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Abstract

This paper aims to study the role of a prey refuge that depends on both prey and
predator species on the dynamics of a food web model. It is assumed that the food
transfer among the web levels occurs according to Lotka-Volterra functional
response. The solution properties, such as existence, uniqueness, and uniform
boundedness, are discussed. The local, as well as the global, stabilities of the
solution of the system are investigated. The persistence of the system is studied with
the assistance of average Lyapunov function. The local bifurcation conditions that
may occur near the equilibrium points are established. Finally, numerical simulation
is used to confirm our obtained results. It is observed that the system has only one
type of attractors that is a stable point, while periodic dynamics do not exist even on
the boundary planes.
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1. Introduction
Food webs are established in ecosystems and are significant for all living organisms. Energy
needs for all activities of animals are provided through food consumption. Furthermore, food webs
represent the pathways by which energy flows from a level to another. They are fundamental and
inescapable in any attempt to describe how the real world life in the environment is organized or
complexes of species interact. The three types of food web samples are the bases of large measure

ecosystems. Therefore, to understand the dynamical behavior of an ecosystem, it is substantial to
realize the dynamics of the three kinds of food web models. Hence, attention has been given to the
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dynamics with 3-species food chains and food web systems [1-8]. Later on, many researchers
investigated the dynamical behavior of food webs with various types of functional responses and
including many biological factors. Agarwal and Kumarb [9] proposed and studied the alternative
resource effects for top predators using Holling type 111 model. They showed that an alternative
resource has the ability to prohibit top predator annihilation. Xiao et al. [10] proposed and investigated
a predator—prey model that associates time delay with a Holling type 1l and Allee impact in prey. They
observed that if the Allee impact is high or the birth rate is low, then both species of the system are
fading and hence the stability of the system is affected.

In fact, the refuge mechanism has a role in promoting the growth rate of prey and reducing both
predator growth and the products lurking behavior of prey [11]. Therefore, the existence of prey
refuges has substantial effects on the cohabitation of predators and their prey. There are three types of
refuges; the first type is the supply of continual spatial protection for a small branch of the prey
population, while the second type is the provision of temporary spatial preservation and, finally, the
third type is the supply of a temporary refuge in numbers, which means the reduction of the venture
of predation by rising the abundance of vulnerable prey [12]. The problem of prey-predator
interactions under a prey refuge has been studied by some authors. Mukherjee [11] investigated a
resource according to Holling type I and Il functional responses and then showed the effect of constant
prey refuge. Das et al. [13] described constant prey refuge and harvesting to both predator and prey.
Ghosh et al. [14] studied the effects of extra food for predator with prey refuge. Santra et al. [15]
investigated the dynamical actions with Crowley—Martin functional response-associated prey refuge.
Finally, Molla et al. [16] suggested a model for Holling type-Il prey— predator interactions in a prey
refuge.

In this paper, a Lotka-Volttera food web model with a prey refuge that consists of prey and predator is
proposed and studied. The remaining sections are organized as follows. In section (2), the
mathematical model with symbols of system is introduced. Section (3) deals with the analysis of local
stability. In section (4), global stability analysis is investigated. Section (5) describes the persistence of
the model. In section (6), the local bifurcation of the model is studied. The numerical simulation is
given in section (7), while section (8) includes some discussion of the obtained results.

2. The model formulation

In this section, a mathematical modeling approach was used to study the role of a non-constant prey
refuge in the dynamical behavior of a three-species food web system. It is assumed that the food web
is consisting of prey at a lower level of density at time T, given by X(T). The prey grows logistically
in the absence of the predators and has a non-constant refuge property that is dependent on the density
of their predator. The middle predator, denoted for density at time T by Y (T), feeds on prey at the
lower level and is preyed on by the predator at the higher level. It has another limited source of food in
the absence of their preferred food. The top predator, denoted for density at time T by Z(T), at the
higher level, feeds on both the prey at the lower level and the middle predator at the second level.
Accordingly, the dynamics of such a food web system can be described by using mathematical
modeling with differential equations.

= rx(1- Kil) — ay (X = Xp,)Y — ap(X — Xg,)Z,
%: sY (1 _Klz) +eyay (X — X, )Y — asYZ — d,Y, 1)
% = ezaz(X - XRz)Z +eza3zYZ — d,Z,

with Xz = cXY and Xg, = cXZ, the model (1) becomes

ax X

S=rX (1 - K—l) —a, X(1 = cY)Y — auX(1 — ¢Z)Z,

dy Y

S =sy (1 - K—Z) + ey X(1 = cV)Y — asYZ — d,Y, @)
dz

= e, 0, X(1 —cZ)Z + eza3YZ — d,Z,

with X(0) > 0,Y(0) = 0,Z(0) = 0. The description of the parameters for the system (2) is shown in
Table-1.
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Table 1-Description of parameters in system (2)

Parameter Description

r, s Intrinsic growth rates for the prey and middle predator, respectively

K. K Carrying capacity of the environment for the prey and middle predator,
1, X2

respectively

Predator dependent refuge rates, where c denotes the coefficient of prey

l=cr 1-ecz refuge in (0, 1] with Y < %and Z< % respectively.

aq, Ay, A3 attack rates of middle and top predator, respectively

ey, €, e3 Conversion rates

dy, d, Natural death rates of middle and top predators, respectively

It is assumed that all the above parameters are positive constants and hence the domain of system
(2) will be given byR3 ={(X,Y,Z) e R%:X >0,Y >0,Z >0}. Now to simplify the model
analysis, the following parameters and dimensionless variables are used in system (2).

t=1rT,x =£,y= cY,z=cZ,
Ky

_ 2 _ a2 _S _ _e1oKy
Wl_;lWZ_;;W3_;;W4»_CK2)W5_ r ) (3)
asz dy e22Ky e3as3 dy
Wg = —, W7y = — ,Wg = = w = —.
6"y’ 7 r’ '8 r 79 rc ’ 10 r

According to Eq. (3), the dimensionless system corresponding to system (2) will be

% =x(1—x)—wix(1 —y)y —wx(1—2)z = xfy,

d

d_jt} = w3y (1 - w%) +wsx(1 —y)y —weyz —w;y = yfs, (4)
% =wgx(1 —2)z + Woyz — wyoz = Zf3,

where x(0) = 0,y(0) = 0,z(0) = 0.The functions on the right hand side of system (4) are continuous
and have continuous partial derivatives. Hence, they are Lipschitzian functions [17]. Therefore, the
solution of system (1) exists and is unique. In addition, the following theorem shows the boundedness
of the solution in R3.

