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Abstract 

    This paper aims to study the role of a prey refuge that depends on both prey and 

predator species on the dynamics of a food web model. It is assumed that the food 

transfer among the web levels occurs according to Lotka-Volterra functional 

response. The solution properties, such as existence, uniqueness, and uniform 

boundedness, are discussed. The local, as well as the global, stabilities of the 

solution of the system are investigated. The persistence of the system is studied with 

the assistance of average Lyapunov function. The local bifurcation conditions that 

may occur near the equilibrium points are established. Finally, numerical simulation 

is used to confirm our obtained results. It is observed that the system has only one 

type of attractors that is a stable point, while periodic dynamics do not exist even on 

the boundary planes.  
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 المعتمد على كلا الجندين ديناميكية نظام الذبكة الغذائية: دور ملجأ الفريدة
 

اليا خالد بهلول*بر , داخلاص عبد الحدين ج  
, كمية العمهم, جامعة بغجاد, بغجاد, العخاققدم الخياضيات   

 الخلاصة
الى دراسة دور ممجأ الفخيدة السعتسج عمى كلا الجشدين ) الفخيدة و السفتخس( عمى  البحثهجف هحا ي      

ديشاميكية نسهذج الذبكة الغحائية . تم أعتساد دالة لهتكا فهلتيخا لهصف انتقال التغحية بين مدتهيات الذبكة. وقج 
شظام تم الالاستقخارية السحمية و الذاممة لحل كسا ان . تم مشاقذة خهاص الحل )وجهد , وحجانية , القيج السشتظم(

اصخار الشظام درس بسداعجة دالة معجل ليبانهف. شخوط التفخع السحمي السحتسل كحلك فأن . ايزامشاقذتها 
التهازن تم اعجادها.واخيخا السحاكاة العجدية استخجمت لتأكيج الشتائج التي تم  اطالحجوث  بالقخب من نقط

ها, لاحظشا ان الشظام له نهع واحج من الجهاذب وهه نقطة مدتقخة بحيث لا يهجج ديشاميكية الجورية الحرهل عمي
 حتى في السدتهيات الحجودية.

1. Introduction  

       Food webs are established in ecosystems and are significant for all living organisms. Energy 

needs for all activities of animals are provided through food consumption. Furthermore, food webs 

represent the pathways by which energy flows from a level to another. They are fundamental and 

inescapable in any attempt to describe how the real world life in the environment is organized or 

complexes of species interact. The three types of food web samples are the bases of large measure 

ecosystems. Therefore, to understand the dynamical behavior of an ecosystem, it is substantial to 

realize the dynamics of the three kinds of food web models. Hence, attention has been given to the 
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dynamics with 3-species food chains and food web systems [1-8]. Later on, many researchers 

investigated the dynamical behavior of food webs with various types of functional responses and 

including many biological factors. Agarwal and Kumarb [9] proposed and studied the alternative 

resource effects for top predators using Holling type III model. They showed that an alternative 

resource has the ability to prohibit top predator annihilation. Xiao et al. [10] proposed and investigated 

a predator–prey model that associates time delay with a Holling type II and Allee impact in prey. They 

observed that if the Allee impact is high or the birth rate is low, then both species of the system are 

fading and hence the stability of the system is affected.  

    In fact, the refuge mechanism has a role in promoting the growth rate of prey and reducing both 

predator growth and the products lurking behavior of prey [11]. Therefore, the existence of prey 

refuges has substantial effects on the cohabitation of predators and their prey. There are three types of 

refuges; the first type is the supply of continual spatial protection for a small branch of the prey 

population, while the second type is the provision of temporary spatial preservation and, finally, the 

third type is the supply of a temporary refuge in numbers, which means the reduction of the venture 

of predation by rising the abundance of vulnerable prey  [12]. The problem of prey-predator 

interactions under a prey refuge has been studied by some authors. Mukherjee [11] investigated a 

resource according to Holling type I and II functional responses and then showed the effect of constant 

prey refuge. Das et al. [13] described constant prey refuge and harvesting to both predator and prey. 

Ghosh et al. [14] studied the effects of extra food for predator with prey refuge. Santra et al. [15] 

investigated the dynamical actions with Crowley–Martin functional response-associated prey refuge. 

Finally, Molla et al. [16] suggested a model for Holling type-II prey– predator interactions in a prey 

refuge. 

 In this paper, a Lotka-Volttera food web model with a prey refuge that consists of prey and predator is 

proposed and studied.  The remaining sections are organized as follows. In section (2), the 

mathematical model with symbols of system is introduced. Section (3) deals with the analysis of local 

stability. In section (4), global stability analysis is investigated. Section (5) describes the persistence of 

the model. In section (6), the local bifurcation of the model is studied. The numerical simulation is 

given in section (7), while section (8) includes some discussion of the obtained results. 

