregular.
2-For every finitely generated submodule N of M there exists a homomorphism $\gamma: M \rightarrow N$, such that $\gamma^{2}=\gamma, \gamma(\mathrm{M})$ is a projective and $(\mathrm{I}-\gamma)(\mathrm{N}) \ll_{\mu} \mathrm{F}$.
3- For every finitely generated submodule N of M there exists a decomposition $M=A \oplus B$ such that A is projective submodule of N and $\mathrm{N} \cap \mathrm{B} \ll_{\mu} F$.
4- For every finitely generated submodule N of M, N can be written as $N=A \oplus S$, where A is projective summand of M and $\mathrm{S} \ll_{\mu} F$.
Proof: It is clear .
Corollary 2.17: Let M be an R-module and F be a fully invariant submodule of M, then for every $0 \neq \mathrm{x} \in \mathrm{M}$, the following statements are equivalent:
$1-\mathrm{x}$ is $\mathrm{F}-\mu$-semiregular element.
2- R_{x} can be written as $R_{x}=\mathrm{A} \oplus \mathrm{S}$, where A is a projective summand of M , and $\mathrm{S} \ll_{\mu} \mathrm{F}$.
Proof: It is clear.
Corollary 2.18 : Let M be an R-module and F be a fully invariant submodule of M, then the following statements are equivalent:
$1-\mathrm{M}$ is an $\mathrm{F}-\mu$-semiregular module.
2- For $0 \neq \mathrm{x} \in \mathrm{M}, R_{x}$ can be written as $R_{x}=\mathrm{A} \oplus \mathrm{S}$, where A is a projective summand of M , and $\mathrm{S} \ll_{\mu} \mathrm{F}$.
Proof : It is clear.
Proposition 2.19: Let R be an indecomposable ring, M is an R -module, and $\mathrm{x} \in \mathrm{M}$, then R_{x} is $\mathrm{F}-\mu-$ semiregular if and only if either R_{x} is projective summand of M or $R_{x} \ll_{\mu} \mathrm{F}$, where F is a fully invariant submodule of M .
Proof: \Rightarrow) Let $0 \neq \mathrm{x} \in \mathrm{M}$ and assume that x is F - μ-semiregular, then by (cor.(2.17)), $R_{x}=\mathrm{A} \oplus \mathrm{B}$, where A is projective summand of M and $\mathrm{B} \ll_{\mu} \mathrm{F}$. Let $: \mathrm{R} \longrightarrow R_{x}$ be defined by $\varphi(\mathrm{x})=\mathrm{rx}, \forall \mathrm{r} \in \mathrm{R} . \varphi$ be an epimorphism, and $\rho: R_{x} \rightarrow \mathrm{~A}$ be the projection homomorphism, then, clearly, $\rho_{o} \varphi=\gamma: \mathrm{R} \rightarrow \mathrm{A}$ is an epimorphism.

