
Taha and AL-Tuwaijari Iraqi Journal of Science, 2021, Vol. 62, No. 6, pp: 2029-2039

 DOI: 10.24996/ijs.2021.62.6.29

__
*Email: mustafa.hussein@sciences.uodiyala.edu.iq

2029

Improvement of Chacha20 Algorithm based on Tent and Chebyshev

Chaotic Maps

Mustafa Hussein Taha* , Jamal Mustafa Al-Tuwaijari

Department of computer science, College of Science, Diyala University, Baqubah, Iraq

 Received: 2/6/2020 Accepted: 25/8/2020

Abstract

 Chacha 20 is a stream cypher that is used as lightweight on many CPUs that do

not have dedicated AES instructions. As stated by Google, that is the reason why

they use it on many devices, such as mobile devices, for authentication in TLS

protocol. This paper proposes an improvement of chaha20 stream cypher algorithm

based on tent and Chebyshev functions (IChacha20). The main objectives of the

proposed IChacha20 algorithm are increasing security layer, designing a robust

structure of the IChacha20 to be enabled to resist various types of attacks,

implementing the proposed algorithm for encryption of colour images, and transiting

it in a secure manner. The test results proved that the MSE, PSNR, UQI and NCC

metrics of IChacha20 are better than those of the original Chacha20. Also, the

proposed method has a faster execution time (01:26:4 sec) compared with the

original algorithm (02:07:1 sec).

Keywords: Chacha20, Tent function, Chebyshev function.

 الدوال الفوضوية على بالاعتماد Chacha20تحدين خوارزمية

 , جمال مصطفى التويجري *مصطفى حدين طه
 قدم الحاسبات, كلية العلهم, جامعة ديالى , بعقهبة , العخاق

 الخلاصة
هي خهارزمية تذفيخ من نهع خفيفة الهزن تدتخجم للعجيج من انهع وحجات السعالجة ٠٢تذاتذاخهارزمية

السخررة لها . لحلك قالت عشها شخكة غهغل ان لهحا الدبب يتم (AES) السخكدية التي ليذ لها تعليسات
هحه الهرقة البحثية اقتخحت .TLS استخجامها على العجيج من انهاع الاجهدة السحسهلة للسرادقة على بخوتهكهل

 tent function, Chebyshev) (بالاعتساد على الجوال الفهضهيةIChacha20تحدين هحه الخهارزمية)
function)سثل الاهجاف الخئيدية لهحه الخهارزمية السقتخحةتت (IChacha20) في زيادة مدتهى الامان

هشا يتم تشفيح الخهارزمية السقتخحة لتذفيخ . توترسيم بشية قهية لتتسكن من مقاومة انهاع مختلفة من الهجسا
اثبتت التجارب العسلية ونتائج الاختبارات ان السقاييذ الخاصة بتذفيخ .صهر ملهنة ليتم نقلها بأسلهب أمن

 (Chacha20) افزل من (IChacha20)ــ(لMSE, PSNR, UQI and NCCالرهر مثل)
, حيث يكهن وقت تشفيح لها وقت تشفيح أسخع مقارنة بالخهارزمية الأصليةالاصلية كسا أن الطخيقة السقتخحة

 ثانية. 4: 02: 21ثانية بيشسا يكهن وقت تشفيح الخهارزمية السقتخحة = 1: 20: 20الخهارزمية الأصلية =
1. Introduction

 The development of a system of data communication, such as networks of computers, cellular

phones, etc. has been earning momentum in latest years. The advent of such systems of

ISSN: 0067-2904

Taha and AL-Tuwaijari Iraqi Journal of Science, 2021, Vol. 62, No. 6, pp: 2029-2039

2030

communication leads to major troubles of security on transmission of confidential data such as

military data, messages, confidential images, etc. A secure environment or circumference would not

be possible without encryption technology.Cryptography, encryption algorithm, and chaotic maps are

three prevalent techniques in order to make digital data protected from prohibitive access

and illegitimate usage. The algorithms of cryptographic are categorized into cyphers of the stream

and cyphers of the block. In stream cyphers, the data are coded bit by bit by utilizing a secure

key generator, whilst in block cyphers bits blocks are ciphered [1].