2. The model formulation 

     In this section, a mathematical modeling approach was used to study the role of a non-constant prey 

refuge in the dynamical behavior of a three-species food web system. It is assumed that the food web 

is consisting of prey at a lower level of density at time     given by     . The prey grows logistically 

in the absence of the predators and has a non-constant refuge property that is dependent on the density 

of their predator. The middle predator, denoted for density at time   by     , feeds on prey at the 

lower level and is preyed on by the predator at the higher level. It has another limited source of food in 

the absence of their preferred food. The top predator, denoted for density at time   by     , at the 

higher level, feeds on both the prey at the lower level and the middle predator at the second level. 

Accordingly, the dynamics of such a food web system can be described by using mathematical 

modeling with differential equations. 
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Table-1. 

 

 



Jaber and Bahlool                                        Iraqi Journal of Science, 2021, Vol. 62, No. 2, pp: 639-657 
 

641 

Table 1-Description of parameters in system (2) 

Parameter Description 

 ,    Intrinsic growth rates for the prey and middle predator, respectively 

  ,    
Carrying capacity of the environment for the prey and middle predator, 

respectively 

    ,      
Predator dependent refuge rates, where   denotes the coefficient of prey 

refuge in (0, 1] with   
 

 
 and    

 

 
  respectively. 

  ,   ,    attack rates of middle and top predator, respectively 

  ,   ,    Conversion rates 

  ,    Natural death rates of middle and top predators, respectively 

      It is assumed that all the above parameters are positive constants and hence the domain of system 

(2) will be given by   
                           . Now to simplify the model 

analysis, the following parameters and dimensionless variables are used in system (2). 
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According to Eq. (3), the dimensionless system corresponding to system (2) will be 
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where                     .The functions on the right hand side of system (4) are continuous 

and have continuous partial derivatives. Hence, they are Lipschitzian functions [17]. Therefore, the 

solution of system (1) exists and is unique. In addition, the following theorem shows the boundedness 

of the solution in   
 . 

Theorem 1. The region               
                       

 

  
   

    

 
   is a 

uniformly bounded region that contains all the solutions of system (4). 

Proof.  From system (4), we have that 

 
  

  
       . 

By solving the inequality, it is simple to verify that        as    .  Let                
    , then after some algebraic manipulation we have 

             
  

  
    

    

 
           .               

Then  
  

  
       

    

 
, where                  . By using Gronwall inequality [18], it is 

easy to obtain that        
 

  
   

    

 
  as    . Hence, all solutions are uniformly bounded 

in   .      

3. Local Stability Analysis   

   There are seven equilibrium points of system (4). Their existence conditions and local stability 

analyses are established.  

 The vanishing equilibrium point that is denoted by           .  

  The first axial equilibrium point (FAEP) that is denoted by    ( ̃̃    )          and always 

exists.   

 The second axial equilibrium point (SAEP) that is denoted by         ̂   , where  

https://mathworld.wolfram.com/LipschitzFunction.html
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 ̂  
         

  
.                          (5a) 

Clearly, the SAEP exists uniquely on   axis if and only if it satisfies the following condition  

     .                                                                                                                                      (5b)       

 The prey-free equilibrium point (PFEP) that is denoted by        ̆  ̆ , where 

 ̆  
   

  
 ,    ̆  

                   

      
 .                         (6a) 

Obviously, the PFEP exists uniquely in the    plane if and only if the following condition holds 

                              .                                                                                                 (6b)       

 The middle predator-free equilibrium point (MPFEP) that is denoted by      ̅    ̅ , where  

 ̅       ̅     ̅
 ,                                  (7a) 

with  ̅    is a root of the following  equation 

   ̅
     ̅

     ̅      ,                                                                                   (7b) 

with           ,           ,                and          . Therefore, 

with the aid of the Descartes rule of signs, Eq. (7b) has either one or three positive roots but there are 

no negative roots, provided that the following condition holds                               
          .                (7c) 

By using Wolfram Mathematica 11.3, it is observed that Eq. (7b) has only one positive root denoted 

by  ̅  and two other complex conjugate roots. Accordingly, the MPFEP remains uniquely in the 

   plane, which stipulates that, in the extension to condition (7c), the following condition holds too 

      ̅     ̅
   .                             (7d) 

 The top predator-free equilibrium point (TPFEP) that is denoted by      ̿  ̿   , where  

 ̿       ̿     ̿
 ,                                (8a) 

with  ̿    is the root of  equation 

   ̿
     ̿

     ̿      ,                                                                                                   (8b) 

with           ,           ,     ( 
  

  
        )    and            . 

Again, by utilizing the Descartes rule of signs, Eq. (8b) has either one or three positive roots but there 

is no negative roots, provided the following condition holds                               
        .                                             (8c) 
Similarly, Wolfram Mathematica 11.3 is used to compute the roots of Eq. (8b). It was found that Eq. 

