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Abstract 

     In this paper, a Cournot oligopoly with isoelastic demand function and constant 

marginal cost is considered. The local stability conditions of the Cournot 

equilibrium are determined for four models with different decision mechanisms. In 

the first model, firms adjust their outputs using the best reply response with naive 

expectations. The second model is a generalization of the first one, where firms have 

adaptive expectations. Meanwhile, the third and fourth models adopt the bounded 

rationality and local monopolistic approximation, respectively. The results show 

that, in the case of identical firms, the Cournot equilibrium is always stable when the 

firms adopt the local monopolistic approximation mechanism.  
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1.0 Introduction 
     One of the key features which define a market structure is the number of firms in it. Monopoly and 

perfect competition are the two opposite ends of this structure. A monopoly is a market dominated by 

one firm while a perfectly competitive market has many firms such that no firm has any influence on 

the price of a product.  Oligopoly is the intermediate structure between these two structures. It is a 

market dominated by few firms such that each firm’s decision influences the other firms. 

The concept of oligopoly was originated by A. Cournot in 1838 [1], who considered two firms 

competing by adjusting their outputs to maximize profits.  Decision mechanisms play an important 

role in the output adjustment process. In literature, some common mechanisms include the naive 

expectation, adaptive expectation, bounded rationality, and local monopolistic approximation (LMA) 

[2-5]. 

     The theory of perfect competition states that as the number of firms in a market increases, the 

equilibrium of the market becomes stable and the market becomes perfectly competitive. This theory 

is at odds with the results presented in a seminal paper by Theocharis [6], which shows that 

equilibrium in a linear Cournot oligopoly with naive expectation and discrete time scale becomes 

unstable when there are more than three firms. Naturally, this result has motivated several authors to 

extend the Theocharis problem in various directions. 

     The earliest extensions of the Theocharis problem was by Fisher [7] and McManus & Quandt [8], 

who showed that the equilibrium of a nonlinear Cournot oligopoly is always locally stable if the time 

scale is continuous instead of discrete. Ahmed & Agiza [9] and Agiza [10] showed that the result by 

Theocharis still holds in a nonlinear Cournot oligopoly with isoelastic demand function. However, by 

incorporating capacity limits into the Cournot model, destabilization of the equilibrium is avoided 

even for a large number of firms [11].  

     Another approach to the Theocharis problem is changing the decision mechanism in the adjustment 

process. By using adaptive instead of naive expectation in a linear Cournot oligopoly, the equilibrium 

remains stable when the number of firms increases, provided that the adaptive adjustment is small 
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[12]. Tramontana et al. [13] analyzed a Cournot oligopoly with isoelastic demand and linear cost 

functions in the case of two, three, and four heterogeneous firms. Heterogeneity here refers to different 

decision mechanisms adopted by each firm. Their results show that when four firms differentially 

adopt a naive expectation, adaptive expectation, bounded rationality, or LMA, the equilibrium is still 

locally stable. More recently, Zhang and Gao [14] showed that the stability region of equilibrium in a 

Cournot oligopoly with quadratic cost function can be enlarged if the firms adopt LMA as their 

decision mechanism.    

     Collectively, these past studies suggested that the region of stability of Cournot equilibrium is 

influenced by the type of model and decision mechanism involved. Their results indicate that when the 

oligopoly model is nonlinear, the region of stability is slightly extended beyond three firms.  However, 

by changing the decision mechanism from naive to adaptive expectation, subject to certain conditions 

on the coefficients in the model, the equilibrium can be stable for really large number of firms. In this 

paper, a similar Cournot oligopoly to that of Tramontana et al. [13] is analyzed for n  homogenous 

firms for four cases that differ based on the decision mechanism adopted.       

     The paper is organized as follows. In Section 2, the Cournot oligopoly model and its equilibrium 

are derived. The local stability conditions of the equilibrium are determined for four Cournot 

oligopoly models in Sections 3 - 6, where the first, second, third, and fourth models adopted the naive 

expectation, adaptive expectation, bounded rationality, and local monopolistic approximation, 

respectively. Conclusions are presented in Section 7. 

