Iraqi Journal of Science, 2021, Vol. 62, No. 4, pp: 1265-1270 DOI: 10.24996/ijs.2021.62.4.21

ISSN: 0067-2904

A study of m-N-extremally Disconnected Spaces With Respect toτ, Maximum m_x-N-open Sets

Ahmed A.Salih^{*1}, Haider J. Ali

¹Republic of Iraq, Ministry of Education, Directorate General of Education, Baghdad, Karkh 3 ²Department of Mathematics, College of Science, Mustansiriyah University, Iraq

Received: 26/5/2020

Accepted: 14/7/2020

Abstract

The aim of this research is to prove the idea of maximum m_X -N-open set, m-N-extremally disconnected with respect to τ and provide some definitions by utilizing the idea of m_X -N-open sets. Some properties of these sets are studied.

Keywords: minimal structure, maximum m_X -N-open set, m-N-extremally disconnected respect to τ , mixed space.

دراسة الفضاء m-N-extremally disconnected بالنسبة لفضاء البنية ، الحد الاعلى لل

m_x-N-open من ناحية عدد عناصرها

احمد عاشور صالح^{1°}، حيدر جبر علي² ¹المديرية العامة لتربية بغداد، الكرخ \ 3 ، وزارة التربية، العراق ²قسم الرياضيات، كلية العلوم، جامعة المستنصرية، العراق

الخلاصة:

الهدف من هذا البحث تقديم مفهوم الحد الاعلى لل m_X-N-open من ناحية عدد عناصرها، مفهوم -N-m_X ويعض المفاهيم باستعمال المفهوم m-N-extremally disconnected respect tor المفتوحة. بعض خصائص هذه المجموعات تم دراستها والتحقيق فيها

Introduction

The notions of minimal open sets and maximal open sets in topological spaces were presented and investigated by Nakaoka and Oda [5, 6, 7]. Roohi *et al.* [8] showed the idea of maximal m_X -open set in m-space. They obtained numerous portrayals of maximal m_X -open set in m-space. Al-Omari *et al.* [1] presented an alteration of extremally disconnected spaces which is said to be m-extremally disconnected. Furthermore, they obtained numerous portrayals of m-extremally disconnected spaces. The motivation behind this <u>paper is</u> to present and test the idea of maximal m_X -N-open sets in m-spaces, called maximal m_X -N-open set. We also presented the idea of m-extremally disconnected with respect to τ . Few outcomes about the presence of maximal m_X -N-open sets and m-N-extremally disconnected spaces with respect to τ are given. We have upheld our outcomes by models and counterexamples.

1: PRELIMINARIES

Definition (1.1) [3]

Let X be a non-vacuous set and P(X) be the power set of X. A subfamily m_X of P(X) is called a minimal structure (briefly m-structure) on X if $\emptyset \in m_X$ and $X \in m_X$. By (X, m_X) , we indicate a non-

vacuous set X with an m-structure m_X on X, which is called an m-space. Every individual from m_X is nominated to be m_X -open and the complement of an m_X -open set is nominated to be m_X -closed se **Definition (1.2) [4]**

A subset B of m-space X is called $m_X N$ -open set if every single $x \in U$, then there be found an m_X -open set V that comprises x to such an extent that V/U is finite and the complement of an $m_X N$ -open set is designated to be $m_X N$ -closed set. The family of all $m_X N$ -open sets in X is designated to be m_N . Definition (1.3) [8]

Definition (1.3) [8]

Let (X, m_X) be an m-space. A non-vacuous proper m_X -open subcategory U of X is designated to be maximal m_X -open if any m_X -open set which comprises U is X or U. We indicate the set of all maximal m_X -open sets of an m-space (X, m_X) by max (X, m_X) .

Definition (1.4)[1]

A topological space (X, τ) with an m-structure m_X on X is designated to be mixed space and is indicated by (X, τ, m_X) .