(8b) has only one positive root denoted by  ̿ and two other complex conjugate roots. Therefore, the 

TPFEP remains uniquely in the    plane, which stipulates that, in the extension to condition (8c), 

the following condition holds too 

      ̿     ̿
   .                  (8d) 

 The positive equilibrium point (PEP) that is denoted by               , where  
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where         is a positive intersection point for the following two isoclines 
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Clearly, each of Eq. (9d) and Eq. (9e) has a unique positive root on the   axis, denoted by    and     
respectively, provided that the next conditions hold 
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Therefore, the two isoclines given by equations (9b) and (9c) have a unique positive intersection point 

        in the interior of    plane and then the PEP exists uniquely, provided that 

       ,                     (10a) 
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Now, to establish the local stability, the Jacobian matrix, that is denoted by          of the system (4) 

at the          is determined by  

                  [

                         

       
  

  

  
             

       
            

].                                 (11) 

It is clear that system (4) has the Jacobian at     specified by  

                [
   
       
      

].                                                                                          (12a) 

 The eigenvalues of        are 

                   ,          ,         .                                                                          (12b) 

Therefore,    is a saddle point.  

The Jacobian matrix at FAEP is                      

               [

        

          
        

].                                                                       (13a) 

Therefore, the eigenvalues of        are given by 

               ,             ,           .                                    (13b) 

Clearly, all the above eigenvalues are negative and    is locally asymptotically stable in   
   if the 

next conditions are satisfied 

              ,                                                                                                                     (13c)     

           .                                                                                                                             (13d) 

The Jacobian matrix at SAEP is 

               [

     ̂     ̂
   

   ̂     ̂
  

  

  
 ̂     ̂

     ̂     

].                                              (14a) 

Therefore, the eigenvalues can be written as 

         ̂     ̂
 ,      

  

  
 ̂,        ̂     .                       (14b) 

The eigenvalues of       will be negative and then    is locally asymptotically stable if the next 

conditions are held  

     ̂
     ̂,                           (14c) 

   ̂     .                  (14d) 

The Jacobian matrix at PFEP is 

      [

     ̆     ̆
        ̆  ̆   

   ̆     ̆
  

  

  
 ̆     ̆

   ̆     ̆
    ̆  

]       .                                     (15a)                                      

 The characteristic equation of        is as follows 

       (   
  

  
 ̆       ̆ ̆)   .                                                                        (15b) 

Therefore, the eigenvalues of       are  

        ̆     ̆
     ̆     ̆

   ,           (15c) 
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 .            (15e) 

Hence, if the next condition holds,    will be locally asymptotically stable  

      ̆     ̆
     ̆     ̆

 .        (15f) 

The Jacobian matrix at MPFEP is presented as follows 

      [

  ̅     ̅     ̅      ̅ ̅
       ̅     ̅     

   ̅     ̅
    ̅     ̅ ̅

]  (   ).                   (16a) 

The characteristic of (16a) is shown as 

                    ,                                                                                             (16b) 

where      ̅      ̅    and       ̅
  ̅       ̅ ̅     ̅     ̅ . 

Thus, the eigenvalues of       are given by 

          ̅     ̅    ,                  (16c) 
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     ,                                (16d) 

     
  

 
 

 

 
√  

     .                                                                     (16e) 

      Accordingly, all the above eigenvalues have real parts of less than zero and then    is locally 

asymptotically stable if the next conditions are satisfied 

       ̅     ̅    ,           (16f) 

  ̅         ̅
      ̅.         (16g) 

The Jacobian matrix at TPFEP is written as follows 

      [

  ̿     ̿      ̿ ̿     ̿

   ̿     ̿
  

  

  
 ̿     ̿ ̿     ̿

     ̿     ̿     

]       .        (17a) 

Therefore, the characteristic equation of       is given by 

                    ,                                                                                                (17b) 

where     * ̿  
  

  
 ̿     ̿ ̿+    and    

  

  
 ̿ ̿     ̿

  ̿       ̿ ̿     ̿     ̿ . 

Hence, the eigenvalues of       are 

       ̿     ̿     ,                                                                                               (17c) 
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√  

     .                                                                     (17e) 

Consequently, all the above eigenvalues have real parts of less than zero and then    is locally 

asymptotically stable if the next conditions are satisfied 

    ̿     ̿     ,               (17f) 

 
  

  
    ̿             ̿

        ̿.       (17g) 

Next, the local stability conditions of the PEP are determined. 

Theorem 2: Suppose that the PEP of the system (4) exists, then it is a locally asymptotically stable 

with the following sufficient conditions are satisfied 

   
 

 
,                            (18a) 

   
 

 
,                            (18b) 

                    ,               (18c) 

                         
 (

  

  
    

 )                     .          (18d) 

Proof: The Jacobian matrix at the PEP is as follows 
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The characteristic equation of (19a) is  

      
          ,                                                                                                    (19b) 

where 

                          , 
                                                    , 

                                                                      , 

and 

 

                     [             ]                            

                [             ]

                      [             ]
                                                                

 

By using Routh-Hurwitz criterion [18], all the roots of equation (19b) have real parts of less than zero 

and then                 is locally asymptotically stable if   ,    and   are positive. It is found by 

computation that all Routh-Hurwitz constraints are satisfied under the sufficient conditions given by 

(18a) – (18d).                                                                                                                        

4. Global  tability analysis 

In t is section, the global dynamics of system (4) is investigated using Lyapnuov functions, as 

demonstrated in the next theorems [18]. 