2.0   Cournot Oligopoly Model 

     Consider a market with n  firms, each producing a single homogeneous product ix   for 

1,2, , .i n  Assume the market is governed by the Cobb-Douglas utility function, so that its demand 

function is 

 
1

,X
p

  (1)     

 where 
1

n

ii
X x


  and p is the price of the product. In a Cournot oligopoly, the goal of each firm is 

to maximize its profit. The profit for each firm is the difference between total sales revenue and total 

cost, where total sales revenue is given by ipx . If we assume that the production cost per unit is ic  for 

each firm, then the total production cost for firm i  is i ic x . So, the profit for firm i  is  

 ,i
i i i

x
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X
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with marginal profit 
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 where i iX X x  . By the first order condition, the profit maximizing output of firm i  is  
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 (4) 

which is also called the best reply response or reaction function of firm i .  

     The Cournot equilibrium is the intersection point of the reaction functions of all firms. Rearranging 

equation (4) so that  

 
2 ,i ix X c X   (5) 

and then taking the sum of ix , for all 1, 2, ,i n , result in 

  2 1 0,CX n X    (6) 
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     where 
1

n

ii
C c


 , and the roots are 0X   and  1X n C  . Let E  be the Cournot 

equilibrium. Substituting these roots in (5) gives  0,0, ,0E  and  

  
  

1 2 2

1
, , , , ,

i i

n i

n C c nc
E e e e e

C

  
   (7) 

    where 0ie  , provided that  1 iC n c  . In the context of this paper, a zero output at the 

equilibrium point does not make sense, so the origin point is ignored. Note that this Cournot 

equilibrium has been derived previously by Matsumoto and Szidarovzsky [15].  

3.0 Naive Expectation 

     Let  1ix t   be output of firm i  in period 1t  . If firms are assumed to have perfect information 

of the demand function in a market, they adjust their output using the best reply response in (4), i.e.  
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 (8) 

 

     where  1e

iX t   is the expectation of firm i  on the total output of the rest of the market in period 

1t  .   

     If firm i  naively expects the rest of the market to produce the same amount as the last period, i.e.

   1e

i iX t X t  , then (8) becomes an n-dimensional discrete dynamical system 
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 (9) 

The Jacobian matrix of system (9), evaluated at the Cournot equilibrium in (7), is 

  
 

1 1 1

2 2

0

0
, 1.

2 1
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n n
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 (10) 

Since the eigenvalues of this Jacobian matrix cannot be computed, the condition under which the 

Cournot equilibrium E  in (7) is locally stable cannot be determined. However, by assuming 

i jc c c   for , 1, 2, ,i j n , the Cournot equilibrium becomes  

   2

1
, , , , ,s
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n c


   (11) 

The Jacobian matrix in (10) becomes a symmetric matrix 

  
 

0

0 2
, ,

2 1

0

s i

k k k

k k n
J E k

n

k k

 
 

  
  
 
 

 (12) 

with eigenvalues  
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1 2, ,
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, .

2 2 1
n

n n

n
 

 
 


 (13) 

     An equilibrium point of a system is locally stable if 1i   for 1, 2, ,i n . Based on Table 1, 

which summarizes the eigenvalues in (13) computed at 2,3,4n  and 5 and the corresponding 

stabilities of  sE , the local stability condition for sE  in system (9) with common cost c   is 2 4.n   

Table 1-Stability of sE  in system (9) with common c  as n  increases  

n  1  2, ,n  Stability of sE  

2 0 0 Super-stable 

3 -0.5 0.25 Locally stable 

4 -1 1/3 Marginally stable 

5 -1.5 0.375 Unstable 

 

4.0 Adaptive Expectation 

     In adaptive expectation, a firm does not reach the optimal output in every period. Instead, it applies 

some adjustments to the best reply response in (4).  Mathematically, adaptive expectation is a general 

form of naive expectation given by  

        1 1 ( ) ( ) , 0,1 ,i i i i i i ix t x t f X t        (14) 

where i  is the adaptive adjustment of firm i . The discrete dynamical system in (9) then becomes   
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 (15) 

     Note that at 1i  , the adjustment process in (15) is reduced to the adjustment process in (9).  

