Mohammed and Khalid

Iraqi Journal of Science, 2021, Vol. 62, No. 4, pp: 1271-1275 DOI: 10.24996/ijs.2021.62.4.22

ISSN: 0067-2904

F-µ-Semiregular Modules

Eman mohammed*, Wasan Khalid

Department of Mathmetics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 15/6/2020

Accepted: 25/7/2020

Abstract:

Let R be an associative ring with identity and let M be a left R-module . As a generalization of μ -semiregular modules, we introduce an F- μ -semiregular module. Let F be a submodule of M and $x \in M$. x is called F- μ -semiregular element in M, if there exists a decomposition M=A \oplus B, such that A is a projective submodule of R_x and $R_x \cap B \ll_{\mu} F$. M is called F- μ -semiregular if x is F- μ -semiregular element for each $x \in M$. A condition under which the module μ -semiregular is F- μ -semiregular module was given. The basic properties and some characterizations of the F- μ -semiregular module were provided.

Keywords: µ-small submodule, F-µ-semiregular module.

مقاسات شبه المنتظمة من النمط -F-µ

ايمان محجد * ، وسن خالد

قسم الرياضيات, كلية العلوم, جامعة بغداد, بغداد, العراق

الخلاصة

لتكن R حلقه ذات عنصر محايد وليكن M مقاسا ايسر معرف عليها . كتعميم لمقاسات شبه منتظمة من النمط $-\mu$ نقدم المقاسات شبه منتظمة من النمط $-\mu$ ، ليكن F مقاس جزئي من M وليكن M ع، xeM من النمط $-\mu$ نقدم المقاسات شبه منتظمة من النمط $-\mu$ -semiregular بحيث ان A يدعى العنصر x عنصر من النمط $-\mu = 8$ و $F - \mu$ اذا كان هنالك تحلل M \oplus \oplus H = 4, react in $R_x \ll R$ و مقاس اسقاطي جزئي من R_x و $R_x \gg R \cap R_x$ (E و $R_x \gg R \cap R_x$ مقاس شبه منتظم من النمط $-\mu = 8$ ويسمى M مقاس شبه منتظم من النمط $-\mu = 8$ و مقاس اسقاطي جزئي من R_x و $R_x \gg R \cap R_x = 8$ ويسمى M مقاس شبه منتظم من النمط $-\mu = 8$ و مقاس اسقاطي جزئي من R_x و $R_x \gg R \cap R_x = 8$ ويسمى M مقاس شبه منتظم من النمط $-\mu = 8$ و مقاس منتظم من النمط $-\mu = 8$ و مقاس شبه منتظم من النمط $-\mu = 8$ و مقاس شبه منتظم من النمط $-\mu = 8$ و مقاس شبه منتظم من النمط $-\mu = 8$ و مقاس شبه منتظم من النمط $-\mu = 8$ و مقاس شبه منتظم من النمط $-\mu = 8$ و مقاس شبه منتظم من النمط $-\mu = 8$ و مقاس شبه منتظم من النمط $-\mu = 8$ و مقاس شبه منتظم من النمط $-\mu = 8$ و مقاس شبه منتظم من النمط $-\mu = 8$ و مقاس شبه منتظم من النمط $-\mu = 8$ و مقاس شبه منتظم من النمط $-\mu = 8$ و مقاس شبه منتظم من النمط $-\mu = 8$ و مقاس شبه منتظم من النمط $-\mu = 8$ و مقاس شبه منتظم من النمط $-\mu = 8$ وقد تم اعطاء الخصائص $-\mu = 8$

1. Introduction

Throughout this paper, all rings have an identity and all modules will be unital left R-modules . Let M be a module and A be a submodule of M, then A is called small in M (denoted by A \ll M) if M \neq A+B, for any proper submodule B of M, see[1] and [2]. $Z^*(M)=\{m\in M:mR\ll E(M)\}$. A module M is called cosingular (non cosingular) module if $Z^*(M)=M$ ($Z^*(M)=0$) [3]. As a generalization of small submodules, the concept of μ -small submodule was introduced in [4]; A submodule A of M is called μ -small submodule of M (denoted by $A\ll_{\mu} M$) if whenever $M=A+X, \frac{M}{X}$ is cosingular, then M=X. We write E(M), Rad(M), and Z(M), for the injective envelope, the Jacobson radical, and the singular

^{*}Email: emeymathm913@gmail.com

submodule of M. respectively, for a left R-module M [3]. Define the submodule $Z^*(M)$ as a dual of singular submodule to be the set of all elements of $m \in M$ such that mR is a small module.

