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Abstract 

    Our aim in this work is to study the classical continuous boundary control vector  

problem for triple nonlinear partial differential equations of elliptic type involving a 

Neumann boundary control. At first, we prove that the triple nonlinear partial 

differential equations of elliptic type with a given classical continuous boundary 

control vector have a unique "state" solution vector,  by using the Minty-Browder 

Theorem. In addition, we prove the existence of a classical continuous boundary 

optimal control vector ruled by the triple nonlinear partial differential equations of 

elliptic type with equality and inequality constraints. We study the existence of the 

unique solution for the triple adjoint equations related with the triple state equations.  

The Fréchet derivative is obtained. Finally we prove the theorems of both the 

necessary and sufficient conditions for optimality of the triple nonlinear partial 

differential equations of elliptic type through the Kuhn-Tucker-Lagrange's 

Multipliers theorem with equality and inequality constraints.  

  

Keywords: optimal control vector, triple nonlinear elliptic equations, necessary and 

sufficient conditions for optimality 

 
مدألة الديطرة الحدودية الامثلية التقليدية المدتمرة لثلاثي من المعادلات التفاضلية الجزئية الغير 

الحالةخطية من النوع الاهليجي بوجود قيود   
 

و نبيل عدنان ذياب العجيلي * جميل أمير علي الهواسي  
العراق، بغداد، الجامعة السدتشررية، كمية العمهم، قدم الرياضيات  

 الخلاصه
ة السدتسرة  ثلاثي من ديىه دراسة مدالة متجو الديطرة الحدودية الامثمية التقمي ىدفشا في ىذا العسل      

الغير خطية من الشهع الاىميجي تحهي شروط  حدودية "متجو سيطرة" من نهع السعادلات التفاضمية الجزئية 
بروادير  برىشا  وجهد ووحدانية حل الستجو لمحالة    لثلاثي  –نيهمان . في البداية وباستخدام مبرىشة مانتي 

دودية التقميدية  من السعادلات التفاضمية الجزئية الغير خطية من الشهع الاىميجي عشدما يكهن متجو الديطرة الح
ثابتا". ايزا" تم برىشا وجهد متجو سيطرة حدودية امثمية مدتسرة تقميدية ليذه السدالة وبهجهد قيدي التداوي 

وحدانية الحل لثلاثي من السعادلات السرافقة السراحبة لسعادلات الثلاثية و  وعدم التداوي. كذلك درسشا وجهد
بيذه السدالة. وفي الشياية تم برىان مبرىشتا الذروط الزرورية  الخاصة لمحالة. تم اشتقاق مذتقة فريذيو

والكافية لهجهد متجو سيطرة امثمية مدتسرة تقميدية بهجهد قيدي التداوي وعدم التداوي من  خلال استخدام 
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1. Introduction  

      In many fields, the optimal control problems play a significant role in life. Different examples of 

the applications of such problems are presented in medicine [1], aircraft industry [2], electric power 

production [3], economic growth [4], and many other fields. 

All these applications pushed many investigators to a higher level of interest in studying the optimal 

control problem for nonlinear ordinary differential equations [5], for different types of linear partial 

differential equations, including the hyperbolic, parabolic and elliptic [6- 8], or for couple nonlinear 

partial differential equations of these three types [9-11]. While other authors [12, 13] studied these 

three types but included a Neumann boundary control. More recently, optimal control problems were 

studied for triple partial differential equations of these three types [14-16]. Also, the optimal control 

problem involving Neumann boundary control for triple partial differential equations of parabolic type 

was also recently investigated [17]. All these investigations motivated us to seek the optimal control 

problem, involving Neumann boundary control ruled by the triple nonlinear partial differential 

equations of elliptic type.    

At first, our aim in this work is to prove that system of the triple nonlinear partial differential 

equations of elliptic type with a given classical continuous boundary control vector, which  has a 

unique "state" solution vector, by using the Minty-Browder Theorem. Then, we prove the existence of 

a classical continuous boundary optimal control vector, ruled by the triple nonlinear partial differential 

equations of elliptic type with equality and inequality constraints. 

We study the existence of the unique solution for the system of the triple adjoint equations related with 

the triple state equations. At the end, we prove the theorems of both the necessary and sufficient 

conditions for optimality of the triple nonlinear partial differential equations of elliptic type through 

the Kuhn-Tucker-Lagrange's Multipliers with equality and inequality constraints. 