These techniques are used to overcome the difficulties in the original encryption algorithms

(AES, DES, and Blowfish, etc.), such as the magnitude of time, the resources of the computations, and

the high power for real-time. Various cypher algorithms have been proposed which depended on

chaotic maps [2]. The Chacha 20 encryption algorithm is the stream cypher algorithm developed

by Bernstein. It is based on the Salsa 20 algorithm; however, it varies in specifics and equips better

security than the original Salsa20 cypher, by utilizing somewhat better hash functions. The function of

hash input data was rearranged to permit to extra-efficaciously perform the algorithm [3]. In this

research paper, an enhancement of the algorithm of Chacha 20 is introduced by using two kinds of

functions of the chaotic maps (IChacha20).

2. Related Works

 Bernstein (2008) presented a document explaining the Chacha algorithm family of stream cyphers. It

has a different form of a family of the Salsa20 algorithm. Chacha20 pursues the same design rules as

for the salsa algorithm, but it differs in some of the details. Bernstein designed the Chacha algorithm

for an increased amount of diffusion during each round. He realized that the minimal number of secure

rounds for the Chacha algorithm is smaller (and not larger!) than the minimal number of secure rounds

for Salsa 20. Therefore, if the Chacha algorithm has the same minimum number of secure rounds as

the Salsa20 algorithm, then the Chacha algorithm will supply better overall speed than the Salsa20

algorithm for the same level of security [3].

Ganesan and Sobti (2016) analyzed and interpreted the property of the diffusion of Quarter Round

(QR) of both the Salsa20 algorithm and the Chacha algorithm, in addition to a proposed alternative

design called Modified Chacha Core (MCC). They compared the Quarter round (QR) functions of all

these three algorithms using the diffusion matrices that reflect a change in output words with a small

change in input words. They generated more than a million diffusion matrices for each algorithm

depending on the possible permutations of rotation constants used in the QR. They also proved that,

for the Salsa algorithm and Chacha algorithm core, there are a high number of alternative rotation

constants that generate more diffusion than the original rotation constants. So, they suggested

using MCC core to generate a collisionــresistant function of compression for the encoded hash

algorithm [4].

 Choudhuri and Maitra (2016) proposed a mixture system, under confirmed hypotheses, where

nonlinear rounds are initially considered as suggested by the designer, then their linear counterpart is

used. The effect of reversing rounds was also being considered with the Probabilistic Neutral

Bits(PNB) idea. Drawing on assumptions and analysis, they concluded that 12 rounds of Chacha and

Salsa algorithms must be considered sufficient for keys of 256 bit under the current better-known

models of attack. They advised that this model can have the prospected applications in other ARX

based cyphers [5].

Miyaji and Matsuoka (2018) described the existing security analysis. Firstly, they described the

stream cyphers Chacha and Salsa, then the existing security analysis, because Chacha needs more

analysis of security since it has been suggested more recently. Hence, they suggested a comparison

with the AES algorithm. Moreover, Chacha is an enhancement of Salsa from the perspective of

diffusion . Salsa algorithm was significant to understand their design of criteria of security. In that

research paper, the researchers revisited the diffusion analyzis and investigated weak columns and bits

of Salsa and Chacha. They confirmed that their work was the first of its kind [6].

Dey et al. (2019) initially revisited the existing attacks on Chacha and Salsa cyphers. Firstly,

they applied an accurate computation of the attack complexities of the existing technique instead of

the estimation used in previous works, which improved the complexity time to some extent. The

differential attacks that utilize Probabilistic Neutral Bits(PNB) against Salsa and Chacha include two

biases of probability, namely the forward bias of probability (∈d) and backward bias of probability

(∈a). In the second part of that paper, an approach to grow the backward bias of probability

Taha and AL-Tuwaijari Iraqi Journal of Science, 2021, Vol. 62, No. 6, pp: 2029-2039

2031

was suggested, which aids to decrease the attack complexity. Lastly, they concentrated on the

principles of the design of Chacha. They proposed a slight or simple modification in the designing of

this cypher as a countermeasure against differential attacks. They showed that the key recovery attacks

suggested against this modified version are not effective for Chacha [7].