An R-module M is called μ -semiregular module if there exists a decomposition M=A \oplus B, such that A is projective submodule of N and $N \cap B \ll_{\mu} M$ [5]. This concept leads us to introduce the following concept; Let M be an R-module F be a submodule of M and $x \in M$. x is called F- μ -semiregular element in M, if there exists a decomposition M=A \oplus B, such that A is a projective submodule of R_x and $R_x \cap B \ll_{\mu} F$. M is called an F- μ -semiregular if m is F- μ -semiregular element for each m \in M.

In this paper, we investigate the basic properties of F- μ -semiregular module and give the condition under which the μ -semiregular module is an F- μ -semiregular module .

2. F-µ-semiregular module

Definition 2.1: Let M be an R-module F be a submodule of M, and $0 \neq x \in M$. x is called **F**- μ -semiregular element in M. if there exists a decomposition M=A \oplus B, such that A is a projective submodule of R_x and $R_x \cap B \ll_{\mu} F$.

M is called an **F-\mu-semiregular module** if x is F- μ -semiregular element for each x \in M. **Example 2.2**

1- Consider the module Z_6 as Z_6 -module. One can easily show that Z_6 is F- μ -semiregular, for every submodule F of Z_6 .

2- Consider the module Z as Z-module . Claim that Z is not F- μ -semiregular, for every proper submodule F of Z. Let R_x be nonzero submodule of Z.

Since Z is an indecomposable module, then {0} is only projective summand of Z contained in R_x . Z={0} \oplus Z and $R_x \cap Z=R_x$ is not μ -small in F, so Z is not F- μ -semiregular. \forall F \subsetneq Z.

Note : Every F- μ -semiregular module is μ -semiregular module, but the converse is not true in general. For example, for Q as Z-module , let Z be a submodule of Q Q={0} \oplus Q. Since Q is indecomposable, then {0} is only projective summand of Z and Q \cap Z=Z is not μ -small in Z .Then Q is not F- μ -semiregular but is μ -semiregular.

Recall that a submodule A of M is called **coclosed submodule** of M (denoted by $A \leq_{cc} M$) if whenever $\frac{A}{X} \ll \frac{M}{X}$ for some submodule X of M implies that X=A [6].

Definition 2.3: [4]. Let M be an R-module and let A be a submodule of M, then we say that A is a **µ**-coclosed submodule of M denoted by $(A \leq_{\mu cc} M)$, if whenever $\frac{A}{X}$ is cosingular and $X \leq_{\mu cc} A$ in M for some submodule X of A, we have X=A.

The followings are some properties of μ -coclosed submodule [4].

Remark 2.4: [4]. 1- Let M be an R-module and A be a coclosed submodule of M, then A is a μ -coclosed in M.

2- Let M be a cosingular R-module and A be submodule of M, then A is a μ -coclosed if and only if it is coclosed in M.

3- Every direct summand of an R-module M is µ-coclosed.

Proposition 2.5 : [4]. Let A be a μ -coclosed submodule of an R-module M. If $X \le A \le M$ and $X \ll_{\mu} M$, then $X \ll_{\mu} A$.

Remark 2.6 : Let M be a μ -semiregular R-module. If F is μ -coclosed submodule of M, then F is F- μ -semiregular.

Proof: Let $0 \neq x \in F$ and $R_x \subseteq F$, then $R_x \subseteq M$. Since M is μ -semiregular module, then \exists is a projective submodule A of R_x such that $M = A \oplus B$ and $B \cap R_x \ll_{\mu} M$. Now, $F = F \cap M = F \cap (A \oplus B) = A \oplus (F \cap B)$ (modular law). $F \cap B \cap R_x \leq F$, but $F \cap B \cap R_x = B \cap R_x \ll_{\mu} M$. Since F is μ -coclosed, then{by prop.(2.5)} $B \cap R_x \ll_{\mu} F$. Thus, F is F- μ -semiregular.