Definition (1.5) [2]

A space X is extremally disconnected if the closure of every open subset of X is open.

Definition (1.6) [1]

A mixed space (X, τ , m_X) is nominated to be m-extremally disconnected if m_X -cl(U) $\in \tau$, for each U $\in \tau$.

Definition (1.7)

Let X be a non-vacuous set and m_X an m-structure on X. For a subcategory U of X, the m_X -N-closure of U and the m_X -N-interior of U are acquainted as pursues:

 $i.m_X-N-int(U) = \bigcup \{V: V \subseteq U, V \text{ is an } m_X-N-open\}.$

ii. m_X -N-cl(U) = \cap {F: U \subseteq F, F is an m_X -N-closed}.

Proposition (1.8): Let U, V be a subcategory of m-space X and $U \subseteq V$, thereafter:

- i. m_X -int(U) $\subseteq m_X$ -N-int(U).
- ii. m_X -N-cl(U) $\subseteq m_X$ -cl(U).
- iii. m_X -N-cl(U) $\subseteq m_X$ -N-cl(V).
- iv. m_X -N-int(U) $\subseteq m_X$ -N-int(V)
- v. m_X -N-int(X) = X and m_X -N-int(Ø) = Ø.
- vi. m_X -N-cl(X) = X and m_X -N-cl(Ø) = Ø.
- vii. m_X -N-int(U) \subseteq U and U \subseteq m_X -N-cl(U)
- viii. m_x -N-int(m-N-int(U)) = m_x -N-int(U)
- ix. m_X -N-cl(m-N-cl(U)) = m_X -N-cl(U)
- x. m_X -N-cl(U^C) = $(m_X$ -N-int(U))^C.
- xi. m_X -N-int $(U^{C}) = (m_X$ -N-cl $(U))^{C}$.

2: Maximal m_x-N-Open Sets

Definition (2.1)

A non-vacuous proper m_X -N-open subset U of m-space X is called maximal m_X -N-open if any m_X -N-open set which comprises U is X or U. We indicate the arrangement of all maximal m_X -N-open sets of an m-space (X, m_X) by max-N-(X, m_X).

Proposition (2.2): Let (X, m_X) be an m-space and let U, $V \in max-N-(X, m_X)$ and K be an m_X -N-open set. Then:

i. $U \cup K = X$ or $K \subseteq U$.

ii. $U \cup V = X$ or U = V.

Proof:

i. Assume that, K is an m_X -N-open set in which $U \cup K \neq X$. Since U is an maximal m_X -N-open set, U $\subseteq U \cup K$, we conclude that $U \cup K = U$. Therefore $K \subseteq U$.

ii. Let $U \cup V \neq X$. Since U, $V \in \max$ -N-(X, m_X), by (i) we conclude that $U \subseteq V$ and $V \subseteq U$. Hence U = V.

Remark (2.3): This proposition may not be true when U, $V \in \max(X, m_X)$.

Example (2.4): Let $X = \{1,2,3,4\}$, $U = \{1,2\}$, $V = \{2,3\}$ and $K = \{3\}$. Put $m_{X=}\{\emptyset, U, V, K\}$, then distinctly U, $V \in max(X, m_X)$ and K is an m_X -open set. We note the following:

i. $U \cup K \neq X$ and $K \not\subset U$.

ii. $U \cup V \neq X$ and $U \neq V$.

Proposition (2.5): Let (X, m_X) be an m-space. $U_1, U_2, U_3 \in max$ -N- (X, m_X) , in which $U_1 \neq U_2$. In the event that $U_1 \cap U_2 \subseteq U_3$, then $U_1 = U_3$ or $U_2 = U_3$.