Theorem 1. The region £; = {(x,y,2z) € R3:x < 1;0 < x(t) + y(t) + z(t) < ”i(z +=2} is a
1

uniformly bounded region that contains all the solutions of system (4).
Proof. From system (4), we have that

% <x(1-x).

By solving the inequality, it is simple to verify that x(t) <1 ast — oo. Let W(t) = x(t) + y(t) +
z(t), then after some algebraic manipulation we have

d_W W3Wy

dvﬁt <2x+ T

Then s mW <2+ %, where p; = min{1, w;, w;,}. By using Gronwall inequality [18], it is

easy to obtain that 0 < W (t) < ui 2+

1

inL;.
3. Local Stability Analysis
There are seven equilibrium points of system (4). Their existence conditions and local stability
analyses are established.
e  The vanishing equilibrium point that is denoted by E, = (0,0,0).
e The first axial equilibrium point (FAEP) that is denoted by E; = (%,0,0) = (1,0,0) and always
exists.
e  The second axial equilibrium point (SAEP) that is denoted by E, = (0,9,0), where

— X — W7y - Wloz.

W3Wy

T) as t — oo, Hence, all solutions are uniformly bounded
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g = i (52)
Clearly, the SAEP exists uniquely on y —axis if and only if it satisfies the following condition

w3 > wo. (5b)
e  The prey-free equilibrium point (PFEP) that is denoted by E5 = (0, ¥, Z), where

5 — Wi . Z= W3WyWo—W3W;19—WsaW7Wo . (6&)

Wo W4aWeWgo
Obviously, the PFEP exists uniguely in the yz —plane if and only if the following condition holds
W3WaWgy > W3W; + WaWsWe. (6b)

e  The middle predator-free equilibrium point (MPFEP) that is denoted by E, = (x, 0, 2), where

X=1-—wyZ+w,z? (7a)
with Z > 0 is a root of the following equation

VZ + 122 +v3Z+y, =0, (7b)

with y; = —w,o,wg <0, ¥, = 2w,wg >0, y3 = —wg(1 + w,) < 0 and y, = wg —wy,. Therefore,
with the aid of the Descartes rule of signs, Eq. (7b) has either one or three positive roots but there are
no negative roots, provided that the following condition holds

Wg > Wyg. (7¢c)
By using Wolfram Mathematica 11.3, it is observed that Eq. (7b) has only one positive root denoted
by Z and two other complex conjugate roots. Accordingly, the MPFEP remains uniquely in the
xz —plane, which stipulates that, in the extension to condition (7c), the following condition holds too

1—wyZ+ wyz? > 0. (7d)
e  The top predator-free equilibrium point (TPFEP) that is denoted by Es = (X, y,0), where
¥=1-wy+wy? (8a)
with y > 0 is the root of equation
V3 + a2+ azy +a, =0, (8b)
with @y = —wyws < 0, @, = 2wyws > 0, a3 = —(x—i+w1w5 +W5) <0and ay = w3 —wy; + ws.

Again, by utilizing the Descartes rule of signs, Eq. (8b) has either one or three positive roots but there
is no negative roots, provided the following condition holds

w3 + ws > w5, (8c)
Similarly, Wolfram Mathematica 11.3 is used to compute the roots of Eq. (8b). It was found that Eq.
(8b) has only one positive root denoted by y and two other complex conjugate roots. Therefore, the
TPFEP remains uniquely in the xy —plane, which stipulates that, in the extension to condition (8c),
the following condition holds too

1—wy+wy%>0. (8d)
. The positive equilibrium point (PEP) that is denoted by E, = (x*,y*,z"), where
* 1 * * *
y* = v (Wip — wgx™ + wgx™*z"), (9a)

where (x*, z*) is a positive intersection point for the following two isoclines

2
Wiw WiW, wiw w Wy WgW
g1, z) =1—x———+=—=x —= 8xz+w1( 10) — pa%s%o
Wo

N " (9b)
+2wxz+w (Ws) 2(1_Z)Z_W22+W222 =O’
wo? 9
g2(x,2) = wy — 23210 4 WsWs,  WsW8 ) 4 oy — 250y 4 TsWE 2
WaWq WaWy Wawe Wo We
— Ws¥s y2 (9¢)
e X%z —wgz —w; = 0.
Then, as z - 0, we obtain that
2 2
g1 (X) = W (E) x?% — [1 — Wils +2 W1W8W10] +1— WiWig + w, (M) =0 (gd)
We Wo Wo
— WsWs x2 W3Wg  WsWig _
g2(x) = + [w e " T ]x + wy (%)

Clearly, each of Eq. (9d) and Eqg. (9e) has a unique positive root on the x —axis, denoted by x; and x,,
respectively, provided that the next conditions hold
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2
1wy (222)° < 0
Yo (9
ws +w, < ﬁ
Therefore, the two isoclines given by equations (9b) and (9c) have a unique positive intersection point

(x*,z") in the interior of xz —plane and then the PEP exists uniquely, provided that

X1 < X2, (10&)
dz _  0g1(x,z) , 9g:1(x.2)
((iix_ (6 a(x ) 'a (zz )) >0, (lOb)
dz _ 0g,(x2) . 0g2(x.z
dx ( ax ’ 9z ) <0, (1OC)
Wi + wgx*z* > wgx™. (10d)

Now, to establish the local stability, the Jacobian matrix, that is denoted by J(x, y, z) of the system (4)
at the (x, y, z), is determined by

—-x+f; —WiX + 2w xy —WyoX + 2wyxz
J(,y,2) = [Wsy —wsy® =12y —wsxy + £y —wey |, (11)
WgZ — wgz? WoZ —WgXZ + f3
It is clear that system (4) has the Jacobian at E,, specified by
1 0 0
J(Ey) = [0 W3 — Wy 0 ] (12a)
0 0 —Wig
The eigenvalues of J(E,) are
dox =1 >0, Agy, = w3z —wy, A9, = —wy,. (12b)
Therefore, E, is a saddle point.
The Jacobian matrix at FAEP is
-1 —Wy —W,
J(Ey) = [ 0 ws+ws—w, 0 ] (13a)
0 0 Wg — Wqg
Therefore, the eigenvalues of J(E;) are given by
Ay =—1<0, 4y, =ws +ws —wy, 4, = wg — Wyo. (13b)

