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Abstract  
     In this paper, an eco-epidemiological model with media coverage effects is 

established and studied. An    -type of disease in predator is considered.  All the 

properties of the solution of the proposed model are discussed. An application to the 

stability theory was carried out to investigate the local as well as global stability of 

the system. The persistence conditions of the model are determined. The occurrence 

of local bifurcation in the model is studied. Further investigation of the global 

dynamics of the model is achieved through using a numerical simulation. 

 

Keywords: Media coverage, prey-predator, disease, stability, persistence, 

bifurcation. 

 

على ديناميكية الأمراض في نموذج الفريسة والمفترس الإعلاميةالتغطية  أثار  
 

 ولاء مدحت علوان*، هدى عبد الستار
 قدم الخياضيات، كمية العموم ، جامعة بغجاد، بغجاد، العخاق

 الخلاصة
تمت و مخض في المفتخس. وجود و  مع تأثيخ التغطية الإعلامية وبائي-بيئي، تم دراسة نموذج  البحثفي هحه 

شخوط استمخار النظام. و  ودراسة الاستقخار المحمي والذاملمناقذة جميع خرائص حل النموذج المقتخح. 
 ديناميكية سموك النظام المحاكاة العجدية لفهم  وتم استخجامتمت دراسة التذعب المحمي حول كل نقطة توازن. و 
 

1. Introduction 

      The term eco-epidemiological models is used to describe the models that incorporate disease in 

ecological communities [1]. The first eco-epidemiological model including infectious diseases in the 

prey was introduced by Anderson and May [2]. Later on, a number of researchers proposed and 

studied eco-epidemiological models involving many biological factors [3-10]. It is observed that the 

spread of disease among the population is a main reason for the species extinction. Although many 

studies showed interest in eco-epidemiology. The impact of the media coverage, which has an 

important role in the outbreak of the infectious diseases, have been mostly neglected in the previous 

research papers.  

     The spreading and controlling of a susceptible-infected-recovered-susceptible (SIRS) disease with 

the media coverage was investigated by Liu and Cui [11]. Cui et al. [12] constructed a mathematical 

model that incorporates media coverage to understand its effects on the spread of infectious diseases in 

a given population. They concluded that more extensive media coverage in a given population leads to 

reduce the number of infected individuals. It is observed that the use of media coverage alert causes a 

reduction in the spread of AIDS, due to reducing the contact between human beings [13]. A similar 
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observation was obtained regarding the spread of the severe acute respiratory syndrome (SARS) 

during 2002 and 2004 [14, 15]. Later on, some authors studied the effects of media coverage on the 

spread of infectious diseases [16]. Recently, Li et al. [17] proposed an epidemic model with media to 

describe the spread of infectious diseases in a given region. They found that media coverage plays an 

important role in controlling the spread of the disease. Al Basir [18] formulated and analyzed an 

epidemic model on the prevalence of infectious diseases using awareness campaign driven by media, 

with the aim of investigating the effects of awareness and delay on disease outbreak. These studies 

observed that effective media coverage can postpone the arrival of the infections peak and that a fewer 

number of individuals become infected in the course of transmission. Since the real-world system 

contains many species that interact with each other in different ways 

, we intended in this paper to study the influence of media coverage on the dynamics of infectious 

diseases in prey-predator model. Consequently, a prey-predator model having disease in predator 

species and involving media coverage is proposed. Lotka-Volterra functional response is used for 

describing the predation process. Moreover, this paper is organized as follows. Section 2 deals with 

the model formulation. Section 3 determines the equilibrium points (EPs) and their local stability 

analysis. The global stability for the EPs is studied with the help of Lyapunov method (LM) in section 

4.  The bifurcation analysis of the system is investigated in section 5. Section 6 deals with the 

numerical simulation of the system. Finally, the discussion and conclusions are addressed in section 7. 

2. The Mathematical model 

     In this section, the effects of media coverage on an eco-epidemiological model dynamics are 

studied. The model consists of an infectious disease of     type in predator species that feeds on a 

prey. It is assumed that the prey is consumed by the predator according to Lotka–Voltera types of 

functional responses. Thus, in order to represent the dynamics of such a real-life system, the following 

hypotheses are adopted. 