Proof: Since $U_1 \cap U_3 = U_1 \cap (U_3 \cap X)$

= U₁ \cap (U₃ \cap (U₁ \cup U₂)) (Proposition 2.2)

 $= U_1 \cap ((U_3 \cap U_1) \cup (U_3 \cap U_2))$

 $= (U_1 \cap U_3) \cup (U_1 \cap U_3 \cap U_2)$

 $= (U_1 \cap U_3) \cup (U_1 \cap U_2) \text{ (since } U_1 \cap U_2 \subseteq U_3)$

 $= \mathbf{U}_1 \cap (\mathbf{U}_2 \cup \mathbf{U}_3),$

subsequently, $U_1 \cap U_3 = U_1 \cap (U_2 \cup U_3)$. In the event that $U_3 \neq U_2$ (Proposition 2.2), we have $U_2 \cup U_3 = X$. Henceforth we can say that $U_1 \cap U_3 = U_1$, which implies that $U_1 \subseteq U_3$. Since U_1 and U_3 are maximal m-N-open sets, we get $U_1 = U_3$.

Example (2.6): Let $X = \{1,2,3,4\}$, $U_1 = \{1,2,3\}$, $U_2 = \{1,2\}$ and $U_3 = \{1,2,4\}$. Let $m_X = \{\emptyset, U_1, U_2, U_3, X\}$, so $U_1 \cap U_2 \subseteq U_3$ while $U_1 \neq U_3$ and $U_2 \neq U_3$. This shows that Proposition 2.5 may not hold when one of the sets $\{U_1, U_2, U_3\}$ do not have a place with the maximal m_X -N-open sets.

Example (2.7): Let $X = \{1, 2, 3, 4\}$ and $m_X = \{\emptyset, \{1,2\}, \{2,3\}, X\}$. Let $U_1 = \{1,2\}, U_2 = U_{3=} \{2,3\}$. Obviously, $U_1 \neq U_2$, $U_1 \cap U_2 \subseteq U_3$ and $U_2 = U_3$. We note that Proposition 2.5 is achieved when the sets $\{U_1, U_2, U_3\}$ do not have a place with the maximal m_X -N-open sets.

Proposition (2.8): Let (X, m_X) be an m-space, $U_1, U_2, U_3 \in max-N-(X, m_X)$ which are dissimilar from any others. Then $U_A \cap U_B \not\subset U_A \cap U_C$, where $\{A, B, C\} = \{1, 2, 3\}$.

Proof: Suppose that $U_A \cap U_B \subseteq U_A \cap U_C$, so $(U_A \cap U_B) \cup (U_B \cap U_C) \subseteq (U_A \cap U_C) \cup (U_B \cap U_C)$. Hence $U_B \cap (U_A \cup U_C) \subseteq (U_A \cup U_B) \cap U_C$. Since $U_A \cup U_B = U_A \cup U_C = X$, we get $U_B \subseteq U_C$. Presently, it pursues from Definition 2.1 that $U_B = U_C$, which repudiates our supposition.

Example (2.9): Let $X = \{1,2,3,4\}$, $U_1 = \{1,2,4\}$, $U_2 = \{3,4\}$, $U_3 = \{1,3,4\}$. Put $m_X = \{\emptyset, U_1, U_2, U_3, X\}$ then $U_1 \cap U_2 \subseteq U_1 \cap U_3$. This shows that proposition 2.8 may not hold when one of the sets $\{U_1, U_2, U_3\}$ do not have a place with the maximal m_X -N-open sets.

Example (2.10): Let $X = \{1,2,3,4\}$, $U_1 = \{1,2\}$, $U_2 = \{2,3\}$, $U_3 = \{1,3\}$. Put $m_X = \{\emptyset, U_1, U_2, U_3, X\}$. It is easy to see that $U_A \cap U_B \not\subset U_A \cap U_C$, where $\{A, B, C\} = \{1,2,3\}$. This shows that it is conceivable that (proposition 2.8) holds when the sets $\{U_1, U_2, U_3\}$ do not have a place with the maximal m_X -N-open sets.