Clearly, all the above eigenvalues are negative and E; is locally asymptotically stable in R3 if the
next conditions are satisfied

w3 + ws < wy, (13c)
wg < Wig. (13d)
The Jacobian matrix at SAEP is
1—wyy +wy9? 0 0
JE) = | wsy—wsp? =29 —wey | (142)
0 0 WoJ — Wig
Therefore, the eigenvalues can be written as
Apx =1 =w19 +wy 2%, 25, = —x_zy, Azz = WoJ — Wiy (14b)

The eigenvalues of J(E,) will be negative and then E, is locally asymptotically stable if the next
conditions are held

1+w 9% <wy 9, (14c)
W95> < Wio- (14d)
The Jacobian matrix at PFEP is
1—-wy+wy? —w,(1 -2z 0 0
J(Es) = wsY — wsy? =Y —weY| = (Cy)- (15a)
WSZ — WSZZ ng O
The characteristic equation of (15a) is as follows
(C1a = A) (22 + 2252 + wews32) = 0. (15b)
4
Therefore, the eigenvalues of J(E5) are
A3x = _lej + lez - szv + szvz + 1, (15C)
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W o (x—jy)z—zxw(,wgyz

A3y = ~ow, Y + > : (15d)
W3 o 2 -
Ay =—72y — (i) oo : (15e)
2wy 2
Hence, if the next condition holds, E5 will be locally asymptotically stable
1<wy —wi¥2 + wyz — wyz2, (15f)
The Jacobian matrix at MPFEP is presented as follows
—X —Wy X —WyX + 2wyXZ
J(Ey) = 0 w3 + WsX — WeZ — Wy 0 = (My). (16a)
WgZ — wgZ? WoZ —WgXZ
The characteristic of (16a) is shown as
(Myy — D)(A2 = T,A+D,) =0, (16b)
where T, = —x(1 + wgz) < 0 and D, = wgX?Z + wowgxz(1 — 22)(1 — 2).
Thus, the eigenvalues of J(E,) are given by
Agy = W3 + WsX — WeZ — Wy, (16¢)
My = 243 /T42 — 4D, (16d)
Mg = 22— /T42 — 4D, (16e)

Accordingly, all the above eigenvalues have real parts of less than zero and then E, is locally
asymptotically stable if the next conditions are satisfied

W3 + WsX < WeZ + Wy, (16f)
X+ wy + 2w,7% > 3w, 7. (16g)
The Jacobian matrix at TPFEP is written as follows
[ —X —wi X + 2w Xy —W,X
J(Es) = [wsF —wsy? = 27— wsXy ~Wey = (Qi)- (17a)
] 0 0 WgX + Woy — Wy
Therefore, the characteristic equation of J(Es) is given by
(Q33 — A)_(Az —TsA+ Ds) =0, (17b)
where Ts = — X + %f] - stf/] < 0and D5 = %ff/ + ws X2y + wawsxy (1 — 25) (1 — ¥).
L 4 4
Hence, the eigenvalues of J(E5) are
Asz = WgX + Woy — Wy, (17c)
Asx == % % ’TSZ - 4D5, (17d)

AS:V == ——% ’TSZ - 4‘D5 (176)
Consequently, all the above eigenvalues have real parts of less than zero and then Ej is locally
asymptotically stable if the next conditions are satisfied

WgX + woy < Wy, (171)
% + wsX + wyws + 2wy wsy? > 3wywsY. (179)
4
Next, the local stability conditions of the PEP are determined.

Theorem 2: Suppose that the PEP of the system (4) exists, then it is a locally asymptotically stable
with the following sufficient conditions are satisfied

y < (18a)
7' <5, (18b)
wy > wywg(1— 2y*)(1 — z%), (18c)

wowswo(1 —y*)(1 —2z%) < 2wgx” (:—j + W5x*) + wiwegwg(1 — 2y™)(1 — z7). (18d)

Proof: The Jacobian matrix at the PEP is as follows
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—x* —wix* 4 2wix Yyt —wox” 4+ 2wyt z”
* *2 w * P *
J(Eg) = |WsY" —wsy™™ = "y" —wsxy —Wey = (Lyj). (19a)
wgz* — wgz*? WoZz* —Wgx*z*
The characteristic equation of (19a) is
/13 + 6112 + 621 + 53 = 0, (lgb)
where
8y = =(Ly1 + +Laz + L33),
82 = Li1Lpy — LyzLay + LagLag — Lpzlsp + LygLas — LizLag,
83 = —L33(L11Ly2 — L1zLp1) — LiaLoslay — LisLaiLay + LigLaslay + LizloyLas,
and

A= 6y 8, — 83 = —(Ly1 + Laz)[Ly1Laz — LigLoy]
—(Ly1 + L33)[L11L33 — L13L34]
—(Laz + L33)[LazLss — LazLs,]
—2Lq11Lo5L33 + L13La3L031 + LizLaiL3;.

By using Routh-Hurwitz criterion [18], all the roots of equation (19b) have real parts of less than zero
and then Eg = (x*,y*,z*) is locally asymptotically stable if §;, 85 and A are positive. It is found by
computation that all Routh-Hurwitz constraints are satisfied under the sufficient conditions given by
(18a) — (18d).
4, Global stability analysis
In this section, the global dynamics of system (4) is investigated using Lyapnuov functions, as
demonstrated in the next theorems [18].
Theorem 3: Suppose that the FAEP is locally asymptotically stable. Then E; is a globally
asymptotically stable with the following sufficient conditions are satisfied

X< min{%,%}, (20a)
22 < AT . 5 (20b)

Wg Ws
Proof: Define Q, as a real valued function that is given by
A =q (x —§—§ln%) + q2y + q37,
where the constants q;, g,, q3 are the greater than zero constants that are to be determine. Obviously,
Q, is a positive definite function that is defined for all x > 0,y > 0 and z > 0. Then, % can be

written as follows

ao,

T —q1(x — x)? - W11 — wsq2)xy — (—w1q1X — w3 + Wy qp)y

~(Wsqz — w1q1)xy? — (chhf + %) y?
4
—(=waq; + wgq3)xz? - w,q1Xz°
—(q1wz — qzwg)xz — (q3W19 — q1W2X)Z — (q2We — q3Wo)YZ.