The Jacobian matrix of system (15), evaluated at the Cournot equilibrium in (7), is 

  

1 1 1 1 1

2 2 2 2 2

1

1
.

1n n n n n
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J E
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 (16) 

     Similar to the naive expectation model, the condition under which E  is locally stable cannot be 

determined. However, by assuming 
i jc c c   and i j     for , 1, 2, ,i j n , the Jacobian 

matrix in (16) becomes 
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with eigenvalues  
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     where 1n> . The first eigenvalue is inside the unit circle if 0 4n   while the remaining 1n

eigenvalues are inside the unit circle if  0 4 1n n   . Table 2 summarizes the stability 

conditions when the number of firms increases. 

Table 2-Local stability conditions of sE  in system (15) with common c and a  as n  increases. 

n  0 4n    0 4 1n n    Stability of sE  

2 0 2   0 2   

Since  0,1   (refer to equation (14)), then 

sE  is always locally stable since its local 

stability condition is  0,2  . 

3 0 4 3   0 8 3   

Since  0,1   (refer to equation (14)), then 

sE  is always locally stable since its local 

stability condition is  0,4 3  . 

4 0 1   0 3   Always locally stable since   0,1   

5 0 0.8   0 3.2   Locally stable if 0 0.8   

6 0 2 3   0 10 3   Locally stable if 0 2 3   

 

     Based on Table-2, since  0,1  , sE  is always locally stable in system (15) with common cost c  

and common adaptive adjustment a  when 2,3,4,n   while for 5n  , it is locally if 0 4 .n   
In Figure-1, the region of stability for sE  as the number of firms increases shows that 0   as 

n  . This implies that when the number of firms increases, the market or system is stable if firms 

employ small adaptive adjustment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-Stability region of sE  in system (15) with common c  and [ ]0,1a Î  as n  increases. 
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5.0 Bounded Rationality 

     If firms are assumed to have limited information of the market, they can adjust their output by 

using their marginal profits instead of using the best reply response. Consider a market where all firms 

update their outputs in period 1t   by increasing (decreasing) its output if the marginal profit is 

positive (negative). This adjustment process, called bounded rationality adjustment, is given by 

  
 ( ), ( )

1 ( ) , 0,
( )

i i

i i i i

i

X t X t
x t x t

x t


 


   


 (19) 

     where i  is the speed of adjustment for firm i . Therefore, the discrete dynamical system of a 

market where n  firms adopt bounded rationalities in adjusting their outputs is  
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x t c x t
X
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








   
    
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


 

 (20) 

The Jacobian matrix of system (20), evaluated at the Cournot equilibrium in (7), is   

  
 

1 1 1 1 1

2
2 2 2 2 2

2

1

1 2
, , .

1 1

1

i i i
i i

n n n n n

u v u v u

v u u v u c C C
J E u v

n n

v u v u u

 
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 

  
   
   
 

   

 (21) 

By assuming 
i jc c c   and i j     for , 1, 2, ,i j n , the Jacobian matrix becomes  

  
 

2 2 2

2

1

1 2
, , ,

1 1

1

s

u v u v u

v u u v u nc n c
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 
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 (22) 

with eigenvalues  
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2 2 2 2

1 2, , 2
1 , 1 ,

1 1
n

n c n c

n n

 
    

 
 (23) 

     where 1n> . Since 1i   for 1,2, ,i n= K , then the stability conditions from the  eigenvalues in 

(23) are  
 2

2

2 1
0

n
c

n



   and 

 
2

2

2

2 1
0

n
c

n



  . Table 3 summarizes these stability 

conditions as n  increases. Based on Table 3, sE  is locally stable in system (20) with common cost c

and common speed of adjustment b  if  

 
 2

2

2 1
0 .