Proposition (2.11): Let (X, m_X) be an m-space, $U \in \max$ -N- (X, m_X) , and $x \in U$. Then $U = \bigcup \{W: W\}$ is an m_X -N-open neighborhood of x in which $U \cup W \neq X$.

Proof: Since the maximal m_X -N-open set U is an m_X -N-open neighborhood of x, so $U \subseteq \bigcup \{W: W\}$ is an m_X -N-open neighborhood of x in which $U \cup W \neq X$. Now, whenever $U \cup W \neq X$, then by proposition 2.2, we have that $U \subseteq \bigcup \{W: W\}$ is an m_X -N-open neighborhood of x in which $U \cup \{W \neq X\} \subseteq U$. Hence $U = \bigcup \{W: W\}$ is an m_X -N-open neighborhood of x in which $U \cup W \neq X$.

Proposition (2.12): Let (X, m_X) and (X, m_X^*) be m-spaces in which $m_X \subseteq m_X^*$. Then max-N-(X, $m_X^*) \cap m_X \subseteq max(X, m_X)$.

Proof:

If max-N-(X, m_X^*) $\cap m_X = \emptyset$, so the investigation ends. Let $U \in max$ -N-(X, m_X^*) $\cap m_X$ and assume that $U \notin max(X, m_X)$, then there be found $K \in m_X$ with the end goal that $U \subset K \subset X$, which is a logical inconsistency, since $U \in max$ -N-(X, m_X^*) and K is an m_X -N-open set.

Example (2.13): Let $X = \{1,2,3\}$ and $m_X = \{\emptyset, \{1\}, \{2\}, \{2,3\}, X\}, m_X^* = \{\emptyset, \{1\}, \{2\}, \{1,2\}, \{2,3\}, X\}$. We note that max-N-(X, m_X^*) = $\{\{1,2\}, \{1,3\}, \{2,3\}\}$ and max(X, m_X) = $\{\{1\}, \{2,3\}\}$, and therefore max-N-(X, m_X^*) $\cap m_X \subseteq \max(X, m_X)$.

Proposition (2.14): Let (X, m_X) be an m-space. Then max-N- $(X, m_X) \cap m_X \subseteq max(X, m_X)$.

Proof: If max-N-(X, m_X) $\cap m_X = \emptyset$, so the investigation ends. Let $U \in \max$ -N-(X, m_X) $\cap m_X$ and assume that $U \notin \max(X, m_X)$, then there be found $K \in m_X$ in which $U \subset K \subset X$, which is a logical inconsistency, since $U \in \max$ -N-(X, m_X) and K is an m_X -N-open set.

Example (2.15): Let $X = \{1,2,3\}$ and $m_X = \{\emptyset, \{1\}, \{2\}, \{2,3\}, X\}$. We note that max-N-(X, $m_X) = \{\{1,2\}, \{1,3\}, \{2,3\}\}$ and max(X, $m_X) = \{\{1\}, \{2,3\}\}$, and therefore max-N-(X, $m_X) \cap m_X \subseteq \max(X, m_X)$.

3: m-N-extremally disconnected with respect to $\boldsymbol{\tau}$

Definition (3.1):

A mixed space (X, τ , m_X) is nominated to be m-N-extremally disconnected with respect to τ if m_X -N-cl(U) $\in \tau$ for each U $\in \tau$.

Example (3.2): Let $X = \{1,2,3\}$, $\tau = \{\emptyset, \{1\}, \{2\}, \{1,2\}, X\}$ and $m_X = \{\emptyset, \{1\}, \{2\}, X\}$. Then the topological space (X, τ) is not extremally disconnected and the mixed space (X, τ, m_X) is not mextremally disconnected, but a mixed space (X, τ, m_X) is an m-N-extremally disconnected with respect to τ .