Remark 2.7: Let M be an R-module . If M is $\{0\}$ - μ -semiregular, then M is μ -semiregular.

Proof : Suppose that M is $\{0\}$ - μ -semiregular and let R_x be a submodule of M.

Since M is $\{0\}$ - μ -semiregular, then there exists a projective submodule P of R_x ,

such that M=P \oplus S and $R_x \cap S = \{0\} \ll_{\mu} \{0\}$. Thus, M= $R_x \oplus S$ and $R_x \cap S = \{0\} \ll_{\mu} M$. Then, M is μ -semiregular.

Remark 2.8: Let M be an R-module and F and L be submodules of M such that $F \leq L$.

If M is $F-\mu$ -semiregular, then M is L- μ -semiregular.

Proof : It is clear.

Remark 2.9 : Let M be an R-module and F and L be submodules of M such that $F \leq L$ and F is μ -coclosed in M. If M is L- μ -semiregular, then M is F- μ -semiregular.

Proof: Let M be L- μ -semiregular, F \leq L, and x \in M. Since M is L- μ -semiregular, then there exists M=A \oplus B, where A is projective of R_x and $R_x \cap B \ll_{\mu} L$.

Since F is μ -coclosed and $R_x \cap B \ll_{\mu} L$, then {by prop.(2.5)} $R_x \cap B \ll_{\mu} F$.

Thus, M is F-µ-semiregular.

Remark 2.10: Let M be an R-module and K be a submodule of M. If M is F- μ -semiregular, then K is $(K \cap F)$ - μ -semiregular, when $K \cap F$ is μ -coclosed.

Proof: Let $0 \neq R_x \leq K$, then $R_x \leq M$. Since M is F- μ -semiregular, then \exists A is a direct summand submodule of M, where A is projective of R_x and $A \leq R_x \leq K$, then $M = A \oplus B$ and $B \cap R_x \ll_{\mu} F$. Hence, $K = K \cap M = K \cap (A \oplus B)$, since $A \leq K$ and by modular law, $K = A \oplus (K \cap B)$.

Hence $(K \cap B) \cap R_x \leq F$, but $K \cap R_x \leq K \cap F \leq F$ and $K \cap F$ is μ -coclosed, hence $(K \cap B) \cap R_x \ll_{\mu} K \cap F$. Then K is $(F \cap K)$ - μ -semiregular.

Proposition 2.11: Let M be an F- μ -semiregular and K be a submodule of M such that $F \le K$. Then K is F - μ -semiregular.

Proof : Let $0 \neq R_x$ be a cyclic submodule of K. Since M is F- μ -semiregular, then M=A \oplus B, where A is a projective submodule of R_x and $R_x \cap B \ll_{\mu} F$. Since A \leq K, then by the modular law, we have K=A \oplus (B \cap K). But $R_x \cap (B \cap K) = R_x \cap B \ll_{\mu} F$. Therefore, K is F- μ -semiregular.

Recall that M is called μ -semi hollow module if every finitely generated proper submodule of M is μ -small submodule of M [5].

Remark 2.12 : Let M be an R-module , where M is μ -semi hollow module .Then M is M- μ -semiregular module.

Proof: Let $0 \neq R_x$ be a proper cyclic submodule of M, then M={0} \oplus M, where {0} is a projective submodule of R_x and $R_x \cap M = R_x \ll_{\mu} M$ {since M is μ -semi hollow}. Thus M is M- μ -semiregular.

Proposition 2.13 : Every semisimple projective R-module M is F- μ -semiregular , for every submodule F of M.

Proof : Let $0 \neq R_x$ be a cyclic submodule of M. Since M is semisimple, then $M = R_x \oplus B$, for some submodule B of M. Since M is a projective, then R_x is a projective submodule of R_x and $R_x \cap B = 0 \ll_{\mu} F$. So, M is F- μ -semiregular module.

Proposition 2.14: Let M be an indecomposable R-module and F be a proper submodule of M. If M is F- μ -semiregular, then M is a projective module.