Theorem 3: Suppose that the FAEP is locally asymptotically stable. T en    is a globally 

asymptotically stable with the following sufficient conditions are satisfied 

                ̃̃       
   

  
 
     

  
 ,                                                                                                          (20a) 

               
    

  
 

    

  
 .                                                                                                                      (20b) 

Proof: Define    as a real valued function that is given by 

     (   ̃̃   ̃̃   
 

 ̃̃
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where the constants          are the greater than zero constants that are to be determine. Obviously, 

   is a positive definite function that is defined for all         and    . Then,  
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written as follows 
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Now, by choosing the positive constants as           
  

  
    

  

  
 , then we get that 
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Then, by using the above sufficient conditions (20a)-(20b), the derivative  
   

  
  is a negative definite 

function. Hence,    is a globally asymptotically stable.                       

Theorem 4: Suppose that the SAEP is locally asymptotically stable. T en    has a basin of attraction 

that satisfies the following sufficient conditions 

    ̂   ,                           
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.                                        

Proof: Consider the following real valued function 

         (   ̂   ̂   
 

 ̂
)     , 
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where the constants          are greater than zero and must be determined. Obviously,    is a 

positive definite function that is defined for all         and    . Then  
   

  
 can be written as 

follows 

 

   

  
        ̂          

                  ̂                                  

              
                             

 

 
    

  
    ̂                             ̂   

 

Then, by choosing the positive constants as         
  

  
    

  

  
, then by substituting these 

constants, we obtain 
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Using the above sufficient conditions (21a)-(21b) along with the local stability conditions, the 

derivative  
   

  
 is a negative definite function. Hence,    has a basin of attraction that satisfies the 

given sufficient conditions.                                                                                                         

The     5: Assume that the PFEP of system (4) is locally asymptotically stable. Then     has a 

basin of attraction that satisfies the following sufficient conditions 
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Proof: Define the following real valued function 
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where the constants          are the greater than zero constants that are to be determine. Obviously, 

    is a positive definite function that is defined for all         and    . Then  
   

  
 can be 

written as follows 
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Now, by choosing the positive constants as    
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     Then, by using the above sufficient conditions (22a)-(22c), the derivative  
   

  
 is a negative definite 

function. Hence,    has a basin of attraction that satisfies the given sufficient conditions.        

Theorem 6: Suppose that the MPFEP is locally asymptotically stable. Then    is a globally 

asymptotically stable, provided that 

 *(
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 ̅+
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) (

    

  
 ̅).                  (23) 

Proof: Define the following real valued function 

     (   ̅   ̅   
 

 ̅
)        (   ̅   ̅   

 

 ̅
), 

where the constants          are greater than zero and must be determined. Obviously,    is a 

positive definite function that is defined for all         and    . Therefore, 
   

  
 can be written 

as follows 



Jaber and Bahlool                                        Iraqi Journal of Science, 2021, Vol. 62, No. 2, pp: 639-657 
 

647 

 

   

  
        ̅   [           ̅           ]    ̅     ̅ 

      ̅    ̅   [         ]  

 [               ̅       ̅]  [         ]  
 

 *     ̅    
  

  
+    [         ]   

 

Now, by choosing the positive constants as    
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Accordingly, by using the condition (23) along with the local stability condition (16f), the derivative 
   

  
 becomes 
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Clearly, 
   

  
 is negative definite and hence    is a globally asymptotically stable.                                      

  

Theorem 7: Assume that the TPFEP of system (4) is locally asymptotically stable. Then     is 

globally asymptotically stable, provided that 

*
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Proof: Define the following real valued function 

     (   ̿   ̿   
 

 ̿
)    (   ̿   ̿   

 

 ̿
)      

where the constants          are greater than zero and must be determined. Obviously,    is a 

positive definite function, which is defined for all         and    . Therefore, 
   

  
 can be 

written as follows 
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By choosing the positive constants as    
  

  
    

  

  
     , and substituting these constants, we 

get 
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    ̿ +     ̿     ̿ 

 
  

  
*
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Therefore, by using the condition (24) along with the local stability condition (17f), the derivative 
   

  
 

becomes 

 
   

  
  [√

  

  
    ̿  √

  

  
*
  

  
    +     ̿ ]

 

 [       ̿     ̿] . 

Clearly, 
   

  
 is negative definite and hence    is  globally asymptotically stable.                     