Now, by choosing the positive constants as g; = 1,q, = % qs = % , then we get that
5 8

do, ) _ Wy —ws
— < -(x-¥)?- (—‘+—)
T (x—X%)*—wy|—Xx e y
(ww =) <W1W6 w2w9>
—w,|——X|z— — yz
Wg Wsg Wg

o,

Then, by using the above sufficient conditions (20a)-(20b), the derivative

function. Hence, E; is a globally asymptotically stable.
Theorem 4: Suppose that the SAEP is locally asymptotically stable. Then E, has a basin of attraction
that satisfies the following sufficient conditions
wpVy < x, (21a)
H2o o TiTe o Z2VI0, (21b)
w Ws wgy

8
Proof: Consider the following real valued function
Oy = p1x+ p2 ()’—)A’—yln%) + P32,

is a negative definite
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where the constants p,, p,, p3 are greater than zero and must be determined. Obviously, Q, is a
positive definite function that is defined for all x > 0,y > 0 and z > 0. Then dd—{iz can be written as

follows

aq . -
—2 = —(@2ws9 — p1)x — p1x* — (p1wy — paws — pawsP)xy

—(pows — #91W1)xy2 — (p1wy — p3wg)xz — (Wgp3 — #71W2)x22
\"% A A
_—‘:,fz O = 9)? = PawWs — p3Wo)yz — (p3w1g — P2We))2.

Then, by choosing the positive constants as p; =1, p, = %,m = % then by substituting these
5 8
constants, we obtain
= w9 = Dx —x? +wiPxy — 2 (y — §)*
4Ws5

dt
_ <W1W6 _ W2W9) yz — (W2W10 __ Wiwe y) 7.
Ws Wg Wg Ws

Using the above sufficient conditions (21a)-(21b) along with the local stability conditions, the
derivative dd—ﬂtz is a negative definite function. Hence, E, has a basin of attraction that satisfies the

given sufficient conditions.
Theorem 5: Assume that the PFEP of system (4) is locally asymptotically stable. Then E; has a
basin of attraction that satisfies the following sufficient conditions

Wg WsWqg o “
w, < W_sy + wgZz, (22a)
wyZz < X, (22b)
WsWg o wWiwg WsWgqg

sy < (-T2 (1= ), (220)

Proof: Define the following real valued function
VA
Q3 =£v1x+{”rz(y—37—371n§)+fr3(z—Z—z“lnE)
where the constants &, 6, & are the greater than zero constants that are to be determine. Obviously,

Q5 is a positive definite function that is defined for all x >0,y > 0 and z > 0. Then % can be
written as follows

% = —(bowsy + b3wgZ — &1)x — b1x* — (byws — bywy)xy?
—(bywy — bawg — bywgZ)xz — (Wgbg — bywy)xz?
b g -
—W‘:j—f(y —¥)? — (b1wy — b,ws — ws b §)xy
—(bywe — b3wo)(y — ) (z — 2).
Now, by choosing the positive constants as 4, = %,1&2 = %,1&3 = 1, we have
2 6
aQ - . . .
= —(va—ivgy+w82—x—j)x — or (= wpZz)x — JER (y — 7)*
wWiWg Ws5Wgo WsWqg o
‘<(W—2—W—6) 1=y —W—Gy> .

Then, by using the above sufficient conditions (22a)-(22c), the derivative % is a negative definite

function. Hence, E; has a basin of attraction that satisfies the given sufficient conditions.
Theorem 6: Suppose that the MPFEP is locally asymptotically stable. Then E, is a globally
asymptotically stable, provided that

() gy < (2 27) e

w1 Wo w1 w1 Wo

Proof: Define the following real valued function

Q=B (x—f—fln%) + by + b3 (z—z‘—z‘lng),

where the constants bH;,5H,,b; are greater than zero and must be determined. Obviously, Q, is a
positive definite function that is defined for all x > 0,y = 0 and z > 0. Therefore, dd—ﬂt“ can be written
as follows
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dQ,

S oy (e — 0 — [hwo (1 — (2 + 2) — hawy(1 — 2)] (x — D)z — 2)

—h3weX(z — 2)* — [wy — hows]xy
—[h2(wy; = w3) + h3woeZ — hyw; K]y — [h,ws — hywy]xy?
- [f)1W1JE + b2 X_z] y? = [Dawe — h3wolyz.
Now, by choosing the positive constants as h; = x—i b, =1,h3 = Z—Z and substituting these constants,

we obtain
A . Ws o2 _ [(WeWs _ WeWs — ) — WaWs o — N — 7
dt < wq (x x) [( w1 Wo )(1 Z) w1 Z] (x x)(Z Z)

WegWg _ — — —
—‘f’v—gsx(z —2)% — [(Wy — w3) + wgZ — wsx]y.

Accordingly, by using the condition (23) along with the local stability condition (16f), the derivative
% becomes

dd—ﬂt‘* < — [\/x:i(x —-x)+ /W;—‘;%f(z - Z_)]Z — [(W7 — w3) + weZ — wsx]y.

Clearly, % is negative definite and hence E, is a globally asymptotically stable.

Theorem 7: Assume that the TPFEP of system (4) is locally asymptotically stable. Then E; is
globally asymptotically stable, provided that

oty 5y it < (2 (222 4w @

We We LWy

Proof: Define the following real valued function

= =X - =Y
Qs =@1(x—x—xln§)+‘D2(y—y—yln§)+‘{)3z
where the constants 9,,%,,9, are greater than zero and must be determined. Obviously, Qs is a
positive definite function, which is defined for all x > 0,y > 0 and z > 0. Therefore, % can be
written as follows

B = 9, (x =52 = [Dywy — Dywi (¥ +7) — Dows(1 = NI (x — D — 7)

dt
0 [+ wex| (7 = )% = [D1w, — Dswelxz
~[D3w10 — D1wrX — Do ywe]z — [D3wg — Dy w,]xz?
~D wpxz? — [Dwe — D3wolyz.
By choosing the positive constants as 9, = % 9, = %,2)3 = 1, and substituting these constants, we
2 6

get
a0
dt

<o (r o[y 5y M () 5] (- By - 5)

Wy We

— 22 [ wex] (7 = )% = [wo — we — woF)z

Therefore, by using the condition (24) along with the local stability condition (17f), the derivative dd—(is
becomes

2
aq , = , - = =
d—t5<—[ x—:(x—x)+ :—:[Z—i‘Fst] (y—y)] — [wyo — weX — woYy]z.

Clearly, % is negative definite and hence Es is globally asymptotically stable.