Proof : Let M be an indecomposable R-module , and let F be a proper submodule of M. Since M is Fµ-semiregular , then for every $0 \neq x \in M$, there exists a decomposition $M=A_x \bigoplus B_x$, where A_x is a projective submodule of R_x and $B_x \cap R_x \ll_{\mu} F$. But M is an indecomposable R-module. Then for every $x \in M$, either $A_x = 0$ or $A_x = M$. If $A_x = 0$, for every $x \in M$, then $B_x = M$, for every $x \in M$, and hence $B_x \cap R_x = M \cap R_x = R_x \ll_{\mu} F$, for every $x \in M$ and M=F. Which is a contradiction.

Then, there exists $x_0 \in M$, such that $M = A_{x0}$, and hence M is projective.

Recall that a submodule A of M is called a **fully invariant** if $g(A) \le A$, for $g \in End(M)$, and M is called **duo module** if every submodule of M is fully invariant [7].

Proposition 2.15: Let M be an R-module and F be a fully invariant submodule of M, then for any submodule N of M, the following conditions are equivalent:

1- There exists a decomposition $M = A \oplus B$ such that A is projective submodule of N and N $\cap B \ll_{\mu} F$.

2- There exists a homomorphism $\alpha : M \longrightarrow N$ such that $\alpha^2 = \alpha, \alpha$ (M) is a projective and (I- α)(N) $\ll_{\mu} F$.

3- N can be written as $N = A \oplus S$, where A is a projective summand of M and $S \ll_{\mu} F$.

Proof :1 \Rightarrow 2: Let N be a submodule of M, then by our assumption, M =A \oplus B, where A is projective submodule of N and N $\cap B \ll_{\mu} F$. By the modular law, we have that N = A \oplus (B \cap N). Let $\alpha : M \longrightarrow A$ be the projection map. It is clear that $\alpha^2 = \alpha$ and α (M) is projective. Now, consider the map (I- α). It is clear that (I- α) : M \longrightarrow B and (I- α) (N) \leq B. Now let $x \in$ (I- α) (N)

, then x=n - α (n) for some $n \in N$. But α (x) $\in A \leq N$, therefore $x \in N$ and hence $\ x \in N \cap B \ll_{\mu} F$. Thus $(I - \alpha) (N) \leq N \cap B \ll_{\mu} F$.

2⇒1: Assume that there exists a homomorphism α : M \longrightarrow N such that $\alpha^{2} = \alpha$, α (M) is projective and (I-α) (N) \ll_{μ} F. Claim that M = α (M) ⊕ (I-α) (M) to show that: Let m ∈ M, then m = m + α (m) - α (m) = α (m) + m - α (m) = α (m) + (I-α) (m). Thus M = α (M) + (I-α)

(M). Now, let $x \in \alpha$ (M) \cap (I- α) (M), then $x = \alpha$ (m₁) and x = (I- α) (m₂) for some m₁, m₂ \in M.

So, α (x) = α (m₁) = α (m₂) - α (m₂) = 0, then α (m₁) = 0 and hence x = 0. α (M) is projective. Let $d \in N \cap (I - \alpha)(M)$, then $d \in N$ and $d \in (I - \alpha)(M)$. Since $d \in (I - \alpha)(M)$, then $d = (I - \alpha)(M)$, where m $\in M$. Now, d = m - α (m) and hence m $\in N$, so $d \in (I - \alpha)(N)$. Thus N \cap (I- α) (M) \leq (I- α) (N) \ll_{μ} F.

1⇒3: Let N be a submodule of M, then by our assumption, M=A⊕B, where A is a projective submodule of N and N ∩ B \ll_{μ} F. By the modular law, N = A⊕ (N ∩ B), where A is projective summand of M, and N ∩ B \ll_{μ} F.

3⇒1: Let N be a submodule of M, then by our assumption, N = A ⊕ S, where A is a projective summand of M and S \ll_{μ} F. Hence M = A ⊕ B, for some submodule B of M. By the modular law, N = A ⊕ (N ∩ B). Let P : M → B be the projection map. Claim that P(S)= P(N ∩ B) to show that: P(N) = P(A) ⊕ P(S) = P(S). On the other hand, P(N) = P(A) ⊕ P(N ∩ B) = P(N ∩ B). Thus N ∩ B = P (N ∩ B) = P(S) \ll_{μ} P(F). But F is a fully invariant submodule of M, therefore P(F) \ll_{μ} F and hence N ∩ B \ll_{μ} F.