Definition (3.3):

A subcategory U of a mixed space (X, τ, m_X) is nominated to be:

 $i. \quad m_X\text{-}N\alpha^*\text{-}\text{open if }U \subseteq int(m_X\text{-}N\text{-}cl(int(U))).$

- ii. m_X -Ns*-open if $U \subseteq m_X$ -N-cl(int(U)).
- iii. m_X -Np*-open if $U \subseteq int(m_X$ -N-cl(U)).
- iv. m_X -NB*-open if $U \subseteq m_X$ -N-cl(int(m_X -N-cl(U))).
- v. m_X -Ns**-open if $U \subseteq cl(m_X$ -N-int(U)).

Theorem (3.4): Let (X, τ, m_X) be a mixed space, then the accompanying properties are identical:

- i. X is an m-N-extremally disconnected with respect to τ ..
- ii. m_X -N-int(U) is closed for each closed subcategory U of X.
- iii. m_X -N-cl(int(U)) \subseteq int(m_X -N-cl(U)) for each subcategory U of X.
- iv. Every m_X-Ns*-open set is m_X-Np*-open.
- v. m_X -N-cl(U) $\in \tau$ for each m_X -NB*-open set U.
- vi. Every m_X-NB*-open set is m_X-Np*-open.

vii. U is an m_X -N α^* -open if and only if it is m_X -Ns*-open for each U $\subseteq X$.

Proof: (i) \rightarrow (ii): Let U be a closed set in X. Then X / U is open. By (i),

 m_X -N-cl(X / U) = X / (m_X -N-int(U)) is open. Subsequently, m_X -N-int(U) is closed.

(ii) \rightarrow (iii): Let U be any set of X. Then X / int(U) is closed and by (ii), m_X-N-int[X / int(U)] is closed.

Therefore, m_X -N-cl(int(U)) is open and subsequently m_X -N-cl(int(U)) \subseteq int(m_X -N-cl(U)).

(iii) \rightarrow (iv): Let U be m_X -Ns*-open set. By (iii), we conclude that $U \subseteq m_X$ -N-cl(int(U)) \subseteq int(m_X -N-cl(U)). Thus, U is an m_X -Np*-open set.

(iv) \rightarrow (v): Let U be an m_X -NB*-open set. Then m_X -N-cl(U) is an m_X -Ns*-open. By (iv), m_X -N-cl(U) is m_X -Np*-open. Subsequently, m_X -N-cl(U) \subseteq int(m_X -N-cl(U)) and hence m_X -N-cl(U) is open.

 $(v) \rightarrow (vi)$: Let U be an m_X -NB*-open. By (v), m_X -N-cl(U) = int $(m_X$ -N-cl(U)). Subsequently, U $\subseteq m_X$ -N-cl(U) = int $(m_X$ -N-cl(U)) and hence U is an m_X -Np*-open.

 $(vi) \rightarrow (vii)$: Let U be an m_X-Ns*-open set. Since every m_X-Ns*-open set is

an m_X -NB*-open, then by (vi), it is an m_X -Np*-open. Since U is an m_X -Ns*-open and an m_X -Np*-open, then it is an m_X -N α *-open.

 $(vii) \rightarrow (i)$: Let U be an open set of X. Then m_X -N-cl(U) is m_X -Ns*-open and by (vii), m_X -N-cl(U) is m_X -N α *-open. Thusly, m_X -N-cl(U) \subseteq int $(m_X$ -N-cl(int $(m_X$ -N-cl(U)))) \subseteq int $(m_X$ -N-cl(U)) and subsequently m_X -N-cl(U) = int $(m_X$ -N-cl(U)), and finally, m_X -N-cl(U) is open and X is m-N-extremally disconnected with respect to τ .

Corollary (3.5): Let (X, τ, m_X) be a mixed space. Then, the accompanying properties are identical:

i. X is m-N-extremally disconnected with respect to τ .

ii. m_X -N-cl(U) $\in \tau$ for each m_X -N α^* -open set U of X.

iii. m_X -N-cl(U) \in_{τ} for each m_X -Ns*-open set U of X.

iv. m_X -N-cl(U) \in_{τ} for each m_X -Np*-open set U of X.