3. Chacha20 Algorithm

 The Chacha20 algorithm produces the keystream of 64ـBytes. The input to the keystream matrix is

separate from the plain text or coded text [8]. This allows equivalent cypher text generation with a

consequent performance enhancement. Chacha algorithm includes twenty rounds of computations of

mathematical They are all used X-OR operation, the addition operation and bit rotation operation then

take inputs such as a 4-byte constant, a random 32ــ byte key, a 12ــ byte nonce , and a 4-byte counter

(In original, Bernstein determine the values of each of counter and the lengths of the nonce to be eight

values).The 4ـByte constants are:(σ0,σ1,σ2,σ3)= ("0x61707865"," 0x3320646e"," 0x79622d32" ,

"0x6b206574"), or in ASCII they are "apxe", "3 dn", "yb-2", "k et". In Chacha20 algorithm, these

strings are successive. The counter typically begins with 0 or 1, with increment to every

64Byte plaintext block [9]. Chacha20 gathers a 256ــbit key and a 32ــbit nonce that contain a counter.

This leads to creating a keystream, which is a combination of using XــOR with the plaintext.

Chacha20 algorithm operates on 32bit words at a time with a key of 256ــ bits where K= k0, k1, k2,

k3, k4, k5, k6, k7. These blocks are the output of 512ــ bits for the keystream Z, Then the X-OR

operation is executed between the keystream and the original text. The encryption state is stored

within a 16x32bit word's value and arranged as a 4x4 matrix [9], as follows:

[

]

 Chacha20 algorithm then locates a four-quarter round function, as shown in the algorithm (1) [9].

Algorithm (1): Quarter round

Result: QR (a, b, c, d)

a=a + b ; d = d a ; d=(d) << 16;

c=c + d ; b = b c ; b=(b) << 12;

a=a + b ; d = d a ; d=(d) << 8;

c=c + d ; b = b c ; b= b) << 7;

 The structure of the primary array is defined as shown below:

 (

) (For a 256-bit key)

 (

) (for a 128-bit key)

 The quarter-round functions are exercised to the column (x0, x4, x8, x12), (x5, x9, x13, x1), (x10,

x14, x2, x6) & (x15, x3, x7, x11) in odd rounds, and diagonal (x0, x5, x10, x15), (x1, x6, x11, x12),

(x2, x7, x8, x13) &(x3, x4, x9, x14) in even rounds.

Algorithm (2) characterizes the full procedures of Chaha20 algorithm [9].

Algorithm (2): Chacha20 algorithm

Required: Key K, Block Counter C, and Nonce (N)

Ensure: Keystream (Z)

X←primary array (K, C, N)

Y←X;

for i = 1 to 10 do

// Column Round

(x0,x4;x8,x12) QuarterRound (x0,x4,x8,x12)

.…(1)

…(2)

…(3)

Taha and AL-Tuwaijari Iraqi Journal of Science, 2021, Vol. 62, No. 6, pp: 2029-2039

2032

(x5,x9,x13,x1) QuarterRound (x5,x9,x13,x1)

(x10,x14,x2,x6) QuarterRound (x10,x14,x2,x6)

(x15,x3,x7,x11) QuarterRound (x15, x3, x7, x11)

// Diagonal Round

(x0, x5;x10, x15) QuarterRound (x0,x5;x10,x15)

(x1, x6, x11, x12) QuarterRound (x1,x6,x11,x12)

(x2;x7,x8,x13) QuarterRound (x2,x7,x8,x13)

(x3, x4, x9, x14) QuarterRound (x3, x4, x9, x14)

end

Z X + y

Return Z

4. Chaotic Maps

 The chaotic series has various useful attributes of application depending on security; it is a dynamic

method in a discrete time to result in a complex sequence. The noun is not random; however, it is

deterministic. This characteristic allows us to renew it with a very high sensitivity in the initial

condition. This leads to another initial arrangement which makes another sequence. Also, the chaotic

sequence path has an entropy behaviour in a particular space, which causes the recovery of this

sequence to be impossible in its special space. The chaotic maps are separated into two portions,

namely one-dimensional and multi-dimensional maps [10].

4.1 Chebyshev 1D Chaotic Map
Definition 1: The Chebyshev polynomial by degree n is specified as shown below.

T n (x) = cos (n∗arc(cos(x))) … (4)

where n is an integer value, x ∈ [1 ,−1]

Definition 2: Semi-group properties for Chebyshev can be achieved as shown below.