Let the variables  ( )  ( )     ( ) represent the densities at time   for the prey, susceptible 

predator, and infected predator, respectively. It is assumed that  ( ) grows logistically with     as 

the intrinsic growth rate and     as the carrying capacity. The species  ( ) is consumed by the 

species  ( )      ( ) using Lotka–Volterra functional responses, with maximum attack rates of 

              and conversion rates of    (   ) and    (   )  respectively. The term 

.     
 

   
/ represents the infection rate [11] due to the direct contact between ( )      ( ), 

where      is the contact rate before media coverage alert, while   
 

   
 represents the reduced 

value in the contact due to media coverage alert, so that      is the maximum transmission rate 

under the media coverage and     is the non-response rate of individual’s ‎ to the media coverage. 

Furthermore, since it is well known that the media coverage cannot prevent the spreading disease 

completely, then from now onward we take     . Also, the infected individuals may recover with a 

rate of    . Finally, the natural death rate of predator individuals is given by      while the 

disease death rate is represented by    . 

According to the above hypotheses, the dynamics of the above-described system, that consists of a 

prey-predator system, which incorporates the media coverage, can be described in the following set of 

differential equations: 
  

  
  .  

 

 
/                                                  

  

  
               .     

 

   
/          

  

  
 .     

 

   
/    (     )                              

                           (1) 

with  ( )     ( )          ( )    as initial conditions. Therefore, system (1) has the domain 

  
  *(     )                +.  

Clearly, system (1) contains    functions and, therefore, these functions are Lipschitzain. Hence, the 

solution of system (1) exists and is unique. Furthermore, the uniform boundedness of the solutions of 

system (1) is proved in the following theorem. 

Theorem (1). All the solutions of the system (1) are uniformly bounded. 

Proof: We define         , then 
   

  
 can be written as 
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   .  

 

  
/        (   )        ,    

here,      *   + , then direct computation shows that, for   to go to  , we have    
  

 
. 

Therefore, all the variables are bounded.                         

3. Existence of EPs and Their Local Stability Analysis 

     It is observed that system (1) has four nonnegative biologically reasonable equilibrium points 

(EPs). The existence conditions for each of these EPs are established as the following: 

The trivial EP,    (     ), always exists.  

The axial EP,    (     ), always exists as the prey population grows to carrying capacity in the 

absence of predation. 

The infected predator free EP,    (  ̅   ̅  ), where    

            ̅  
 

    
      ̅  

 (       )

    
  

 ,                                                                   (2a)   

which exists under the condition   

                   .                                                                                              (2b) 

The coexistence or positive EP,    ( 
       ), is given by 

   
  

.     
  

    
/
,                (3a) 

where         . While (     ) represents the positive intersection point of the following two 

isoclines 

  (   )   .  
 

 
/    

  

.     
 

   
/
      ,                 (3b) 

  (   )            
.     

 

   
/  

  
                      

 .     
 

   
/    

.     
 

   
/ 

  
     

                  (3c) 

Obviously, as      then the isoclines becomes 

   ( )   .  
 

 
/    

  

  
  , 

   ( )           . 

     Therefore,   ( ) intersects the   axis at the positive point    
 (        )

   
, however   ( ) 

intersects the   axis at the positive point    
 

    
. Hence, the two isoclines (3b) and (3c) have a 

unique positive intersection point and then    exists in the interior of   
  uniquely, if the next 

conditions hold. 

         ,                  (4a) 

      ,                (4b) 

 
  

  
  

     ⁄

     ⁄
  ,                (4c) 

  

  
  

     ⁄

     ⁄
  .                  (4d) 

Consequently, in the following, the stability near these EPs is studied locally using the linearization 

method. Note that it is easy to confirm that the Jacobian matrix (JM) of system (1) about an arbitrary 

point (     ) is 

 (     )  

[
 
 
 
   

   

 
                

                 .     
 

   
/              

  (    )  

(   ) 
  

 .     
 

   
/      

  (    )  

(   ) 
   ]

 
 
 
 

.(5) 

Now, it is obtained that the JM of system (1) around trivial EP,    (     ), has the following 

eigenvalues: 

                               .                                                                 (6)  

Hence, the trivial EP is unstable (saddle point).  