Proof:

 $i \rightarrow ii$: Let U be an m_X -N α^* -open set of X, then U \subseteq int $(m_X$ -N-cl(int(U)), so m_X -N-cl(U) \subseteq m_X -N-cl(int(U))) \subseteq m_X -N-cl(int(U))). Hence, m_X -N-cl(U) = m_X -N-cl(int(U)), and by (i), we conclude that m_X -N-cl(U) \in_{τ} .

ii \rightarrow iii: By Theorem 3.4 (vii), the verification ends.

iii \rightarrow iv: Let U be an m_X -Np*-open set of X, then U \subseteq int(m_X -N-cl(U)), so m_X -N-cl(U) \subseteq m_X -N-cl(int(m_X -N-cl(U))). Subsequently, m_X -N-cl(U) is an m_X -Ns*-open set, and by (iii), m_X -N-cl(U) \in_{τ} . iv \rightarrow i: Since every open set is an m_X -Np*-open set, then the verification ends.

Theorem (3.6): Let (X, τ, m_X) be a mixed space. Then, the accompanying properties are identical: i. X is m-N-extremally disconnected with respect to τ .

ii. For any $U \in_{\tau}$ and K is an m_X -N-open set in which $U \cap K = \emptyset$, there be found a disjoint of an m_X -N-closed set U_1 and a closed set K_1 in which $U \subseteq U_1$ and $K \subseteq K_1$.

iii. m_X -N-cl(U) \cap cl(K) = Ø for each U \in_{τ} and K is an m_X -N-open set with U \cap K=Ø.

iv. m_X -N-cl[int(m_X -N-cl(U))] \cap cl(K) = Ø for each U \subseteq X and K is an m_X -N-open set with U \cap K=Ø. **Proof:**

(i) \rightarrow (ii): Let X be an m-N-extremally disconnected with respect to τ . Let U and K be two disjoint open and m_X -N-open sets, respectively. Then m_X -N-cl(U) and X / (m_X -N-cl(U)) are disjoint m_X -N-closed and closed sets comprising U and K, respectively.

(ii) \rightarrow (iii): Let $U \in_{\tau}$ and K is an m_X -N-open set with $U \cap K = \emptyset$. By (ii), there be found a disjoint of an m_X -N-closed set U_I and a closed set K_I in which $U \subseteq U_I$ and $K \subseteq K_I$. In this manner, m_X -N-cl(U) \cap cl(K) $\subseteq U_I \cap K_I = \emptyset$. Accordingly, m_X -N-cl(U) \cap cl(K) $= \emptyset$.

(iii) \rightarrow (iv): Let U \subseteq X and K is an m_X-N-open set with U \cap K = Ø. Since int(m_X-N-cl(U)) $\in \tau$ and int(m_X-N-cl(U)) \cap K = Ø, then by (iii), m_X-N-cl[int(m_X-N-cl(U))] \cap cl(K) = Ø.

(iv) →(i): Let U be any open set. Then $[X / (m_X-N-cl(U))] \cap U = \emptyset$. As $X / m_X-N-cl(U)$ is an $m_X-N-cl(w)$ open set and by (iv), $m_X-N-cl(int(m_X-N-cl(U))) \cap cl(X / m_X-N-cl(U)) = \emptyset$. Since $U \in_{\tau}$, therefore $m_X-N-cl(U) \cap [X / int(m_X-N-cl(U))] = \emptyset$.

In this manner, m_X -N-cl(U) \subseteq int(m_X -N-cl(U)) and m_X -N-cl(U) is open. Accordingly, X is m-N-extremally disconnected with respect to τ .