Trs(x)=Tr(Ts(x)) = Ts(Tr(x)) … (5)

Definition 3: The Chebyshev polynomial in (n) degree presents: x,Tx(x). It is unfeasible in

computation to define the polynomial order (n).

4.2 The Chaotic Tent Map Function

 Yoshida et al. [11] studied the chaotic behaviours of the tent maps’ functions (a linear

of piecewise, continued map with a unique maximum) analytically, which is a messy region in terms

of the fixed density and the power spectrum. With lowering the max limit, the sequential band-

splitting transitions happen in a messy region and accumulate to the transition point into the non-

messy region. The time of the correlation function of nonperiodic orbits and their spectrum of power

are computed exactly at the band splitting points and in the neighborhood of these points. The tent

map function is topologically associated, and thus, the behaviour of the maps is identical in this sense,

under iteration.

Figure 1-Graph of Tent Map Function [12].

The chaotic tent map [13] is given by

Taha and AL-Tuwaijari Iraqi Journal of Science, 2021, Vol. 62, No. 6, pp: 2029-2039

2033

 where xi ∈ [0,1],fori≥0.

 This map converts a period [0, 1] onto itself and includes only one control parameter μ,where μ

belonged [0, 2]. While x0 is the initial value of the method. The real set of values (x0, x1, dn)

provides the name of the orbit of the method.

5. The Proposed Method

 The proposed method is represented by an improvement of the Chacha20 algorithm that uses two

chaotic maps as pseudo number generator to be used in internal operations, as shown in Figure-2

which clarifies the general block diagrams. The proposed algorithm consists of three main stages; the

chaotic stage, generating Chacha20 key stage, and the final stage is the encode/decode of the colour

image. Each of these stages is clarified in details in the following subsections.

Figure 2-General block diagrams of the proposed (IChacha20).

5.1 Chaotic Maps

 This stage demonstrates an additional layer of security to the original Chacha 20 algorithm. The

objective is to generate a random unsigned number based on the two chaotic functions of Tent

maps and Chebyshev. This stage consists of two sub-steps:

i) Creating the Initial Matrix

This step aims to create an initial matrix with the size of 16*16 and the value of this matrix is 32bit

integer randomly unsigned using the chaotic functions of 1d Tent maps and Chebyshev. Both Tent

maps and Chebyshev follow the same procedure to generate the randomly unsigned 32ـbit integer

number. These numbers are used to full the initial matrix. So as to achieve this, for example, the Tent

maps utilize parameters as inputs to its function. These parameters include X0 (Primitive value) =

 xi+1=f(xi,μ)

 FL (xi,μ)=μxi,ifxi<0.5…(6)

F (xi,μ)=

 FR(xi,μ)=μ(1−xi),O.W

Taha and AL-Tuwaijari Iraqi Journal of Science, 2021, Vol. 62, No. 6, pp: 2029-2039

2034

0.6556, R= 0.954545, and the number of rounds which is 0-100. If the value of Tent map =

0.65388127808236, then:

1. Separate this value and take the digits after the decimal point '.' .

2. Save this value in an array xdigit[0] =(65388127808236).

3. Find the opposite of 65388127808236 and save it in an array xdigit[1] = 6328087218836.

4. Finally, convert the xdigit value [] to an unsigned 32bit integer number and store it in an array data

[No.Gen×4].

ii) Selecting Values from Initial Matrix

The objectives of this step are to increase complexity and diffusion that results in more security in the

proposed method. In this step, the proposed technique is utilized to select, in a random manner, one

element each time from the initial matrix that was created in the previous step. Figure-3 illustrates the

specifics of the proposed technique.

Figure 3- General block diagrams of the proposed technique to select values from the matrix.

 As shown in Figure-3, the proposed technique is divided into three steps to enable the random

selection from the initial matrix:

1- Generating a period table which consists of 16 rows, since the size of the initial matrix is [16*16].

The period table is called “range”, starting from 0 and ending at 1.

2- Generating a random number using equation (4) for Chebyshev function and equation (6) for the

Tent maps function.