Theorem 8: Suppose that the PEP is locally asymptotically stable. T en     is  globally 

asymptotically stable if the following sufficient conditions hold 

[                  ]
  *

  

  
    

 +,                             (25a) 

[                  
 ]     ,                          (25b) 

[     ]
  *

  

  
    

 + [   ].                                                                      (25c) 

Proof: Define the following real valued function  
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Clearly,    is a positive definite function that is defined for all         and    . Therefore, 
   

  
 

can be written as follows 
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 ]            

            [     ]             

 

Therefore, by using the conditions (25a)-(25c), the derivative 
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        √         ]
 

 

 

Obviously, 
   

  
 is negative definite and    is  globally asymptotically stable.                                               

5. Persistence 

In this section the persistence of system (4) is investigated using the Gard technique [19]. First, we 

need to check the existence of periodic dynamics in the boundary planes. Obviously, the system (4) 

has three possible subsystems which are obtained in the absence of     and   and can be written, 

respectively, as  
  

  
  *  (  

 

  
)        +          

  

  
                                               

                            (26) 

 
  

  
  [              ]          

  

  
  [            ]                 

                         (27) 

 
  

  
  (              )                            

  

  
     (  

 

  
)                      

                        (28) 

     Clearly, subsystems (26), (27) and (28) fall in the interior of    plane,    plane and    plane, 

respectively. Now, define the function         
 

  
, which is a    function in interior of   

  of the 

   plane. Then, determine the following quantity 

        
       

  
 

       

  
  

  

  
 
 

 
  . 

      According to the Dulic-Bendixon criterion [20], the quantity        does not have a changed sign 

and it is not identically zero, then there is no closed curve in the interior of   
  of the    plane.  

Further, since the subsystem (26) is bounded and has a unique positive equilibrium point in the interior 

of   
  of the    plane, that is given by   ̆  ̆ , then, according to Poincare-Bendixon theorem [20], it 

is globally asymptotically stable, whenever it exists. and locally asymptotically stable. 

Similarly, by using the    functions in the interior of   
  of the    and    planes, which are defined as 

        
 

  
 and         

 

  
  respectively, it is easy to verify that there is no periodic dynamics in 

the interior of   
  of their planes, and the positive equilibrium point of each subsystem   ̅  ̅  and 

  ̿  ̿  is globally asymptotically stable, whenever it exists, and locally asymptotically stable. 

Consequently, the necessary and sufficient conditions for the uniform persistence of system (4) are 

derived in the following theorem.        

Theorem 9:   The system (4) is uniformly persistent if the following conditions hold  

                      ,                                                                                               (29a) 
       ̂  ̂                ̂ ,                                                                                         (29b) 



Jaber and Bahlool                                        Iraqi Journal of Science, 2021, Vol. 62, No. 2, pp: 639-657 
 

649 

      ̆  ̆        ̆  ̆   ,                              (29c)  

   ̅           ̅,                                         (29d) 

       ̿     ̿.                                                                     (29e)                                                                                                                                                                                                                         

Proof: Define                    as an average Lyapunov function with positive constant    ; 

       .  

Obviously,          is a    positive definite function, and if     or     or    , then 

           . Consequently, we get that 

         
         

        
   [                       ]

   *  (  
 

  
)                 +

   [                ] 

   

     Now, according to the Gard technique, the proof is followed and the system uniformly persists if 

we can prove that            at each of the boundary equilibrium points. Since  

                           .      

Clearly,         if we chose the positive constants, so that    is sufficiently large with respect to 

others. 

                              . 
Clearly,         if any one of the conditions given by equation (29a) holds with suitable selection 

of positive constants    and   . 

                   ̂  ̂        ̂      . 
Again,         if any one of the conditions given by equation (29b) holds with suitable selection of 

positive constants    and   . 

         [        ̆  ̆        ̆  ̆].     
Obviously,         under condition (29c). 

         [      ̅     ̅    ].        
Obviously,         under condition (29d). 

         [   ̿     ̿     ]. 
Clearly,         under the condition (29e). 

Hence, all the requirements of Gard technique are satisfied.                                                                         

6. Bifurcation analysis  

   In this section, the appearance of the local bifurcation in system (4) is investigated. In a dynamical 

system, a bifurcation is carried out when a small smooth variation that is made to the parameter of a 

model gives a sudden or topical variation in its action. In general, the local stability properties of 

equilibrium point, periodic orbits, or other invariant sets, change at a bifurcation. Sotomayor’s

theorem [17] will be applied to study the occurrence of local bifurcation. We can write system (4) in 

the vector form as  
  

    
     ,               (30) 

where            and                   
 . 

Now, it is easy to verify that for any vector             
 , the second derivative of the system (30) 

can be written as 

                      ,             (31a) 

where 

        
                          

                
        

  
 

                      
   

  
  

        
         , 

                                    
 , 

 with   is any bifurcation parameter. Moreover, the third derivative of the system (30) is given by 

                         ,           (31b) 

where 

            
         

 ;             
 ;             

 . 