Definition (3.7): A subcategory U of a mixed space (X, τ, m_X) is called an m_X -NR*-open set if U = int(m-N-cl(U)). The complement of an m_X -NR*-open set is said to be m_X -NR*-closed.

Theorem (3.8): Let (X, τ, m_X) be a mixed space. Then, the accompanying properties are identical:

i. X is an m-N-extremally disconnected with respect to τ .

ii. Every m_X -NR*-open set of X is m_X -N-closed in X.

iii. Every m_X -NR*-closed set of X is m_X -N-open in X.

Proof:

(i) \rightarrow (ii): Let X be an m-N-extremally disconnected with respect to τ . Let U be an m_X -NR*-open set of X, then U = int(m_X -N-cl(U)). Since U is an open set, then m_X -N-cl(U) is open. Subsequently, U = int(m_X -N-cl(U)) = m_X -N-cl(U) and consequently U is m_X -N-closed.

(ii) \rightarrow (i): Assume that every m_X -NR*-open subcategory of X is m_X -N-closed in X. Let U be an open subcategory of X. Since int(m_X -N-cl(U)) is m_X -NR*-open, then it is m_X -N-closed. This leads to m_X -N-cl(U) $\subseteq m_X$ -N-cl(int(m_X -N-cl(U))) = int(m_X -N-cl(U)). Thus, m_X -N-cl(U) is open and subsequently X is an m-N-extremally disconnected with respect to τ .

(ii) \rightarrow (iii): Let U be m_X -NR*-closed, then U^C is m_X -NR*-open. Then, by (ii), U^C is m_X -N-closed and in this manner U is an m_X -N-open set in X.

(iii) \rightarrow (i): Clear.

Theorem (3.9): Let (X, τ, m_X) be a mixed space. Then the accompanying properties are identical:

i. X is m-N-extremally disconnected with respect to τ .

ii. m_X -N-cl(U) \in_{τ} for each m_X -NR*-open set U of X.

Proof:

(i) \rightarrow (ii): Let U be m_X -NR*-open set of X. Then U is open and by (i), m_X -N-cl(U) \in_{τ} .

 $\begin{array}{l} (ii) \rightarrow (i): \mbox{Assume that} \ m_X-N-cl(U) \in_{\tau} \mbox{for each} \ m_X-NR^*\mbox{-open set} \ U \ of \ X. \ Let \ K \ be \ any \ open \ set \ of \ X. \\ Thereafter, \ int(m_X-N-cl(K)) \ is \ m_X-NR^*\mbox{-open set} \ and \ m_X-N-cl(K) = \ m_X-N-cl(int(m_X-N-cl(K))) \in_{\tau}. \end{array}$

Consequently m_X -N-cl(K) \in_{τ} and therefore X is m-N-extremally disconnected with respect to τ .

Theorem (3.10): Let (X, τ, m_X) be a mixed space, then the accompanying properties are identical:

i. X is m-N-extremally disconnected with respect to τ .

ii. If U is m_X -Ns*-open, K is m_X -Ns**-open and U \cap K=Ø, then m_X -N-cl(U) \cap cl(K) = Ø.

Proof:

(i) \rightarrow (ii): Let U be m_X -Ns*-open, K is an m_X -Ns**-open, and U \cap K=Ø. By Corollary (3.5), m_X -N-cl(U) is open, and since m_X -N-cl(U) \cap m_X -N-int(K) = Ø, m_X -N-cl(U) \cap cl(m_X -N-int(K)) = Ø. Since K is m_X -Ns**-open, cl(K) = cl(m_X -N-int(K)), and therefore m_X -N-cl(U) \cap cl(K) = Ø.

(ii) \rightarrow (i): Let U be an m_X -Ns*-open set. Since U and X / m_X -N-cl(U) are disjoint m_X -Ns*-open and m_X -Ns**-open, respectively, then by (ii), we deduce that m_X -N-cl(U) \cap cl[X / m_X -N-cl(U)] = Ø. This leads to the result that m_X -N-cl(U) \subseteq int(m_X -N-cl(U)). Thus m_X -N-cl(U) is open. Thereafter, by Corollary (3.5), X is an m_X -N-extremally disconnected with respect to τ .