Consider the following short exact sequence:
$0 \rightarrow$ Ker $\gamma \xrightarrow{\iota} \xrightarrow{\gamma} \mathrm{A} \rightarrow 0$
where ι is an inclusion homomorphism. Since A is projective, then by [8], the sequence splits, thus $\operatorname{Ker} \gamma$ is a direct summand of R . Now, $\operatorname{Ker} \gamma=\operatorname{Ker}\left(\rho_{\circ} \varphi\right)=\left\{\mathrm{r} \in \mathrm{R} ;\left(\rho_{\circ} \varphi\right)(\mathrm{r})=0\right\}$
$=\{\mathrm{r} \in \mathrm{R} ; \rho(\varphi(\mathrm{r}))=0\}=\{\mathrm{r} \in \mathrm{R}$; and $\varphi(\mathrm{r}) \in \mathrm{B}\}=\varphi^{-1}(\mathrm{~B})$. But R is indecomposable , then either $\varphi^{-1}(\mathrm{~B})=0$ or
$\varphi^{-1}(\mathrm{~B})=\mathrm{R}$. If $\varphi^{-1}(\mathrm{~B})=0$ then $\mathrm{B}=0$, hence $R_{x}=\mathrm{A}$ is a projective summand of M . If $\varphi^{-1}(\mathrm{~B})=\mathrm{R}$, then $\mathrm{B}=\varphi\left(\varphi^{-1}(\mathrm{~B})\right)=\varphi(\mathrm{R})=R_{x}$. Thus $\mathrm{B}=R_{x}$, therefore $R_{x}<_{\mu} \mathrm{F}$.
Conversely, let $\mathrm{x} \in \mathrm{M}$. If R_{x} is a projective summand of M , then $\mathrm{M}=R_{x} \oplus \mathrm{~B}$, for some $\mathrm{B} \leq \mathrm{M}$, hence R_{x} is a projective summand of R_{x}, and $\mathrm{B} \cap R_{x}=\{0\} \ll_{\mu} \mathrm{F}$. If $R_{x} \ll_{\mu} \mathrm{F}$, then $\mathrm{M}=\{0\} \oplus \mathrm{M}$, where $\{0\}$ is projective summand of R_{x} and $R_{x} \cap \mathrm{M}=R_{x}<_{\mu} \mathrm{F}$.
Proposition 2.20: Let $\mathrm{M}=\oplus_{i \in I} M_{i}$ be a direct sum of the submodule M_{i} of M . If M is $\mathrm{F}-\mu$-semiregular, then each M_{i} is $F_{i}-\mu$-semiregular ,where $F_{i}=\mathrm{F} \cap M_{i}$.
Proof : Let $0 \neq x_{i} \in M_{i}$, for some $\mathrm{i} \in \mathrm{I}$. Since $x_{i} \in M$ and since M is $\mathrm{F}-\mu$-semiregular, then $\exists A \leq$ $R_{x i}, \mathrm{~A}$ is projective, and A is direct summand of M , since $\mathrm{M}=\mathrm{A} \oplus \mathrm{B}$ for $\mathrm{B} \leq \mathrm{M}$.
Also, $R_{x i} \cap B \ll_{\mu} F$. Now, $M_{i} \cap M=M_{i}=M_{i} \cap\left(A_{i} \oplus B_{i}\right)=A \oplus\left(M_{i} \cap B_{i}\right)$. Since A_{i} is a direct summand of $M_{i} . A_{i}$ is projective, and $\left(B_{i} \cap M_{i}\right) \cap R_{x i} \leq R_{x i} \cap B_{i} \ll{ }_{\mu} F$ then
$\left(B_{i} \cap M_{i}\right) \cap R_{x i} \ll_{\mu} F$. But $\left(B_{i} \cap M_{i}\right) \cap R_{x i} \leq M_{i} \cap F \leq F$. Since $\mathrm{M}=\oplus_{i \in I} M_{i}$, then $\mathrm{F}=\oplus_{i \in I}\left(M_{i} \cap F\right)$. Since $M_{i} \cap F$ is a direct summand of F [4], then $\left(B_{i} \cap M_{i}\right) \cap R_{x i} \ll_{\mu} M_{i} \cap F$. Thus, M_{i} is $F_{i}-\mu$ semiregular module.
Proposition 2.21: Let M_{1} and M_{2} be R-modules such that $\mathrm{M}=M_{1} \oplus M_{2}$ is a duo module. If M_{1} is $F_{1}-\mu$-semiregular and M_{2} is $F_{2}-\mu$-semiregular , then M is $F_{1} \oplus F_{2}-\mu$-semiregular module .
Proof: Let N be a finitely generated submodule of M . Since M is a duo module, then $\mathrm{N}=\mathrm{N} \cap M_{1} \oplus$ $\mathrm{N} \cap M_{2}$. Since N is finitely generated, then $\mathrm{N} \cap M_{1}$ and $\mathrm{N} \cap M_{2}$ are finitely generated. Also, since M_{i} is $F_{i}-\mu$-semiregular, $\forall \mathrm{i}=1,2$, and N_{i} is finitely generated $. \forall \mathrm{i}=1,2$, then \exists is a projective direct summand submodule of N_{i}, such that $M_{i}=A_{i} \oplus B_{i}$. and $N_{i} \cap B_{i} \ll_{\mu} F_{i} . \forall \mathrm{i}=1,2$. Thus, $\mathrm{M}=M_{1} \oplus$ $M_{2}=\left(A_{1} \oplus B_{1}\right) \oplus\left(A_{2} \oplus B_{2}\right)=\left(A_{1} \oplus A_{2}\right) \oplus\left(B_{1} \oplus B_{2}\right)$. Since A_{1} and A_{2} are projective, then $\left(A_{1} \oplus A_{2}\right)$ is projective. Now, $\mathrm{N} \cap\left(B_{1} \oplus B_{2}\right)=\left(\mathrm{N} \cap M_{1} \oplus \mathrm{~N} \cap M_{2}\right) \cap\left(B_{1} \oplus B_{2}\right)=\left(N_{1} \oplus\right.$ $\left.B_{1}\right) \cap\left(N_{2} \oplus B_{2}\right) \ll_{\mu} F_{1} \oplus F_{2}$. Thus, M is $F_{1} \oplus F_{2}-\mu$-semiregular module.

References

1. Inoue, T. 1983. Sum of hollow modules, Osaka J. Math, :331-336.
2. Mohamed S.H. and Muller B.J. 1990. Continuous and discrete modulees, London Math .Soc.Lns.147, Cambridgeo University Press, Cambridge.
3. Ozcan, A. C.2002. Modules with small cyclic submodules in their injective hulls, Comm. In Algebra , :1575-1589.
4. Khalid Kamil E.M. 2018. On a generalization of small submodules, Sci. Int. (Lahore)., 30(3): 359-365.
5. Mohmmed, E., Khalid, W . 2020. On μ-semiregular Module, J. Phys.: Conf.Ser.,:1-7.
6. Ganesan L. and Vanaja N ., 2002 . Modules for which every submodule has a unique coclosure, comm . Algbera , :2355-2377.
7. Orhan, N., Tutuncu, D. K . and Tribak , R. 2007 . On Hollow-lifting modules, Taiwanese J.Math , :545-568.
8. Kasch. F. 1982. Modules and Rings, Acad. Press, London.

[^0]: *Email: emeymathm913@gmail.com