Theorem 8: Suppose that the PEP is locally asymptotically stable. Then E, is globally
asymptotically stable if the following sufficient conditions hold

Wi —wi (v + y*) —ws + wsy]? < [Z—j + w5x*], (25a)

[wy —w,(z +27) — wg + wez"]? < wyx, (25b)

[we — wo)? < [% + st*] [wgx]. (25¢)
4

Proof: Define the following real valued function
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X Z
96=x—x*—x*ln;+y—y*—y*ln%+z—z*—z*ln;.
dQs

Clearly, Qg is a positive definite function that is defined for all x > 0,y > 0 and z > 0. Therefore, e

can be written as follows

% = —(x—x)* = [w; —wi (¥ +¥*) —ws + wsyl(x — x)(y — y*)

- [x—j‘*‘ W5X*] (y — )% = [wy —wy(z + 2%) — wg + wgz*](x — x*)(z — z*)

—wgx(z — 27)? — [ws — wol(y — y")(z — ).
Therefore, by using the conditions (25a)-(25c), the derivative dd—% becomes

2
ae _ 11 .« /& () — 2
5 < 2[(x x*) + W4+W5x (y y)]

~ 2 -2 + fwex(z - 2]’

—%[W()f—y*) +\/W_sx(z—z*)r-

Obviously, % is negative definite and Eg is globally asymptotically stable.

5. Persistence

In this section the persistence of system (4) is investigated using the Gard technique [19]. First, we
need to check the existence of periodic dynamics in the boundary planes. Obviously, the system (4)
has three possible subsystems which are obtained in the absence of x,y and z and can be written,

respectively, as

% =y [W3 (1 —W%) — Wez — w7] =01y, 2),

dz )
L = 2(woy —wio) = 920,
% =x[(1 —x) —w,(1 - 2)z] = g5(x, 2), (27)
i z[wgx(1 — z) — wyo] = ga(x, 2).
%: ((1—x)—W1(1—}’)Y)=95(x'3’); (28)

d
D= y(ws (1= Z) + wsx(1 = ) = w; = g ().
Clearly, subsystems (26), (27) and (28) fall in the interior of yz —plane, xz —plane and xy —plane,
respectively. Now, define the function H,(y,z) = i which is a C?! function in interior of R2 of the

yz —plane. Then, determine the following quantity
d(g1H d(g,H wy 1
A(y,z) = 20 L TR = 22 25,

According to the Dulic-Bendixon criterion [20], the quantity A(y, z) does not have a changed sign
and it is not identically zero, then there is no closed curve in the interior of R of the yz —plane.
Further, since the subsystem (26) is bounded and has a unique positive equilibrium point in the interior
of R2 of the yz —plane, that is given by (¥, %), then, according to Poincare-Bendixon theorem [20], it
is globally asymptotically stable, whenever it exists. and locally asymptotically stable.

Similarly, by using the C?* functions in the interior of R2 of the xz and xy planes, which are defined as
H,(x,z) = é and H(x,y) = % respectively, it is easy to verify that there is no periodic dynamics in

the interior of R2 of their planes, and the positive equilibrium point of each subsystem (x,Z) and
(x,y) is globally asymptotically stable, whenever it exists, and locally asymptotically stable.
Consequently, the necessary and sufficient conditions for the uniform persistence of system (4) are
derived in the following theorem.
Theorem 9: The system (4) is uniformly persistent if the following conditions hold
(w; < wsz + ws) or (wyy < wg), (29a)
(w1 (1 =9)y < 1) or (wyp < wo), (29b)
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A-Py+wi(1-2)Z2<1, (29c¢)
WeZ + Wy < W3 + WgX, (29d)
Wy < WgX + wo. (29¢)

Proof: Define o(x,y,z) = xP1yP2zP3 as an average Lyapunov function with positive constant p;;
i=12,3.

Obviously, o(x,y,z) is a C! positive definite function, and if x > 0 or y - 0 or z - 0, then
o(x,y,z) = 0. Consequently, we get that

P(x,y,2) = S22 = py[(1 - ) — wy (1 =)y — wp(1 = 2)7]

. —v) — _
+p2 [W3 (1 W4) + st(l y) WeZ W7]
+p3 [wex(1 —2) + Woy — Wiol- _ _ o
Now, according to the Gard technique, the proof is followed and the system uniformly persists if

we can prove that P(x, y,z) > 0 at each of the boundary equilibrium points. Since

P(Eo) = p1 + p2(ws — wy) — p3(wyo).
Clearly, P(E,) > 0 if we chose the positive constants, so that p; is sufficiently large with respect to
others.

P(Ey) = p2(ws + ws — wy) + ps(wg — wyg).
Clearly, P(E;) > 0 if any one of the conditions given by equation (29a) holds with suitable selection
of positive constants p, and ps.

P(E;) = p1(1 —wi(1 = 9)P) + p2(WeP — wyo).
Again, P(E,) > 0 if any one of the conditions given by equation (29b) holds with suitable selection of
positive constants p; and ps.

P(E3) = p1[1 —w (1 =)y —w, (1 — 2)Z].
Obviously, P(E3) > 0 under condition (29c).

P(E,) = palws + wsX — weZ — wy].
Obviously, P(E4) > 0 under condition (29d).

P(E5) = p3[wgX + woy — wyg].
Clearly, P(Es) > 0 under the condition (29).
Hence, all the requirements of Gard technique are satisfied.
6. Bifurcation analysis

In this section, the appearance of the local bifurcation in system (4) is investigated. In a dynamical

system, a bifurcation is carried out when a small smooth variation that is made to the parameter of a
model gives a sudden or topical variation in its action. In general, the local stability properties of
equilibrium point, periodic orbits, or other invariant sets, change at a bifurcation. Sotomayor’s
theorem [17] will be applied to study the occurrence of local bifurcation. We can write system (4) in
the vector form as

== F(x), (30)
where X = (x,y,2)T and F(X) = (xf1, yfa2 2f3)T.
Now, it is easy to verify that for any vector V = (v,, v,,v3)7, the second derivative of the system (30)

can be written as

D*F(X,B)(V,V) = (ci1)3x1, (31a)
where
C11 = _21712 - 2W1171U2 + 4W1yv1v2 - 2W2v1v3

+4w,zv, V3 + 2wy xv,2 + 2w,x 132,
Cp1 = —AWsYV U, + 2Wsv v, — Zwﬂvzz — 2WsXV,2 — 2We U, V3,
4
C31 = —4WgzV V3 + 2WgV V3 + 2Wo, V3 — 2WgX V32,
with g is any bifurcation parameter. Moreover, the third derivative of the system (30) is given by
D3F(X»,B)(V, V,V) = (din)sx1 (31b)
where
d11 = 6W11711722 + 6W2U1U32; d21 = _6W5U1v22; d31 = _6W8v1v32.