Theorem (3.11): Let (X, τ, m_X) be a mixed space. Thereafter, X is m-N-extremally disconnected with respect to τ if and only if, for each open set U and every m_X -N-closed K with $U \subseteq K$, there be found an open set U_I and an m_X -N-closed set K_I in which $U \subseteq K_I \subseteq U_I \subseteq K$.

Proof:

Assume that X is m-N-extremally disconnected with respect to τ . Let U be an open set and K m_X -N-closed in which $U \subseteq K$. Then $U \cap K^C = \emptyset$. Then by Theorem (3.6), m_X -N-cl(U) \cap cl(K^C) = \emptyset . Thereafter, m_X -N-cl(U) \subseteq int(K) \subseteq K. Suppose that m_X -N-cl(U) = K_I, int(K) = U_I, then we get U \subseteq K_I \subseteq U_I \subseteq K.

Conversely, let U be an open set and K^{C} be m_{X} -N-open in which $U \cap K^{C} = \emptyset$. Then, $U \subseteq K$ and K is an m_{X} -N-closed. So, there be found an open set U_{I} and an m_{X} -N-closed set K_{I} in which $U \subseteq K_{I} \subseteq U_{I} \subseteq K$. This indicates that m_{X} -N-cl(U) $\cap [int(K)]^{C} = \emptyset$. But $[int(K)]^{C} =$

 $cl(K^{C})$. Thereafter, m_X -N- $cl(U) \cap cl(K^{C}) = \emptyset$ and by Theorem (3.6), X is m-N-extremally disconnected with respect to τ .

Remark (3.12): The above theorem may not be true when K and K_I are m_X -closed sets.

Example:

Let X={1,2,3}, $\tau = \{\emptyset, \{1\}, X\}$, and $m_X = \{\emptyset, \{1\}, \{2\}, X\}$. Evidently, X is m-N-extremally disconnected with respect to τ and U= {1} \subseteq {1, 3} = K. But there be not found an open set U_I and an m_X -closed set K_I in which U \subseteq K_I \subseteq U_I \subseteq K.

References

- 1. Ahmad Al-Omari, Hanan Al-Saadi, and Takashi Noiri. 2019. On extremally disconnected spaces VIA m-structures, *Commun. Korean Math. Soc.* 34(1): 351–359
- 2. Alexander Arhangel'skii, 2011. A study of extremally disconnected topological spaces, *Bull. Math. Sci.* 1: 3–12
- 3. V. Popa and T. Noiri, 2000. On M-continuous functions, Anal. Univ. "Dunarea de Jos" *Galati, Ser. Mat. Fiz. Mec. Teor. Fasc.* II, 18(23): 31-41.
- **4.** Haider J. Ali & Raad F.Hassan. **2020**. On Light Mapping and certain concepts by using m_x*N*-open sets, *Baghdad Science Journal*, **17**(1) Supplement(March):371-377
- 5. F. Nakaoka and N. Oda, 2006. Minimal closed sets and maximal closed sets, *Int. J. Math. Math. Sci.*, 2006: 1-8.
- 6. F. Nakaoka and N. Oda, 2001. Some applications of minimal open sets, *Int. J. Math. Math. Sci.*, 27(8): 471-476.
- 7. F. Nakaoka and N. Oda, 2003. Some properties of maximal open sets, *Int. J. Math. Math. Sci.*, 21: 1331-1340.
- 8. M. Roohi^a, M. Rostamian Delavar^{b,*}, S. A. Mohammadzadeh^c. 2012. Some Results on Maximal Open Sets, *Int. J. Nonlinear Anal. Appl.* 3(2): 59-66