The JM of the system (1) at the axial EP,    (     ), can be written as: 
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            (  )  [

          
               
     

].                                         (7a) 

Therefore, the eigenvalues of  (  ) are given by 

                              .                       (7b) 

Hence, the EP,    (     ), is locally asymptotically stable (LAS) if the condition below holds.   

                .                                                                                 (8) 

Now, the JM of system (1) at the EP,    (  ̅   ̅  ),  can be written as: 

 (  )  

[
 
 
 
  

  

     
 
 

  
 
   

    
 (       )

   
      ̅     ̅   

     ̅    ]
 
 
 
 

 .                                 (9a) 

Clearly, one of the eigenvalue is        ̅     and the other two eigenvalues are the roots of the 

equation: 

  
         ,                             (9b)  

where    
   

     
          

  (       )

   
   

  . Clearly, Eq. (9b) has the following roots 

    
 

 
 
 

 
√           

 

 
 
 

 
√     .                           (9c) 

Hence, all these eigenvalues have negative real parts and hence    is LAS if and only if the following 

condition holds: 

             ̅    .                                                 (10) 

Finally, the JM evaluated at the positive EP,   , is given by  

  (  )  (   )   ,            (11a)  

where: 

                 
    

 
    

     
          

          
 , 

                    
       

           
  .   

   
 

    
/     , 

                     
     

  
  (    

 )    

(    ) 
  ,      ,  

    .   
   

 

    
/           

  
  (    

 )    

(    ) 
   .   

Then the characteristic equation of  (  ) can be written as: 

              
      

           ,                             (11b) 

where        (           ),   
                (             )         (             ),           
                 ,   (             )     (             )-, 
with 

 

           (       )(             )                   
       (       )   (       )(             )

                       
 

     Accordingly, by using the Routh-Hawirtiz criterion, all roots of Eq. (11b) have negative real part 

roots and, hence, the EP,   , is LAS if the following sufficient conditions are satisfied:  

   
    

 
    

     
   ,                (12a) 

      
  .   

   
 

    
/     ,                  (12b) 

      
  

  (    
 )    

(    ) 
      

     
   

   (     )

(    ) 
,          (12c) 

 .  
    

 
    

     
 / .     

  .   
   

 

    
/     /                                         

.   
  

  (    
 )    

(    ) 
   /  (    

 )(     
       

 ) (.   
   

 

    
/   )  

  (12d) 

     Now, we study the global stability and the persistence of system (1). It is well known that any 

biological system persists if and only if all its species persist for all the time. This means, from the 
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mathematical point of view, that there is no trajectory that approaches asymptotically to the boundary 

axis or planes.  

Now, according to system (1), if the infected individuals disappear, then the following subsystem is 

obtained 

 

  

  
  .  

 

 
/         (   ) 

  

  
             (   )             

                 (13) 

Clearly, subsystem (13) is a 2D system that has a unique positive point given by ( ̅  ̅), which are 

given by Eq. (2a) and exist uniquely in the    plane under the condition (2b). According to the well-

known Poincare Bendixon theorem, the solution of system (13) approaches either to EP ( ̅  ̅) or else 

to the periodic dynamics. Now, by using the continuous function  (   )  
 

  
, we obtain the 

following quantity 

   
 (   )

  
 
 (   )

  
  

 

  
  .   

Then, from the Dulac criterion, there is no periodic dynamics in the interior of the positive quadrant of 

the    plane. Therefore, according to the Poincare Bendixon theorem, the EP, ( ̅  ̅), is a globally 

asymptotically stable (GAS) whenever it exists.  Hence, the 3D system (1) has no periodic dynamics 

in the boundary planes. 

Recall that the system (1) persists if and only if all the species coexist for all the future time. Hence, 

the following theorem contains the conditions that guarantee the persistence of the system.  