Theorem 10. Assume that condition (13c) holds with the parameter wg = wg = w;,, then the system
(4) near FAEP undergoes a transcritical bifurcation provided that
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wy # 1. (32)
However, it has a pitchfork bifurcation otherwise.
Proof. Clearly, under the condition (13c) with wg = wg, the Jacobian matrix J(E;) that is given by
equation (13a) has the following eigenvalues: 1,," = =1, 1;," = w3 + ws —w; < 0 and 4;5" = 0.
So, the FAEP is a non-hyperbolic point and the Jacobian matrix can be written as

-1 —wy —W,
Ji=J(E,wg)=|0 wz+tws—w; 0
0 0 0

Let V; = (v14,v12,v13)7 be the eigenvectors of J; corresponding to 2,5 = 0. Then, we will get
Vi = (=wyvy3,0,v53)",
where v, 5 is any nonzero real number. In the same way, ®; = (®,,, P;,, P13)7 is the eigenvectors
associated with the zero eigenvalue 1,5* = 0 of J;”. Then we obtain that
(Dl = (0'0' (p13)T!
where @,; # 0 € R . Furthermore, it is simple to establish that
Fy, (X, wg) = (0,0,xz — xz?)".
Hence, Fy, (E;,wg) = (0,0,0)7, which gives ®," Fy, (E;,wg) = 0.
Thus, according to Sotomayor theorem, the saddle node bifurcation cannot occur. Moreover, since
¢1T[DFW8(E1:W§)V1] = V1393 # 0,
here D Fy, represents the derivative of Fy, with respect to X. Now, by substituting E;, wg and V; in Eq.
(31a), we get that
®,"[D2F(Ey, wg)(V1, V)] = 2wg(wy — Dvy52 03
Clearly, ®,T[D?F(E;,wg)(V4, V)] # 0 under the condition (32) and then system (4) undergoes a
transcritical bifurcation when wg = wyg.
Otherwise, we have &, [D2F(E;, wg)(V1,V;)] = 0, when w, = 1. Now, by substituting E;, w; and
V1 in Eq. (31b), we get that
@, [D3F(Ey, wg) (V1, V1, V)] = 6wgvy33dy5 # 0.
Hence, pitchfork bifurcation takes place.
Theorem 11. Suppose that condition (14c) holds with the parameter wyo = wyo* = wg¥, then the
system (4) near SAEP undergoes a transcritical bifurcation.
Proof. Clearly, under the condition (14c) with w;o = wy,", the Jacobian matrix J(E,) that is given by

equation (14a) has the following eigenvalues A,;" = 1 — w5 + w92 <0, 1,," = —Z—jy and A,5" =
0. So, the SAEP is a non-hyperbolic point and the Jacobian matrix can be written as
1—w;P +w, P2 0 0
J2 =] (Ezwio) = | ws§—ws9? =729 —we|.
0 0 0

Similarly, as in theorem (10), direct computation gives that

W4We

T
Vv, = (O, i v23,v23) : v,3 # 0 € R as an eigenvector corresponding to A,5* = 0 of J,.

@, = (0,0,P,35)7; @,3 # 0 € R as an eigenvector corresponding to A,3" = 0 of J,7.
cI’2TFW10 (E1,wip) = 0.

@, " [DF (Ey, wig)Va] = —v,3%,3 # 0.

@, [D2F (Ep wig) (Va, Vo)l = —20,3° Py ( + st) # 0.

Hence, system (4) undergoes a transcritical bifurcation when w;, = wyy*.

Theorem 12. Assume that w; = w;” =%, then system (4) near PFEP undergoes a

W4aWeWo

transcritical bifurcation, provided that

1+ wy (1 —29) +wyy,(1—22) #0, (33)
where y; and y, are given in the proof. However, it has a pitchfork bifurcation otherwise.
Proof. Clearly, when w; = wy*, the Jacobian matrix J(E3) that is given by equation (15a) has the
following eigenvalues
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ks %4 w3 ) s
* * W3 o (W_y) _4W6W9yz * W2 o (W_y) _4‘W6W9yZ
A31" =0, 2" = —F Y+ and Agz" = — 3y —
So, the PFEP is a non-hyperbolic point and the Jacobian matrix can be written as

0 0 0
- -2 W3 o -
J3 = J(E3,wy) = [WsY = WsY™ =77V ~WeV|,
ng - WSZZ WgZ 0

Direct computation gives that

Vs = (v31,71v31,Y2V31)7; v31 # 0 € R as an eigenvector corresponding to A3, = 0 of J5,
wg(1-2) <0andy, = w3wg(1-2)+waWswo(1-¥) >0

Wq W4aWeWgo

®; = (P34,0,0)7; @3, # 0 € R as an eigenvector corresponding to A3, = 0 of /57 .
(D3TFW1 (E3,wi) = 0.
®3" [DFy, (Es, w})V3] = =Y (1 — J)v31 @3y # 0.
D3 [D2F (E3, wi)(Vs, V3)] = —2031 2 P31 [1 + wiy1 (1 — 23) + woy, (1 — 22)].
Clearly, @37 [D?F(E;, w;)(V3,V3)] # 0 under the condition (33) and then system (4) undergoes a
transcritical bifurcation when w; = wy.
Otherwise, we have @37 [D2F (E;, wi)(Vs,V3)] = 0, in case of violating the condition (33). Now, by
substituting E5, w4 and V5 in Eg. (31b), we get that

@3 [D3F (B3, wi)(V3, V3, V3)] = 6(Wiyi? + way2)vi33 g3 # 0.
Hence, pitchfork bifurcation takes place.
Theorem 13. Suppose that condition (16g) holds with the parameter w, = w; = ws + wgX — wgZ,
then the system (4) near MPFEP undergoes a transcritical bifurcation, provided that

WsY3 — x—j — WsX — WeVs # 0, (34)

where y; = —

where y5 and y, are given in the proof. However, it has a pitchfork bifurcation otherwise.
Proof. Note that, when w, = w-*, the Jacobian matrix J(E,) that is given by equation (16a) has the
following eigenvalues

Ay = %+% /T42 — 4Dy, Agy” = 0and 243" = % - %1/7142 — 4D, ,

where T, < 0 and D, > 0 are given in equation (16b). So, the MPFEP is a non-hyperbolic point and
the Jacobian matrix can be written as