3- Dropping values of tent maps and Chebyshev functions into the range table to check for any

periods with values that belong to the return index for that period. For example, if a chaotic value for

Tent or Chebyshev = 0.65, then when dropping this value on the range table it appears in a period of

11,0.6250,0.6875, then in a return index of this period which is = 11.

4- Determining the location [Row i, Column j] of the element from the initial matrix [16*16], where

Row i = is the index of the period that crossponds to the Tent value, whereas Column j= is the index of

period that crossponds to the Chebyshev value.

5- Adding the value of the element that was selected in the previous step into the selected matrix.

5.2 Generating Chacha20 Key Stream Stage

Figure-4 shows the stage of keystream generating for the proposed algorithm.

Taha and AL-Tuwaijari Iraqi Journal of Science, 2021, Vol. 62, No. 6, pp: 2029-2039

2035

Figure 4-Block diagram of Chacha20 64-bytes key stream generating.

 This step is objective to compute values of (key| nonce| sigma); the IChacha20 cipher operates on

 bit nonce Nـbit key K = (k0, k1, k2, k3, k4, k5,k6 & k7) and a 96ـbit words. It takes as input a 256ـ32

=(N0, N1, N2 & N3) , a 128ـbit block sigma S=(S0,S1,S2 and S3), and a 32ـbits counter which is equal to

1. The IChacha20 operates on a 4 4 matrix of 32ـbit words called X matrix. To compute the 256ـbit

key, 96ـbit nonce, and 128ـbit block sigma, algorithms (1) and (2) are applied.

5.3 Encoding /Decoding Color Image Stage

 Figure-5 shows the block diagram of IChacha20 Encryption /Decryption operation for color image.

Figure 5-Block diagram of the encryption /decryption for color image using IChacha20 algorithm.

 The IChacha20 successively calls the Chacha20 block function, with the same key , nonce, and

sigma, with successively increasing block counter parameters to form a keystream. The IChacha20

algorithm then performs an XOR operation between the keystream and the entered data that are

represented by the color images. Alternatively, each keystream block can be XORed with a plaintext

(color image) block before proceeding to create the next block, saving some memory. The input of

this encryption /decryption algorithm includes a 256ـbits key, a 32ـbit initial counter, a 96ـbits nonce,

 bits sigma, and finally, the original image with random size. The output is an encrypted image ofـ128

the same size as that of the original image.

6. Experimental Results
 The proposed IChacha20 algorithm is coded in C# and the tests are conducted on a PC with

Intel(R) Core(TM) i7-5500U, CPU@ 2.40GHz, a memory of 16.0 GB RAM, and a 64-bit system kind.

The implementation of key stream generation of the proposed algorithm is shown in Figures- 6.a, 6.b,

and 6.c,where the setting parameters of the chaotic Tent map for all experiments are

Taha and AL-Tuwaijari Iraqi Journal of Science, 2021, Vol. 62, No. 6, pp: 2029-2039

2036

 , whereas the setting parameters of the

Chebyshev chaotic map for all experiment are k=5,

a) Tent behaivours with its

setting parametes

b) Chebyshev behaivours

with its setting parametes

c) Location (i,j) of elements

selected from the select matrix

Figure 6- illustrates the key setup to compute the 256-bit key |96-bit-nonce|128-bits sigma.

Figure-6 Implementation of the key setup

 The performance of the proposed IChacha20 and Original Chacha20 algorithms are evaluated using

two different images, Pepper and Baboon, with a size of 256*256, in a RGB colour space based on

XOR – operation. Both encryption algorithms work with a 256-bits key, 32-bit initial counter, 96 –bits

nonce, and 128-bits sigma, as shown in Table-1. Table-2 shows the histogram of original and

encryption images that are illustrated in Table-1.