Theorem 10. Assume that condition (13c) holds with the parameter      
        then the system 

(4) near FAEP undergoes a transcritical bifurcation provided that 
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    .                                                                             (32)  
However, it has a pitchfork bifurcation otherwise. 

Proof. Clearly, under the condition (13c) with      
 , the Jacobian matrix       that is given by 

equation (13a) has the following eigenvalues:    
        

             and    
   . 

So, the FAEP is a non-hyperbolic point and the Jacobian matrix can be written as 

                    
   [

        

          
   

].                             

Let                 
  be the eigenvectors of    corresponding to    

   . Then, we will get  

                             
 ,    

where     is any nonzero real number. In the same way,                 
  is the eigenvectors 

associated with the zero eigenvalue    
    of    

 . Then we obtain that  

            
 ,          

where         . Furthermore, it is simple to establish that                                                                            

              
                    .  

Hence,    
      

           , which gives   
    

      
    . 

Thus, according to Sotomayor theorem, the saddle node bifurcation cannot occur. Moreover, since  

           
 [    

      
    ]          ,             

here     
represents the derivative of    

 with respect to  . Now, by substituting   ,   
  and    in Eq. 

(31a), we get that 

  
 [         

         ]     
          

    . 

Clearly,   
 [         

         ]    under the condition (32) and then system (4) undergoes a 

transcritical bifurcation when      
 .  

Otherwise, we have   
 [         

         ]   , when     . Now, by substituting   ,   
  and 

   in Eq. (31b), we get that 

   
 [         

            ]     
    

      .   

Hence, pitchfork bifurcation takes place.                                                                     

Theorem 11. Suppose that condition (14c) holds with the parameter        
     ̂  then the 

system (4) near SAEP undergoes a transcritical bifurcation.                                                                           
Proof.  Clearly, under the condition (14c) with        

 , the Jacobian matrix       that is given by 

equation (14a) has the following eigenvalues    
       ̂     ̂

       
   

  

  
 ̂ and    

  

 . So, the SAEP is a non-hyperbolic point and the Jacobian matrix can be written as 

           
   [

     ̂     ̂
   

   ̂     ̂
  

  

  
 ̂     ̂

   

]. 

Similarly, as in theorem (10), direct computation gives that 

   (   
    

  
       )

 
;         as an eigenvector corresponding to    

    of   .  

            
           as an eigenvector corresponding to    

    of   
 .  

  
     

       
    . 

  
 [         

    ]           .  

  
 [          

         ]       
    (

      

  
    )   . 

Hence, system (4) undergoes a transcritical bifurcation when        
 .  

Theorem 12. Assume that      
  

        ̆  ̆

    ̆  ̆
, then system (4) near PFEP undergoes a 

transcritical bifurcation, provided that 

           ̆           ̆   ,              (33) 

where    and    are given in the proof. However, it has a pitchfork bifurcation otherwise. 

Proof. Clearly, when      
 , the Jacobian matrix       that is given by equation (15a) has the 

following eigenvalues  
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   ,    

   
  

   
 ̆  

√(
  
  

 ̆)
 
       ̆ ̆

 
 and    

   
  

   
 ̆  

√(
  
  

 ̆)
 
       ̆ ̆

 
 .     

So, the PFEP is a non-hyperbolic point and the Jacobian matrix can be written as 

                
   [

   

   ̆     ̆
  

  

  
 ̆     ̆

   ̆     ̆
    ̆  

] .                                       

Direct computation gives that 

                     
           as an eigenvector corresponding to    

    of   , 

where     
      ̆ 

  
   and    

        ̆            ̆ 

      
  . 

             
           as an eigenvector corresponding to    

    of   
 .  

  
    

      
    . 

  
 [    

      
    ]    ̆    ̆         .  

  
 [         

         ]       
    [           ̆           ̆ ]. 

Clearly,   
 [         

         ]    under the condition (33) and then system (4) undergoes a 

transcritical bifurcation when      
 .  

Otherwise, we have   
 [         

         ]   , in case of violating the condition (33). Now, by 

substituting   ,   
  and    in Eq. (31b), we get that 

   
 [         

            ]      
   

      
     

      .   

Hence, pitchfork bifurcation takes place.                                                                    

Theorem 13. Suppose that condition (16g) holds with the parameter      
        ̅     ,̅ 

then the system (4) near MPFEP undergoes a transcritical bifurcation, provided that 

      
  

  
    ̅        ,            (34) 

where    and    are given in the proof. However, it has a pitchfork bifurcation otherwise. 