Theorem (2). System (1) is uniformly persistent provided that: 

       ,                (14a) 

    ̅    .          (14b) 

Proof: Suppose that   is a point in the interior of   
  and  ( ) is the orbit through    and let  ( ) be 

the omega limit set of  ( ). Furthermore, since  ( ) is bounded, due to the boundedness of the 

system (1), then we first show that     ( ).  
Assume the contrary, since    is a saddle point, then by Butler-McGhee lemma [19] there is at least 

one other point    such that     
 (  )  ( ), where   (  ) is the stable manifold of   . 

Now, since the stable manifold of    is given by    plane and the entire orbit through   , say  (  ), 
is contained in  ( ),  
hence, if    is on either boundary axes of    plane, then we obtain a contradiction to the 

boundedness of  ( ), due to the containment of the unbounded positive axis in it.  

Now, let    belongs to the interior of    plane. Since there is no EP in the interior of    plane, then 

the orbit through   , which is contained in  ( ), must be unbounded. This gives a contradiction and 

leads to     ( ).  
Now, to proof that     ( ), we assume the converse. Since    is a saddle point under the condition 

(14a), then by Butler-McGhee lemma, there is another point, say   , so that     
 (  )  ( ). Now, 

since the stable manifold of    is given by    plane and the entire orbit through    that denoted by 

 (  ) is contained in  ( ) hence if       (  )
  or          (  )

 , then a contradiction to the 

boundedness of  ( ) is obtained and then     ( ).   
Finally, since the point    is a saddle point under the condition (14b), then by using similar argument 

as given in the first part of the proof, we obtain that     ( ). Hence, the proof is complete.   

4. Global Stability Analysis 

        In this section, the global stability of all the locally stable EPs is studied with the use of 

Lyapunov method, as shown in the following theorems. 

Theorem (3). Assume that the EP,    (     ), of system (1) is LAS in   
  , and the following 

conditions are satisfies: 

     2
 

  
 
   

  
3.                   (15) 

Then it is GAS in    
 . 

Proof: Consider the following function: 

   .       
 

 
/     . 
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Then    is a    function, which is a positive, definite, real valued function.  Now, the function 
   

  
 can 

be calculated as:  

 

   

  
  

 

 
(   )  (    )     (    )    

 (     )  (       )  
 

Since    (   )      , then we get 

 
   

  
  

 

 
(   )  (     )  (       ) . 

Obviously, under the condition (15), we have that 
   

  
 is negative definite. Also, since    is radially 

unbounded function, then    is GAS.  

Theorem (4). Assume that the EP,   , of system (1) is LAS in   
 , and the following conditions are 

satisfied: 

     ̅     ̅  (   ),               (16a) 

     .                                                             (16b) 

Then it is GAS in    
 . 

Proof: Consider the following function: 

      .   ̅   ̅   
 

 ̅
/     .   ̅   ̅   

 

 ̅
/      ,  

where             are positive constants that shall be determined later on. Clearly,      
    is    

that is positive definite real valued function. Then we have  

 

   

  
  

   

 
(   ̅)    (       )(   ̅)(   ̅)                    

   (       )   (     ) .     
 

   
/    

  

 
 ̅ 

 
       ̅

 
   .

   

 
 
       ̅

 
/ (   ̅) 

 ,  (     )       ̅         ̅-  
     

   
 ̅  

 

So, by choosing the positive constant as below: 

            and     , 

we obtain that: 

             

   

  
  

   

 
(   ̅)    (     )   

 ̅

 
  

     ̅

 
  

 ,(   )       ̅     ̅-  
   ̅

   
   

 

Obviously, under the conditions (16a)-(16b), we have that 
   

  
 is negative semi definite. Therefore, the 

EP,   , is a stable point. Now, since    is the only invariant set that satisfies 
   

  
  , then by using 

LaSalle’s‎invariance‎principle, it is attracting. Hence,    is GAS. 

Theorem (5). Assume that the EP,    ( 
       ), of system (1) is LAS in   

 , and the following 

conditions are satisfied: 

              

   
        
   
        
   
        

} ,                                                                                      (17) 

where all the symbol are defined in the proof. Then it is GAS in   
 . 

Proof: Consider the following function: 

      .   
      

 

  
/     .   

      
 

  
/     .   