Corollary 2.16: Let F be a fully invariant submodule of an R-module, then the following statements are equivalent:

1-M is F-µ- semiregular.

2-For every finitely generated submodule N of M there exists a homomorphism $\gamma : M \to N$, such that $\gamma^2 = \gamma$, $\gamma(M)$ is a projective and (I- γ) (N) \ll_{μ} F.

3- For every finitely generated submodule N of M there exists a decomposition $M = A \oplus B$ such that A is projective submodule of N and $N \cap B \ll_{\mu} F$.

4- For every finitely generated submodule N of M, N can be written as $N = A \oplus S$, where A is projective summand of M and $S \ll_{\mu} F$.

Proof : It is clear .

Corollary 2.17: Let M be an R-module and F be a fully invariant submodule of M, then for every $0 \neq x \in M$, the following statements are equivalent:

1- x is F- μ -semiregular element.

2- R_x can be written as $R_x = A \oplus S$, where A is a projective summand of M, and $S \ll_u F$.

Proof : It is clear.

Corollary 2.18 : Let M be an R-module and F be a fully invariant submodule of M, then the following statements are equivalent:

1- M is an F- μ -semiregular module.

2- For 0≠ x∈M, R_x can be written as R_x =A⊕S, where A is a projective summand of M, and S«_µF. **Proof :** It is clear.

Proposition 2.19: Let R be an indecomposable ring, M is an R-module, and $x \in M$, then R_x is F- μ -semiregular if and only if either R_x is projective summand of M or $R_x \ll_{\mu} F$, where F is a fully invariant submodule of M.

Proof: \Rightarrow) Let $0 \neq x \in M$ and assume that x is F- μ -semiregular, then by (cor.(2.17)), $R_x = A \bigoplus B$, where A is projective summand of M and $B \ll_{\mu} F$. Let $: R \longrightarrow R_x$ be defined by $\varphi(x) = rx$, $\forall r \in R$. φ be an epimorphism, and $\rho: R_x \longrightarrow A$ be the projection homomorphism, then, clearly, $\rho_0 \varphi = \gamma: R \longrightarrow A$ is an epimorphism.

Consider the following short exact sequence:

 $0 \rightarrow \operatorname{Ker} \gamma \xrightarrow{\iota} R \xrightarrow{\gamma} A \rightarrow 0$

where ι is an inclusion homomorphism. Since A is projective, then by [8], the sequence splits, thus Ker γ is a direct summand of R. Now, Ker γ =Ker ($\rho_{\circ}\varphi$)={r \in R ; ($\rho_{\circ}\varphi$)(r)=0}

={r $\in \mathbb{R}$; $\rho(\varphi(\mathbf{r}))=0$ }={r $\in \mathbb{R}$; and $\varphi(\mathbf{r}) \in \mathbb{B}$ }= $\varphi^{-1}(\mathbb{B})$. But \mathbb{R} is indecomposable , then either $\varphi^{-1}(\mathbb{B})=0$ or $\varphi^{-1}(\mathbb{B})=\mathbb{R}$. If $\varphi^{-1}(\mathbb{B})=0$ then $\mathbb{B}=0$, hence $R_x = \mathbb{A}$ is a projective summand of \mathbb{M} . If $\varphi^{-1}(\mathbb{B}) = \mathbb{R}$, then $\mathbb{B}=\varphi(\varphi^{-1}(\mathbb{B}))=\varphi(\mathbb{R})=R_x$. Thus $\mathbb{B}=R_x$, therefore $R_x \ll_{\mu} \mathbb{F}$.

Conversely, let $x \in M$. If R_x is a projective summand of M, then $M = R_x \oplus B$, for some $B \le M$, hence R_x is a projective summand of R_x , and $B \cap R_x = \{0\} \ll_{\mu} F$. If $R_x \ll_{\mu} F$, then $M = \{0\} \oplus M$, where $\{0\}$ is projective summand of R_x and $R_x \cap M = R_x \ll_{\mu} F$.