Proof. Note that, when      
 , the Jacobian matrix       that is given by equation (16a) has the 

following eigenvalues  

   
  

  

 
 

 

 
√  

     ,    
    and    

  
  

 
 

 

 
√  

      ,     

where      and      are given in equation (16b). So, the MPFEP is a non-hyperbolic point and 

the Jacobian matrix can be written as 

                
   [

  ̅     ̅     ̅      ̅ ̅
   

   ̅     ̅
    ̅     ̅ ̅

].                                        

Direct computation gives  

                     
           as an eigenvector corresponding to    

    of    , 

where    
 ̅ ̅[           ̆ ]

  
 and     

 ̅ ̅[         ̆       ̅]

  
 . 

             
           as an eigenvector corresponding to    

     of    
 .  

  
    

      
    . 

  
 [    

      
    ]            .  

  
 [         

         ]      
    *     

  

  
    ̅      +. 

Clearly,   
 [         

         ]    under the condition (34) and then system (4) undergoes a 

transcritical bifurcation when      
 .  

Otherwise, we have   
 [         

         ]   , in case of violating the condition (34). Now, by 

substituting   ,   
  and    in Eq. (31b), we get that 

   
 [         

            ]           
      .   

Hence, pitchfork bifurcation takes place.                

Theorem 14. Suppose that condition (17g) holds with the parameter        
     ̿     ̿, then 

the system (4) near TPFEP undergoes a transcritical bifurcation, provided that 

                ,         (35) 

where    and    are given in the proof. However, it has a pitchfork bifurcation otherwise. 
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Proof. Now, when        
 , the Jacobian matrix       that given is by equation (17a) has the 

following eigenvalues  

   
  

  

 
 

 

 
√  

     ,    
   

  

 
 

 

 
√  

      and    
   ,      

where      and      are given in equation (17b). So the TPFEP is a non-hyperbolic point and the 

Jacobian matrix can be written as 

                 
   [

  ̿     ̿      ̿ ̿     ̿

   ̿     ̿
  

  

  
 ̿     ̿ ̿     ̿

   

].                                        

Again, as in above theorems, by direct computation we obtain  

                     
           as an eigenvector corresponding to    

    of   , 

where    
 ̿ ̿*         ̿     

  
  

    ̿ +

  
and     

 ̿ ̿[        ̿    ]

  
    . 

             
           as an eigenvector corresponding to    

    of   
 .  

  
     

       
    . 

  
 [     

       
    ]           .  

  
 [          

         ]      
    [             ]. 

Clearly,   
 [          

         ]    under the condition (35) and then system (4) undergoes a 

transcritical bifurcation when        
 .  

Otherwise, we have   
 [          

         ]   , in case of violating the condition (35). Now, by 

substituting   ,    
  and    in equation (31b), we get that 

   
 [          

            ]           
      .   

Hence, pitchfork bifurcation takes place.                                                                     

Theorem 15. Suppose that the conditions (18a) - (18b) with the condition 

                     ,             (36) 

are satisfied, then as the parameter 

     
  

                                     

                 
, 

where               are given in equation (19a), then system (4) near PEP undergoes a saddle node 

bifurcation, provided that the following condition holds 

                ,             (37) 

where all symbols are specified in the proof. 

Proof.  Obviously, the Jacobian matrix at the PEP with      
  can be written as  

           
   [

       
            

        

   
          (

  

  
    

 )    
   

   
          

     
   

]  (   )   
. 

Clearly, the elements of    coincide with elements of       that are given in equation (19a), except for 

the element    , which is written in term of   
  and denoted by    

     
   .  

Straightforward computation shows that the determinant of    that is denoted by    in equation (19b) 

equals to zero (    ) when      
 , which is positive under condition (36). Therefore, the 

characteristic equation that is given by equation (19b) has zero root with the other two negative real 

part roots, denoted by: 

    
   ,    

    
  

 
 

 

 
√  

      and    
   

  

 
 

 

 
√  

     , 

where    and    are positive due conditions (18a) and (18b), and given by equation (19b). 

Therefore, the PEP is a non-hyperbolic equilibrium point. Now, to test the possibility of the 

occurrence of saddle node bifurcation, the following quantities are determined. 

                    
           as an eigenvector corresponding to    

    of   , where 

   
      

        

             
 and    

             
 

             
  . 
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           as an eigenvector corresponding to    

    of   
 , 

where    
             

             
   and     

             

             
. 

  
    

      
        

        . 

   
 [         

         ]       
    [             ], 

 where      
                               

   
     

 , 

                  (
  

  
    

 )   
     

   , 

                        
 . 

Accordingly,   
 [         

         ]    under the condition (37), hence the saddle node takes 

place and the proof is completed.         

7. Numerical   mulation 

     In this section, a numerical simulation of the solution of system (4) is performed to authenticate the 

obtained analytical results and understand the influence of the change in the parameters on the 

dynamical action of the system. The following hypothetical set of parameters is used in the numerical 

simulation, which is applied by using predictor-corrector four steps method along with the sixth orders 

Runge-Kutta method [21] for solving system (4). Then, MATLAB version 6.0.0.88 was used to plot 

the figures.  