—-X —WiX —WyX + 2wyXZ
Ja =J(Egwy") = 0 0 0 ]
WgZ — WgZ2  WoZ —WgXZ

Direct computation gives

Vi = (V3Va2, Vaz, VaVaz)T; vay # 0 € R as an eigenvector corresponding to A,," = 0 of J,,
where Vs = fz'[wg—lewg(l—Z)] and Vo= — ff[w2w9(1;22)+w1w8f] '

®, = (0, <I>4:, 0)T; @3, #0 € Rasan eigen4vector corresponding to A,," = 0 of J,”.
CD4TFW7 (Eqyw;") = 0.
®,"[DFy, (Ey,w;)Vy| = —v4®45 # 0.
(D4T[D2F(E4' w7 ) (Va, Vo)l = 2045° @y [W5V3 - :_z — WsX — W6V4]-

Clearly, ®,T[D?F(E,, w,*)(V,,V,)] # 0 under the condition (34) and then system (4) undergoes a
transcritical bifurcation when w, = w-*.
Otherwise, we have @, [D2F(E,, w,*)(V,,V,)] = 0, in case of violating the condition (34). Now, by
substituting E,, w-* and V, in Eq. (31b), we get that

@, [D3F (Eq,w;") (Va, Vi, Va)] = —6Wsy314,3@,, # 0.
Hence, pitchfork bifurcation takes place.
Theorem 14. Suppose that condition (17g) holds with the parameter w;g = w1 = wgX + woy, then
the system (4) near TPFEP undergoes a transcritical bifurcation, provided that

WgY¥s + Wo¥s — Wgx # 0, (35)
where y5 and y, are given in the proof. However, it has a pitchfork bifurcation otherwise.
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Proof. Now, whenw;, = w,,", the Jacobian matrix J(Es) that given is by equation (17a) has the
following eigenvalues

151* = %4‘% ’T52 - 4’D5, 152* = %—% ’T52 - 4‘D5 and 153* = 0,

where Ts < 0 and D5 > 0 are given in equation (17b). So the TPFEP is a non-hyperbolic point and the
Jacobian matrix can be written as

—X —WiX + 2w Xy  —w,X
Js = J(Es,wy0") = |Ws¥ — wsy? —x—if’ —wsXy —wgy|.
0 0 0

Again, as in above theorems, by direct computation we obtain

Vs = (¥sVs1,YeVs2, Vs3)T; vs3 # 0 € R as an eigenvector corresponding to As;™ = 0 of Js,
25 [wawe(1-29)-wa Ggews )| £5lwaws(1=9)+wg]

D andys = — D
5 5

@5 = (0,0,d55)7; P55 # 0 € R as an eigenvector corresponding to A5 = 0 of /5.
®5” Fy,, (Es, wio7) = 0.
CDST[DFWm(ESrWIO*)VS] = —V53P53 # 0.
@5 [D2F (Es, wio")(Vs, Vs)] = 2s3%Ps3[Wgys + woys — wex].
Clearly, ®sT[D?F(Es, wi0")(Vs, V)] # 0 under the condition (35) and then system (4) undergoes a
transcritical bifurcation when w;o = wy,".
Otherwise, we have ®5T [D2F (Es, wy0")(Vs, V)] = 0, in case of violating the condition (35). Now, by
substituting Es, wyo* and Vs in equation (31b), we get that

CPST[DBF(_ES'Wl_O*)(Vs'Vs'Vs)] = —6WgYsVs3° P53 # 0.
Hence, pitchfork bifurcation takes place.
Theorem 15. Suppose that the conditions (18a) - (18b) with the condition

wy < wiwg(1—2y")(1 — z%), (36)
are satisfied, then as the parameter

— w _ L3z(L11Lpp—=L1aLy1)+L13(La1L3p—LyzL3q)
We = Wg = )
y*(L12_L31—1:11L32) )

where L;j; i, j = 1,2,3 are given in equation (19a), then system (4) near PEP undergoes a saddle node
bifurcation, provided that the following condition holds

Yoln + v10l2 + I3 # 0, (37)
where all symbols are specified in the proof.
Proof. Obviously, the Jacobian matrix at the PEP with wg = wg* can be written as

<0.

where ys =

—x* —wix*(1—2y") —wyx*(1—-2z%)
* * * x (W * P
Jo =J(Eewe™) = |Wsy' (1=y") —y (W—z-i- WsX ) —wg'y = (Lyj),, 5
wgz* (1 —2z%) wyz* —wgx*z"

Clearly, the elements of ], coincide with elements of J(E) that are given in equation (19a), except for
the element L5, which is written in term of w* and denoted by L,5" = —wg*y™.

Straightforward computation shows that the determinant of J that is denoted by 85 in equation (19b)
equals to zero (63 = 0) whenwg = wg*, which is positive under condition (36). Therefore, the
characteristic equation that is given by equation (19b) has zero root with the other two negative real

part roots, denoted by:
% * 51 1 ; 2 * 6, 1 ’ 2
161 :0,/162 = _7+E 81 —4528.nd/163 :_7_5 61 _4‘62,
where 8, and &, are positive due conditions (18a) and (18b), and given by equation (19b).
Therefore, the PEP is a non-hyperbolic equilibrium point. Now, to test the possibility of the
occurrence of saddle node bifurcation, the following quantities are determined.
Ve = (Y7763, Y8Ve3, Ve3)'; Ves = 0 € R as an eigenvector corresponding to Ag;" = 0 of J,, where

_ LypLy3™—LpyLys

Lyzlai—L11La3"
Y, = Lislai~lules’

and yg =

Li1Lzp=L12La1 Li1Lzp—=L12Lap1
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by = (y9¢6L3,1210¢L63,L¢63)T; De3 # 0 ELRL asLanL eigenvector corresponding to A4, =0 of J57,
_ L21L327L22L31 _ La2L317L11L32
Whil’e Yo = Ly1Lap—Ly2Lpq > 0and Y10 = Li1Lap=LqpLlyy
D" Fyy (Eg,We") = —¥10Y 2" Pg3 # 0.