Proposition 2.20: Let $M = \bigoplus_{i \in I} M_i$ be a direct sum of the submodule M_i of M. If M is F- μ -semiregular, then each M_i is F_i - μ -semiregular ,where $F_i = F \cap M_i$.

Proof: Let $0 \neq x_i \in M_i$, for some $i \in I$. Since $x_i \in M$ and since M is F- μ -semiregular, then $\exists A \leq R_{xi}$, A is projective, and A is direct summand of M, since M=A \oplus B for B \leq M.

Also, $R_{xi} \cap B \ll_{\mu} F$. Now, $M_i \cap M = M_i = M_i \cap (A_i \oplus B_i) = A \oplus (M_i \cap B_i)$. Since A_i is a direct summand of M_i . A_i is projective, and $(B_i \cap M_i) \cap R_{xi} \leq R_{xi} \cap B_i \ll_{\mu} F$ then

 $(B_i \cap M_i) \cap R_{xi} \ll_{\mu} F$. But $(B_i \cap M_i) \cap R_{xi} \leq M_i \cap F \leq F$. Since $M = \bigoplus_{i \in I} M_i$, then $F = \bigoplus_{i \in I} (M_i \cap F)$. Since $M_i \cap F$ is a direct summand of F [4], then $(B_i \cap M_i) \cap R_{xi} \ll_{\mu} M_i \cap F$. Thus, M_i is F_i - μ -semiregular module.

Proposition 2.21: Let M_1 and M_2 be R-modules such that $M=M_1 \bigoplus M_2$ is a duo module. If M_1 is $F_1 - \mu$ -semiregular and M_2 is $F_2 - \mu$ -semiregular, then M is $F_1 \bigoplus F_2 - \mu$ -semiregular module.

Proof: Let N be a finitely generated submodule of M. Since M is a duo module, then $N = N \cap M_1 \bigoplus N \cap M_2$. Since N is finitely generated, then $N \cap M_1$ and $N \cap M_2$ are finitely generated. Also, since M_i is $F_i \cdot \mu$ -semiregular, $\forall i=1,2$, and N_i is finitely generated. $\forall i=1,2$, then \exists is a projective direct summand submodule of N_i , such that $M_i = A_i \bigoplus B_i$. and $N_i \cap B_i \ll_{\mu} F_i \cdot \forall i=1,2$. Thus, $M = M_1 \bigoplus M_2 = (A_1 \bigoplus B_1) \bigoplus (A_2 \bigoplus B_2) = (A_1 \bigoplus A_2) \bigoplus (B_1 \bigoplus B_2)$. Since A_1 and A_2 are projective, then $(A_1 \bigoplus A_2)$ is projective. Now, $N \cap (B_1 \bigoplus B_2) = (N \cap M_1 \bigoplus N \cap M_2) \cap (B_1 \bigoplus B_2) = (N_1 \bigoplus B_1) \cap (N_2 \bigoplus B_2) \ll_{\mu} F_1 \oplus F_2$. Thus, M is $F_1 \bigoplus F_2 \cdot \mu$ -semiregular module.

References

- 1. Inoue, T. 1983. Sum of hollow modules, Osaka J. Math, :331-336.
- **2.** Mohamed S.H. and Muller B.J. **1990.** *Continuous and discrete modulees*, London Math .Soc.Lns.147, Cambridgeo University Press, Cambridge.
- **3.** Ozcan , A. C.**2002**. Modules with small cyclic submodules in their injective hulls, *Comm. In Algebra* , :1575-1589.
- **4.** Khalid Kamil E.M. **2018**. On a generalization of small submodules, *Sci. Int.* (Lahore)., **30**(3): 359-365.
- 5. Mohmmed, E., Khalid, W. 2020. On µ-semiregular Module, J. Phys.: Conf.Ser.,:1-7.
- 6. Ganesan L. and Vanaja N., 2002. Modules for which every submodule has a unique coclosure, *comm*. *Algbera*, :2355-2377.
- 7. Orhan, N., Tutuncu , D. K . and Tribak , R. 2007 . On Hollow-lifting modules , *Taiwanese J.Math* , :545-568.
- 8. Kasch. F. 1982. Modules and Rings, Acad. Press, London.