Table (1) Image Encryption using IChacha20 and Original Chacha20

Image

name

Original image Cipher image using

original Chacha20

Cipher image using

IChacha20

Pepper

K0 K1

194 94 89 161 98 244 108 46

K2 K3

127 107 118 104 210 32 36 181

K4 K5

105 235 226 77 133 244 252 12

K6 K7

23 108 125 193 32 87 1199 15

N0 N1

228 61 197 22 255 239 34 212

N3

97 245 32 42

S0 S1

39 245 164 12 244 36 200 103

S2 S3

213 218 164 222 136 123 212 206

c) 128-bits Sigma

 a) 256 –bits b) 96 –bits Nonce

Taha and AL-Tuwaijari Iraqi Journal of Science, 2021, Vol. 62, No. 6, pp: 2029-2039

2037

Baboon

Table 2-Histogram of Image Encryption Using IChacha20 and Original Chacha20

Image

name

Histogram of Original

image

Histogram of Cipher

image using original

Chacha20

Histogram of Cipher

image using IChacha20

Pepper

Baboo

n

As depicted in Table-2, it is clear that the visual histogram of cypher images for both the

proposed IChacha20 and original chacha20 algorithms is distributed uniformly, and does not provide

any information, so the attacker cannot know anything about the information. The resulting analysis is

dependent on Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), Universal Quality

Index (UQI), and Normalized Cross-Correlation (NCC). The MSE is a quantitative measure

that clarifies the distinction between plain image and cypher image, as in Equation (7) [6, 14].

∑ ∑ () ()

 …. (7)

 where P (i, j) is the input image pixel value, C (I, j) is the value of cypher image pixel, N and M are

the dimensions of the images.

 The PSNR mathematical representation is as in Equation (8) below [6, 14].

 (|) (8)

 The UQI is relied upon to estimate the deformation of two the images, as shown in equation (9)

below [8, 15].

UQI=
 ̅ ̅

() ̅ ̅
 … (9)

 NCC is a metrics of similarity of two wavelengths as a function of the lost time applied to one of

wavelengths. The value of NCC must be lower, that represents the low image quality. The NCC is

calculated as shown in equation (10) below [8, 15].

NCC=
∑ ∑ () ()

∑ ∑ (())

 … (10)

 The performance comparisons between the proposed IChacha20 and the original Chacha20

encryption algorithms are illustrated in Figure-7, based on MSE, PSNR, UQI, and NCC metrics.

Figure-8 shows a comparison between them based on execution time in seconds.

Taha and AL-Tuwaijari Iraqi Journal of Science, 2021, Vol. 62, No. 6, pp: 2029-2039

2038

(a) (b)

(c) (d)

Figure 7-Evaluation of the Performance of the Proposed IChacha20 and the Original Chacha20 based

on values of measures: a) MSE; b) PSNR; c) UQI; d) NCC

Figure 8-Execution Time of Encoding per Seconds

 In Figure-7, the results indicate that the MSE value between the cypher and the input images is

large. Also, the results of PSNR, UQI, and NCC show that the values between the original and the

encrypted images using the proposed method are smaller than those of the original method. Figure-8

illustrates that the proposed algorithm has a faster execution time of encoding; 00:02:10.994 Sec) for

the pepper image and 00:01:47.860 Sec for the baboon image.

7. Conclusions

Pepper Babbon

Original
Chacha20

7693.48996 6316.871754

IChacha20 7739.039474 6336.384708

0

2000

4000

6000

8000

10000

MSE Measure

Pepper Babbon

Original
Chacha20

9.269569695 10.12578301

IChacha20 9.24393299 10.11238824

8.8
9

9.2
9.4
9.6
9.8
10

10.2

PSNR Measure

Pepper Babbon

Original
Chacha20

0.47364159 0.493955676

IChacha 20 0.470717048 0.499201567

0.45
0.46
0.47
0.48
0.49

0.5
0.51

UQI Measure

Pepper Babbon

Original
Chacha20

0.474977801 0.501095881

IChacha20 0.472054526 0.492125557

0.45
0.46
0.47
0.48
0.49

0.5
0.51

NCC Measure

Taha and AL-Tuwaijari Iraqi Journal of Science, 2021, Vol. 62, No. 6, pp: 2029-2039

2039

 Chacha20 is a 64-bytes stream cypher based on the 20-round cypher. It is designed to enhance the

diffusion per round, conjecturally increasing resistance to cryptanalysis, while preserving, and often

enhancing, time per round. In this work, an efficient method for the improvement of Chacha20

encryption algorithm for RGB image is proposed. The 64-bytes stream key of the suggested algorithm

is generated by using the Tent maps function and Chebyshev-chaotic maps in addition to the

proposed combination between the two chaotic maps. Colour image was divided into blocks with a

size of 64-bytes based on XOR operation, applied with a 64-bytes stream key to produce the cypher

image. Experimental results reveal that the proposed IChacha20 is more robust against attacks that

intend to obtain any information from the encrypted image, being also faster compared with original

Chacha20. Furthermore, the proposed algorithm provides a large key space and has a very high

sensitivity to any simple change in the secret key.