      
 

  
/, 

where            are positive constants that shall be determined later on. Clearly,      
    is a     

function that is a positive definite function. Then we have  

 

   

  
  

   

 
(    )  0            

       
 

 
1 (    )(    )

 ,    -(   
 )(    )  0

       
   

   
 
    

 

   
1 (    ) 

 0(     )   
  (       )

 
 
     

   
  

(     )    
 

   

 
(     )    

 

   
1 (    )(    )  

      

   
(    )  
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where                  . So, by choosing            and     , we get, after using 

the given condition (17), that: 

 

   

  
  

 

 
,√   (   

 )  √   (   
 )- 

 
 

 
,√   (   

 )  √   (   
 )- 

 
 

 
[√   (   

 )  √   (   
 )]

 
 

 

here     
   

 
,     

  

   
(     

   ),     
    

   
,     

     
 

 
,        and      

(       )

 
 

    

   
 . 

Obviously, we have that 
   

  
 is negative definite. Also, since    is radially unbounded function, then    

is GAS.                  

5. Local bifurcation 

     It is well known that the bifurcation occurs if and only if there is a qualitative change in the 

behavior of the solution of a system, as occurs by varying the control parameter. Therefore in this 

section, a study of the occurrence of local bifurcation (LB) near the EPs of system (1) is performed 

using Sotomayor’s‎theorem [20]. Also, it is well known that the non-hyperbolic property of an EP is a 

necessary but not sufficient condition for the occurrence of bifurcation in the neighborhood of that 

point. Therefore, the parameters, which change the EPs from hyperbolic to ‎non-hyperbolic EPs, are 

considered as candidate bifurcation ‎parameters of system (1), as shown in the next theorems. Now, for 

simplifying the notations, we rewrite system (1) in the vector form as follows  
  

  
  ( ), with   (     )  and   (        )

 .    

So, according to the JM of system (1) at the point(     ), it is easy to verify that for any vector 

  (        )
 , we have that 

    ( )(   )  

[
 
 
 
 
 ∑

   

      
(  )(  )

 
     

∑
   

      
(  )(  )

 
     

∑
   

      
(  )(  )

 
     ]

 
 
 
 
 

 [   ]    ,                              (18) 

where 

     
  

 
  
                 , 

                         0   
(    )   

(   ) 
1      

    
  

(   ) 
  
 , 

     0   
(    )   

(   ) 
1      

    
  

(   ) 
  
 . 

On other hand, we have also 

    ( )(     )  [   ]   ,                                                   (19) 

where  

      , 

      
    

 

(   ) 
    

  
    

 

(   ) 
  
 , 

      
    

 

(   ) 
    

  
    

 

(   ) 
  
 . 

     In the following theorems, the occurrence of LB around the EPs,              , is investigated, 

respectively. 

Theorem (6). Assume that the parameter   satisfies that 

             .                                                                                 (20) 

Then system (1) near the EP,   , has a transcritical bifurcation (TB). However, saddle-node 

bifurcation (SNB) and pitchfork bifurcation (PB) cannot occur.                                           

Proof: Note that, when     , then the JM of system (1) at     can be written as 

    (     
 )  [

          
         
     

]. 
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So,    has the following eigenvalues:    
           

     and     
        and, hence, the 

necessary but not sufficient condition for bifurcation is satisfied and     is a nonhyperbolic point. 

Let    (           )
  be the eigenvectors of    corresponding to the eigenvalue    

   . Then, 

simple computation gives that     (           )
 , where     represents any nonzero real number 

and     
   

 
  . 

Also, let    (           )
  represents the eigenvectors of   

  corresponding to the eigenvalue 

   
   . Then again, simple calculation shows that    (           )

 , where     is any nonzero 

real number and    
       

  
  . 

Since the partial derivative of vector field   with respect to the parameter   is given by 
  

  
    

(       ) , hence by substituting     and    in this derivative, we obtain that   (     
 )  

(     ) .  

Therefore   
 ,  (     

 )-   .  

Thus system (1) at     with      does not experience SNB in view of Sotomayor theorem. 

Moreover, since  

   
 ,   (     

 )   -           , 

where     represents the derivative of    with respect to  , then 

  
 ,   (     

 )(     )-               
   , 

where     represents the second derivative of   with respect to  . Accordingly by Sotomayor 

theorem [20], system (1) near the EP,   , with     , possesses a TB, while PB cannot occur.  