n
c

n



   (24) 

 

Table 3-Local stability conditions of sE  in system (20) with common   and c  as n  increases. 

n  
 2

2

2 1
0

n
c

n



   

 
2

2

2

2 1
0

n
c

n



   Stability of sE  

2 
20 1 2c   

20 1 2c   Locally stable if 
20 1 2c   
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3 20 4 9c   
20 8 9c   Locally stable if 

20 4 9c   

4 20 3 8c   
20 9 8c   Locally stable if 

20 3 8c   

5 20 8 25c   
20 32 25c   Locally stable if 

20 8 25c   

6 20 5 18c   
20 50 36c   Locally stable if 

20 5 18c   

 

     Figure-2 shows that the region of stability for sE  in system (20) becomes smaller as the number of 

firms increases. Note that the largest value for 
2cb  is 0.5. Therefore, the stability condition for sE  in 

(24) should be rewritten as  

 
( ) 2

2

2 1
0.5, 2.

n
c n

n
b

-
< < >  (25) 

 
Figure 2-Stability region of sE  in system (20) with common c  and   as n  increases. 

 

6.0 Local Monopolistic Approximation  

     If firms are assumed to only know a point on the demand function, they can attempt to obtain a 

linear approximation of the demand function using their local knowledge. In particular, firm i can 

compute the effects of small quantity variations ix  on the price p in period t. This variation can be 

represented as a partial derivative of the price with respect to quantity in period t. The expected price 

of firm i  in period 1t +  can then be computed using the following rule of estimation:  

     
( )

1 ( ) 1 ( ) .
( )

i i i

i

p t
p t p t x t x t

x t


    


 (26) 

where ( ) 1/ ( )p t X t=  as defined in (1). This type of adjustment is called local monopolistic 

approximation (LMA). Using this expected price, the profit of firm i  in period 1t   is

       1 1 1 1i i i it p t x t c x t       , i.e. 
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By the first order condition,  
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thus yielding the reaction function 
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 

2
( ) ( )( )

1 ( ) .
2 2

i ii
i i i
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
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     Therefore, when n  firms adopt LMA as their decision mechanism, the discrete dynamical system 

of the market becomes  

  
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2
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The Jacobian matrix of system (30), evaluated at E  in (7), is 
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 

 
  
 
 
 

 (31) 

By assuming 
i jc c c   for , 1, 2, ,i j n ,  J E  becomes a symmetric matrix   

  

1 1 2 1 2

1 2 1 1 2
,

1 2 1 2 1

s

n n n

n n n
J E

n n n

 
 
 
 
 
 

 (32) 

with eigenvalues  

 1 2, ,

1 1
, .

2 2
n

n

n n
 


   (33) 

     Since 1 1   and 
2, , 1n   if 1n   and 1 2n  , respectively, then the local stability condition 

for sE  in system (30) with common cost c  is 1n  . 

7.0 Conclusions 

     In this paper, the local stability conditions of a Cournot equilibrium in four different models was 

derived for n identical firms. In the first model, when n  firms adopt naive expectation as their 

decision mechanisms, the equilibrium becomes unstable when 4n> . Meanwhile, in the second, 

third, and fourth models, firms abandon this unrealistic expectation and adopt other decision 

mechanisms. In the second and third models, by adopting adaptive expectation and bounded 

rationality, respectively, the equilibrium can remain stable for really large number of firms, provided 

that the production cost and adjustment value are very small. In the last model, by adopting local 

monopolistic approximation (LMA), the equilibrium is always locally stable for any number of firms, 

with the exception of 1n = . In general, these results indicate that firms are better off in adopting 

decision mechanisms which reflects realistic situation of the decision-making process in a competitive 

market. By adopting LMA, theoretically, a homogenous market is stable for any number of firms apart 

from a monopoly. 
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