Acknowledgement
 We wish to express our sincere thanks to the University of Diyala as well as the College of

Science- Department of computer science for providing a pleasurable and stimulating environment to

carry out the research and for their timely support.

References

1. George, D.I., Geetha, J.S. and Mani, K., 2014. Add-on Security Level for Public Key

Cryptosystem using Magic Rectangle with Column/Row Shifting. In IJCA, 96(14): 38-43.

2. Stallings, W., 2017.“Cryptography and network security: principle and practice”. (p. 743). Upper

Saddle River, Nj: Pearson.

3. Bernstein, D. J., 2008. Chacha, a variant of Salsa20. In Workshop Recorded of SASC,. 8: 3-5.
4. Sobti, R., & Ganesan, G., 2016. Analysis of quarter rounds of Salsa and Chacha core and proposal

of an alternative design to maximize diffusion. Indian Journal of Science and Technology, 9(3): 1

-10.

5. Choudhuri, A. R., & Maitra, S.,2016. Differential Cryptanalysis of Salsa and Chacha - An

Evaluation with a Hybrid Model. IACR Cryptology ePrint Archive, 2016, 377.

6. Matsuoka, Y., & Miyajei, A., 2018. Revisited Diffusion Analysis of Salsa and Chacha. In 2018

International Symposium on Information Theory and Its Applications (ISITA) (pp. 452-456).

IEEE
7. Dey, S., Roy, T., & Sarkar, S.,2019. Revisiting design principle of Salsa and Chacha. Advancers

inMathematics’ofCommunication, 13(4).

8. Robshaw, M., & Billet, O. (Eds.). 2008. New stream cipher designs: the eSTREAM finalists (Vol.

4986). Springer.

9. Peter McLaren, William J Buchanan , Gordon Russell , Zhiyuan Tan. 2019.Deriving Chacha20

Key Streams From Targeted Memory Analysis, Journal of Information Security and

Applications, 48: 102372 http://DOI: 10.1016/j.jisa.2019.102372 .
10. A Al-Tuwaijari, J. M. 2015. Multi-Cipher Technique based on RNA and Chebyschev Map. Iraqi

Journal of Information Technology, 7(1):114-125.

11. Yoshida, T., Shige Matsu, H., Mori, H., 1983. Analytic study of chaos of the tent map: band

structures, power spectra, and critical behaviors. J. Stat. Phys. 31(2): 279–308 .

12. Lv-Chen, C., Yu-Ling, L., Sen-Hui, Q., & Jun-Xiu, L., 2015. A perturbation method to the tent

map based on Lyapunov exponent and its application. Chinese Physics B, 24(10): 100501.

13. D. Chappell and Jewell. 2002. “JavaWebServices”,FirstEditionbookofO'Reilly,ISBN:0-596-

00269-6, March.

14. Al-Tuwaijari, J. M. 2018. Image Encryption Based on Fractal Geometry and Chaotic Map. Diyala

Journal For Pure Science, 14(1-Part 1): 166-182.

15. Kumar, Vijay and Dr: Badal Neelendra . 2017. An approach of visual cryptography for grayscale

and color Images using error –diffusion halftoniing technic, International Journal of Computers

Sciences and I information Technology AND Security (IJCSITS), ISSN:2249-9555, 7(1).

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.jisa.2019.102372?_sg%5B0%5D=uN3ho6dt6UVObXs4v01Z-GF17Aw78jbCPGh5J2lBQPjeeyA5l_AAg2zzWMbqrGx0rAvCF0KvtFNnCoi_SkokDxfcpw.rFPnIWMv2sPkWQ9p2G0kTtb1xCrzPBk70wHeFFVTmigidRmUrz9JPm1ImVbY4-bl7sSbpg88QGRMd-6_ohFMNg