Theorem (7). Assume that   

        ̅     .                                           (21) 

Then system (1) near the EP,   , has a TB, provided that the following condition holds 

     
    ̅

 
  .                                                                 (22) 

Otherwise it has a PB, provided that the following condition holds 

   
 ̅

 
  ,                                                             (23) 

where all the symbols are given in proof. 

Proof: Note that, when     , then the JM of system (1) at     can be written as 

    (    
 )  

[
 
 
  

  

     
 
 

  
 
   

    
 (       )

   
      ̅     ̅   

   ]
 
 
 

 (   ). 

Clearly,    has zero eigenvalues,    
     with the two other eigenvalues that are given by Eq. (9c) 

having negative real parts.  

Let    (           )
  be the eigenvectors of    corresponding to the eigenvalue    

   .  

So, direct computation shows that    (               )
 , where     represents any nonzero real 

number,     
   
   

, and    
             

      
.   

Let    (           )
  represents the eigenvectors of   

  corresponding to the zero eigenvalue, 

   
   . Then straightforward calculation shows that    (       )

 , where     is any nonzero 

real number. 

Since 
  

  
    (      )

 , hence we obtain that   (     
 )  (     ) .  

Therefore,    
 ,  (     

 )-   .  

Thus system (1) at the infected predator-free EP,   , with      does not undergo SNB in view of 

Sotomayor theorem. 

Now, since  

  
 ,   (    

 )  -           , 

and   

  
 ,   (    

 )(     )-         
 0     

   ̅

 
1. 

then, clearly,   
 ,   (    

 )(     )-     due to condition (22), and hence system (1) undergoes a 

TB near     when     . However, violating condition (22) and using condition (23) leads to  
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 ,   (     

 )(        )-   
   

 
      

 0   
 ̅

 
1   . 

Hence system (1) undergoes a PB.  

Theorem (8). Assume that conditions (12a)-(12b) along with the following conditions are satisfied 

   
     2   

   
   (     )

(    ) 
      

  
  (    

 )    

(    ) 
  3         (24a) 

                            .             (24b) 

Then, when the parameter   passes through the following value 

     

(     )
0 
   (             )

(             )
    

     
 1,           (24c) 

system (1) near the coexistence EP,   , has a SNB, provided that the following condition holds 

     
       

     
   ,                  (25) 

where all the symbols are given in the proof. 

Proof: Straightforward computation shows that under the conditions (12a), (12b), (24a), (24b) and 

(24c) the coefficients of the characteristic equation given by Eq.(11b) are     ,      and     . 

Hence, Eq. (11b) has three roots (eigenvalues of  (  )) given by 

   
   ,    

   
  

 
 
 

 
√  

     ,    
   

  

 
 
 

 
√  

     . 

Clearly, the eigenvalues    
 
 and    

 
 have negative real parts. Hence the JM of system (1) around the 

point    and      can be written as      (     
 )  (   

 )
   

, with    
            and    

  

   ( 
 ), where     are given in Eq. (11a). We will drop the star for simplification.  

Let    (           )
  be the eigenvectors of    corresponding to    

   . Then, direct 

computation shows that    (               )
 , where     represents any nonzero real number, 

   
             
             

    and     
             
             

. 

Let    (           )
  represents the eigenvectors of    

  corresponding to the eigenvalue 

   
   . Then simple calculation shows that    (               )

 , where     is any nonzero 

real number,    
       

             
     and    

      
             

  . 

We have that 
  

  
    (  

  

 
    ) , hence we obtain that   (     

 )  (   
  
 

 
    ) . 

Therefore, we obtain that 

  
 ,  (     

 )-       4 
  
  
 

 
5  .  

Consequently, the first condition of SNB in view of Sotomayor theorem is satisfied. Now, since 

  
 ,   (    

 )(     )-       
    ,     

       
     

 -, 
where 

   
  0

  

 
  
             1, 

   
  0                 .   

(     )   
 

(    ) 
/    

   
   

(    ) 
1, 

   
  0

   
   

(    ) 
 .   