 
                                       
                                    

                     (38) 

It is observed that, for the data set given by equation (38) with different initial sets of values, the 

system (4) approaches asymptotically to a PEP, as shown in (Figure-1). 

 

 
Figure 1- The time series of the trajectories of system (4) using data set (38) with different initial 

points, which approach asymptotically to                    . (a) Trajectories of  . (b) Trajectories 

of  . (c) Trajectories of  . 

 

     Accordingly, system (4) is globally asymptotically stable at PEP. Now, for the data set (38), with 

decreasing the value of the parameter    up to         , it is noticed that system (4) approaches 

asymptotically to the TPFEP, as shown in (Figure-2). Otherwise, the system still persists at the PEP. 
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 Similar observation was obtained for varying   . 

 
Figure 2-The solution of system (4) approaches asymptotically to TPFEP that is given by    
              using the data set (38) with        . (a) The trajectory of system (4). (b) Time series 

of the trajectory given by (a). 

 

     Now, increasing the parameter      so that           with other parameters as in set (38), leads 

to an extinction in the top predator too, and the solution approaches asymptotically to the TPFEP as 

shown typically by (Figure-3). Otherwise, it is still persistent at PEP. 

 
Figure 3-The solution of system (4) approaches asymptotically to TPFEP given by    
              using the data set (38) with        . (a) The trajectory of system (4). (b) Time series 

of the trajectory given by (a). 

 

    Further investigation of the dynamical behavior of system (4) using data set (38) is performed with 

varying one parameter each time to understand their effects on the solution and persistence of the 

system. It is observed that all the parameters have a quantitative change on the solution of system (4). 

This is due to the existence of more than on source of food in each level, which makes the extinction 

of any species difficult through using only one parameter. Therefore, in the following, we will 

investigate the system under the effects of varying of multi parameters simultaneously.    

For the data set (38) with         and         , it is noticed that the solution of system (4)  
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approaches asymptotically to SAEP,             as shown in (Figure-4). 

 
Figure 4-The solution of system (4) approaches asymptotically to FAEP given by            using 

the data set (38) with                 . (a) The trajectory of system (4). (b) Time series of the 

trajectory given by (a). 

Note that it is simple to prove that the conditions (13c) and (13d) are held. Moreover, for the data set 

(38) with        and        , it is noticed that the solution of system (4) approaches 

asymptotically to SAEP, that is given by               as shown in (Figure-5).  

 
Figure 5-The solution of system (4) approaches asymptotically to SAEP given by              

using the data set (38) with              . (a) The trajectory of system (4). (b) Time series of the 

trajectory given by (a). 

 

      Clearly, the data used in (Figure-5) satisfy the conditions (14c) and (14d). Again, for the data set 

(38) with        and     , the system approaches asymptotically to the PFEP, that is given by 

               as shown in (Figure-6).  
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Figure 6-The solution of system (4) approaches asymptotically to PFEP given by              
using the data set (38) with            . (a) The trajectory of system (4). (b) Time series of the 

trajectory given by (a). 

    Direct computation shows that the data used in (Figure- 6) satisfy the condition (15f). Finally, the 

solution of system (4) approaches asymptotically to the MPFEP, that is given by                   
using the data set (38) with               and         as shown in (Figure-7).  

 
Figure 7-The solution of system (4) approaches asymptotically to MPFEP given by    
              using the data set (38) with                       . (a) The trajectory of system 

(4). (b) Time series of the trajectory given by (a). 

 

Again, the data used in (Figure-7) satisfied the conditions (16f) and (16g). 

1. Discussion 

     In this paper, a food web model incorporating a prey refuge that depends on both prey and predator 

species is proposed and studied. The food is consumed according to Lotka-Volterra functional 

response. Moreover, the intermediate predator grows logistically by the addition of favorite food at the 

lower level. The top predator behaves as a generalist predator and preys upon both species in the lower 

level and second level. All the properties of the solution of system (4) are investigated. It is observed 

that the system has seven nonnegative equilibrium points. The local stability conditions for each point 

are constructed. The global dynamics, whenever exists, is investigated too. The dynamics of all 

possible subsystems is also studied and it is observed that there is no periodic dynamics in the 

boundary planes. On the other hand, the persistence conditions of the food web system are established 
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 too. It is observed that the system has a wide range of persistence due to the existence of the prey 

refuge that is depending on both prey and predator species as well as the multisource of food for each 

species. The probability of occurrence of local bifurcation around the non-hyperbolic equilibrium 

point is also discussed. It is observed that the system has multi-types of bifurcations which may occur 

near the equilibrium points. On the other hand, numerical simulation is used to confirm our obtained 

results. It is observed that the system has only one type of attractors that is a stable point, while 

periodic dynamics does not exist even in the boundary planes. This indicates that the existence of the 

prey refuge that is depending on both prey and predator species is a stabilizing factor on the dynamics 

of food web model and extends the range of the parameters at which the system persists.  
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