¢6T[D2F(E6' we ) Ve, Vo)) = —2V632‘D63 [yolh + v10l2 + T3],

where Ty = ;% + wyy,¥s(1 — 2y*) + way,(1 — 22°) — wyx™yg® — wyx™,
[, = —wgy,vs(1 —2y") + (x_j + WSX*) Ye? + We'Va,
I3 = —wgy; (1 — 227) — woyg + wgx™.
Accordingly, ®,T[D?F(Es, we*)(Vs, V)] # 0 under the condition (37), hence the saddle node takes
place and the proof is completed.
7. Numerical Simulation
In this section, a numerical simulation of the solution of system (4) is performed to authenticate the
obtained analytical results and understand the influence of the change in the parameters on the
dynamical action of the system. The following hypothetical set of parameters is used in the numerical
simulation, which is applied by using predictor-corrector four steps method along with the sixth orders
Runge-Kutta method [21] for solving system (4). Then, MATLAB version 6.0.0.88 was used to plot
the figures.
wy =05 w, =05 wy=1, w, =1, wg=0.2, 38
wg = 0.5,w; = 0.1,wg = 0.2,wg = 0.2, w3 = 0.2. (38)
It is observed that, for the data set given by equation (38) with different initial sets of values, the
system (4) approaches asymptotically to a PEP, as shown in (Figure-1).

(a) (b)
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Bos 205
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Figure 1- The time series of the trajectories of system (4) using data set (38) with different initial
points, which approach asymptotically to E; = (0.76,0.66,0.56). (a) Trajectories of x. (b) Trajectories
of y. (c) Trajectories of z.

Accordingly, system (4) is globally asymptotically stable at PEP. Now, for the data set (38), with

decreasing the value of the parameter wg up to wg = 0.01, it is noticed that system (4) approaches
asymptotically to the TPFEP, as shown in (Figure-2). Otherwise, the system still persists at the PEP.
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Similar observation was obtained for varying wg.

(a) (b)
1 .
0.5 Intial point
: (0.9.0.7.0.5) 0.8 .
0.4
03 06 4
o £
0.2 —
==
0.1 o 0.4 1
Asy. stable point
O (0.96.0.91.0)
1 02 |
- X
¥
- Z
o .
» 06 0.6 x ] 5 10

Titme %10
Figure 2-The solution of system (4) approaches asymptotically to TPFEP that is given by Ec =
(0.96,0.91,0) using the data set (38) with wg = 0.01. (a) The trajectory of system (4). (b) Time series
of the trajectory given by (a).

Now, increasing the parameter w,,, so that w;, = 0.38, with other parameters as in set (38), leads
to an extinction in the top predator too, and the solution approaches asymptotically to the TPFEP as
shown typically by (Figure-3). Otherwise, it is still persistent at PEP.

(a) b
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0.3 = 0.6} ]
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0.2 —=
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0.1 s 04r -
0. Asy. stable point
1 (0.96,0.91.0) o0 |
1 x
v
-4
: 0 '
¥ 06 06 x 0 1 2 3

4
x 10
Figure 3-The solution of system (4) approaches asymptotically to TPFEP given by Eg =
(0.96,0.91,0) using the data set (38) with w;, = 0.4. (a) The trajectory of system (4). (b) Time series
of the trajectory given by (a).

Further investigation of the dynamical behavior of system (4) using data set (38) is performed with
varying one parameter each time to understand their effects on the solution and persistence of the
system. It is observed that all the parameters have a quantitative change on the solution of system (4).
This is due to the existence of more than on source of food in each level, which makes the extinction
of any species difficult through using only one parameter. Therefore, in the following, we will
investigate the system under the effects of varying of multi parameters simultaneously.

For the data set (38) with w; = 1.25 and w,, = 0.21, it is noticed that the solution of system (4)
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approaches asymptotically to SAEP, E; = (1,0,0), as shown in (Figure-4).
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Figure 4-The solution of system (4) approaches asymptotically to FAEP given by E; = (1,0,0) using
the data set (38) withw; = 1.25,w;, = 0.21. (a) The trajectory of system (4). (b) Time series of the

trajectory given by (a).

Note that it is simple to prove that the conditions (13c) and (13d) are held. Moreover, for the data set
(38) with w; =4.5 andw;, = 0.5, it is noticed that the solution of system (4) approaches
asymptotically to SAEP, that is given by E, = (0,0.5,0), as shown in (Figure-5).
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Figure 5-The solution of system (4) approaches asymptotically to SAEP given by E, = (0,0.5,0)
using the data set (38) with w; = 4.5,w, = 0.5. (a) The trajectory of system (4). (b) Time series of the

trajectory given by (a).

Clearly, the data used in (Figure-5) satisfy the conditions (14c) and (14d). Again, for the data set
(38) with w, = 6.5 and w, = 2, the system approaches asymptotically to the PFEP, that is given by
E; = (0,1,0.8), as shown in (Figure-6).
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Figure 6-The solution of system (4) approaches asymptotically to PFEP given by E5; = (0,1,0.8)
using the data set (38) with w, = 6.5, w, = 2. (a) The trajectory of system (4). (b) Time series of the
trajectory given by (a).
Direct computation shows that the data used in (Figure- 6) satisfy the condition (15f). Finally, the
solution of system (4) approaches asymptotically to the MPFEP, that is given by E, = (0.87,0,0.54),
using the data set (38) with w3 = 0.5, wg = 0.5 and w, = 0.5, as shown in (Figure-7).
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Figure 7-The solution of system (4) approaches asymptotically to MPFEP given by E, =
(0.87,0,0.54) using the data set (38) with w; = 0.5,w; = 0.5,wg = 0.5. (a) The trajectory of system
(4). (b) Time series of the trajectory given by (a).

Again, the data used in (Figure-7) satisfied the conditions (16f) and (169).
1. Discussion

In this paper, a food web model incorporating a prey refuge that depends on both prey and predator
species is proposed and studied. The food is consumed according to Lotka-Volterra functional
response. Moreover, the intermediate predator grows logistically by the addition of favorite food at the
lower level. The top predator behaves as a generalist predator and preys upon both species in the lower
level and second level. All the properties of the solution of system (4) are investigated. It is observed
that the system has seven nonnegative equilibrium points. The local stability conditions for each point
are constructed. The global dynamics, whenever exists, is investigated too. The dynamics of all
possible subsystems is also studied and it is observed that there is no periodic dynamics in the
boundary planes. On the other hand, the persistence conditions of the food web system are established
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too. It is observed that the system has a wide range of persistence due to the existence of the prey
refuge that is depending on both prey and predator species as well as the multisource of food for each
species. The probability of occurrence of local bifurcation around the non-hyperbolic equilibrium
point is also discussed. It is observed that the system has multi-types of bifurcations which may occur
near the equilibrium points. On the other hand, numerical simulation is used to confirm our obtained
results. It is observed that the system has only one type of attractors that is a stable point, while
periodic dynamics does not exist even in the boundary planes. This indicates that the existence of the
prey refuge that is depending on both prey and predator species is a stabilizing factor on the dynamics
of food web model and extends the range of the parameters at which the system persists.
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