(     )   
 

(    ) 
/   1, 

then, clearly,   
 ,   (    

 )(     )-    under the condition (25), and hence system (1) 

undergoes a SNB near the coexistence equilibrium. 

6. Numerical Simulation  
     In this section, the global dynamics of  system (1) is further investigated. To specify the control set 

of parameters, the system is solved numerically. System (1) is solved numerically using Runge-Kutta 

of order six, followed by a four-step Predictor-Corrector method. Then, all the obtained numerical 

results are drawn in the form of    phase portrait and    time series using MATLAB version 6. 

Therefore, in order to run simulations, the following hypothetical set of biological data is used in this 

section. 

 
                                                     
                                          

 
            (26)                     

     It is observed, for this set of data, that the system (1) approaches asymptotically to the unique 

coexistence EP,    (              ), starting from three different initial values, as shown in the 

following two figures  (Figures- 1 and 2). 



Alwan and Satar                                           Iraqi Journal of Science, 2021, Vol. 62, No. 3, pp: 981-996 
 

990 

 
Figure 1-3D phase portrait of system (1) using the parameters given by Eq. (26) in which the solution 

approaches asymptotically to the     (              ).  

 

 
Figure 2-The solution of system (1) approaches asymptotically to    (              ) for the data 

(26). (a) The trajectory of prey versus time. (b) The trajectory of susceptible predator versus time. (c) 

The trajectory of infected predator versus time. 

 

     According to these two figures, system (1) persists at the coexistence point in   
  . Now, in order to 

discuss the effect of varying the parameters’ values of system (1) on the dynamical behavior of the 

system, the system is solved numerically for the data given in Eq. (26) and then the obtained solutions 

are drawn as shown below. It is observed that, for the values of parameter   in the range       with 

the other parameters as in Eq. (26), system (1) approaches asymptotically to infected predator-free EP 

in the interior of    plane, otherwise it has a GAS coexistence EP, see Figure-3a and Figure-3b for 
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typical values of  . Now, the effect of varying the carrying capacity of the prey species is investigated 

numerically as shown in Figure-4). 

 
Figure 3-The trajectories of system (1) versus time for the data given by Eq. (26) with different values 

of  . (a) The system approaches asymptoticaly to    (              ) when    . (b) The system 

approaches asymptotically to    (           ) when      . 

 

 

 
Figure 4-The trajectories of system (1) versus time for the data given by Eq. (26) with different values 

of  . (a) Trajectories of the prey. (b) Trajectories of the susceptible predator. (c) Trajectories of the 

infected predator. 

 

      Obviously, as the carrying capacity increases, the population, especially the infected predator, 

increases too, but the system still persists at the coexistence EP. 

Now, varying    in the range of         leads to an extinction in the infected predator and the 

system (1) approaches to   , as shown in the typical illustration given by Figure-5. While for    
     the system approaches to periodic dynamics in 3D, as shown in the typical illustration given by 

Figure-6. Otherwise, system (1) still has a global coexistence EP. 
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Figure 5-The solution of system (1) of system (1) for      with the other parameters as in Eq. (26), 

which approaches asymptoticaly to    (           ). (a) 3D phase plot of the attractor. (b) The 

trajectories of each population versus time. 

 

 
Figure 6-The solution of system (1) of system (1) for        with the other parameters as in Eq. 

(26), which approaches periodic in the interior of   
 . (a) 3D phase plot of the attractor. (b) The 

trajectories of each population versus time. 

 

     Moreover, for the parameter    in the range         it is observed that system (1) approaches to 

periodic dynamics in 3D as shown in the typical illustration given by Figure-7. However, it 

approaches to    otherwise.  
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Figure 7-The solution of system (1) of system (1) for        with the other parameters as in Eq. 

(26), which approaches periodic in the interior of   
 . (a) 3D phase plot of the attractor. (b) The 

trajectories of each population versus time. 

 

      It is observed that varying the parameters    and   have similar effect as that shown with varying 

  . Now, for the parameter    in the range         it is observed that system (1) approaches to 

periodic dynamics in 3D, as shown in the typical illustration given by Figure-8. However, it 

approaches to    otherwise.  

 
Figure 8-The solution of system (1) of system (1) for         with the other parameters as in Eq. 

(26), which approaches periodic in the interior of   
 . (a) 3D phase plot of the attractor. (b) The 

trajectories of each population versus time. 

 

      On the other hand, varying the parameters of the infection rate of system (1) was also studied. It is 

observed that, for         system (1) has a GAS at    with quantitative changes in the sizes of 

populations. However, for         (maximum transmission rate under the media coverage alert), 

with increasing the response of individuals to the media coverage alert or decreasing the parameter  , 
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system (1) approaches gradually to   , as shown in Figure-9 for the values              
respectively.  

Finally, for the parameter   in the range        with the rest of parameters being as in Eq. (26), 

system (1) approaches asymptoticaly to     as shown in the typical illustration given by Figure-10. 

Otherwise system (1) still approaches to    in the interior of   
 . Similar effect was obtained, as that 

happened with varying  , when we varied the parameter  .  

 

 
Figure 9-The trajectories of system (1) versus time for the data given by Eq. (26) with         and 

different values of  . (a) The system approaches asymptotically to    (             ) when 

    . (b) The system approaches asymptotically to    (             )  when     . (c) The 

system approaches asymptotically to    (            )  when    . (d) The system approaches 

asymptotically to    (           )  when    .  

 
Figure 10-The trajectories of system (1) versus time for the data given by Eq. (26) with different 

values of  . (a) The system approaches asymptotically to    (              )  when      . (b) 

The system approaches asymptotically to    (           )  when      .   
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7. Discussion and conclusions 

      In this paper, the impact of media coverage alert on the dynamical behavior of the diseased prey-

predator population and the spread of the disease were investigated. It is assumed that the system is 

consisting of prey that grows logistically and consumed by a predator according to Lotka-Voltter 

functional response. There is an infectious disease of SIS-type in the predator. The system of 

differential equations that describes the dynamics of the above system is constructed. All the solution 

properties are discussed. The stability analysis of the system is studied locally as well as globally. The 

conditions of system persistence are established. The occurrence of local bifurcation is also 

investigated. Finally, numerical simulation is carried out to further understand the global dynamics of 

the system using hypothetical set of parameters values. The following conclusions are obtained from 

the numerical simulations. 

 System (1) has only two types of attractors that approach to EP or periodic dynamics. 

 Decreasing the intrinsic growth rate below a specific value causes extinction in infected predator 

and the solution approaches to the infected predator-free EP. Otherwise it persists at a coexistence EP. 

 Varying the carrying capacity or infection rate, due to contact between the susceptible individuals 

and infected individuals, before applying media coverage has quantitative effects on the size of 

population and the system still persist at the coexistence EP. 

 Increasing the attack rate of prey by susceptible predator above a specific value leads to 

extinction in the infected predator and the solution approaches to infected predator-free EP. While by 

decreasing it below a specific value, the system loses its stability and still persists in the form of 

periodic attractor in the interior of   
 . The solution still approaches to the coexistence EP otherwise. 

 Increasing the attack rate of prey by infected predator above a specific value causes instability in 

the system and the solution approaches asymptotically to periodic attractor in the interior of   
 . 

Again, the solution still approaches to coexistence EP otherwise. The conversion rate of the prey due 

to the attack by susceptible predator and the disease-associated death rate have similar effects as that 

obtained by the attack rate. 

 Decreasing the conversion rate of the prey due to the attack by infected predator below a specific 

value causes instability in the system and the solution approaches asymptotically to periodic attractor 

in the interior of   
 . The solution still approaches to coexistence EP otherwise 

  Increasing the maximum transmission rate of disease under the media coverage alert to up to the 

maximum value (     ) without increasing the response of individuals to that alert (or decreasing 

the non-response rate of individuals ‎ to the media coverage) do not stop the spread of disease. 

However, decreasing the rate of non-response of individuals up to zero causes stopping in the spread 

of disease and the system approaches to infected predator-free EP. 

 Increasing the disease death rate above a specific value leads to losing the persistence of the 

system and the solution approaches asymptotically to the infected predator-free EP. Otherwise it still 

persists at a coexistence EP. A similar observation was obtained for the parameter that represents the 

natural death rate of the predator. 
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