2. Problem Description 

      Let   be a bounded and open connected subset in    with Lipshitz boundary    . The optimal 

control problem is considered by the "state vector equation" which consists of the TNLEPDEs triple 

nonlinear elliptic partial differential equations  with the Neumann boundary control. 

                 (     )    ( )                                                                      (1)                                                                     
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                 (     )    ( )                                                                      (3)                                                                      

∑      
   

   
     

 
                                                                                                             (4) 

∑      
   

   
     

 
                                                                                                             (5) 
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                          (   )     ( ) , for         

(        )   (  ( )   ( )   ( ))   (  (  ))
 
 is the Neumann boundary control vector. The 

correspond "state" solution vector to the Neumann boundary control vector is  (        )  

(  ( )   ( )   ( ))   (  ( ))
 
,  (        )  (  (    )   (    )   (    )), 

(        )  (  ( )   ( )   ( ))   (  ( ))
 
  which is a vector of functions. 

 

The control constraints are 

 ⃗   ⃗⃗    ⃗⃗  (  (  ))
 
   where  ⃗  (        ) and  ⃗⃗            with 

 ⃗⃗   ⃗⃗  ⃗⃗  = { ⃗⃗
  (  (  ))

 
  ⃗⃗  (        )   ⃗⃗           } , 

where  ⃗⃗           , with   ⃗⃗       is a convex and compact set . 

 

The cost function and the equality and inequality constraints are given by: 

  (  ⃗  )  ∬ ,   (     )     (     )     (     )- 
        

                     ,   (     )     (     )     (     )-                                                     (7)                                                       
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  (  ⃗  )  ∬ ,   (     )     (     )     (     )- 
        

                     ,   (     )     (     )     (     )-                                               (8)                                                                                            

  (  ⃗  )   ∬ ,   (     )     (     )     (     )- 
        

                     ,   (     )     (     )     (     )-                                               (9)                                                 

The set of admissible control is  

 ⃗⃗   * ⃗   ⃗⃗    (  ⃗  )       (  ⃗  )   +                                                                                (10) 

The classical continuous boundary control vector problem is to minimize (7) subject to the state 

constraints (8) and (9), i.e. to find  ⃗    such that  

 ⃗   ⃗⃗   and   (  ⃗  )      ⃗   ⃗⃗    (  ⃗  ) . 

Let    ⃗⃗  ( )   (  ( ))
 
, the notations (t ,t)_(L_2 (Ψ) ) , and  ‖ T ‖_(L_2 (Ψ) )  (‖ T ‖_(L_2 (∂Ψ) ) )   

refer  to the inner product and the norm in  L_2 (Ψ)  (L_2 (∂Ψ)). The notations 〖(t ,t)  〗_(H^1 (Ψ) )   

and  ‖T‖_(H^1 (Ψ) ) refer  to the  inner product  and the norm in  H^1 (Ψ)  , the notations  (t    ,t   
)_(L_2 (Ψ) )= ∑_(i=1)^2▒(t_i  ,t_i )  and ‖ t    ‖_((L_2 (Ψ))^3  )=  ∑_(i=1)^3▒‖ t_i ‖_(L_2 (Ψ) )  refer  

to the  inner product and the norm in (L_2 (Ψ))^3, while the notations  (t    ,t   )_(L_2 (Ψ) )= 

∑_(i=1)^3▒(t_i  ,t_i ) , and ‖t   ‖_((H^1 (Ψ))^3  )=∑_(i=1)^3▒‖t_i ‖_(H^1 (Ψ) )     refer  to the  inner 

product and the norm in T     , finally  T  ^*   is referred to the dual of  T  .       

3. Weak formulation of the triple state equations   

To find the weak formulation of problem (1-6) , let 

        ⃗⃗             ( )    ( )    ( ) 

           *      (        )  (  ( ))
 
, with          satisfy (4)-(6), respectively  on   }. 

By multiplying both sides of equations (1),(2) and (3) by                    , respectively, 

integrating both sides of each one of the obtained equations with respect to ӽ, and then using the 

generalize Green's theorem, we get 

  (      )  (          )  ( )  (  (     )   )  ( ) 

                                                              (  ( )   )  ( )  (      )  (  )                               (11) 

  (      )  (          )  ( )  (  (     )   )  ( ) 

                                                              (  ( )   )  ( )  (      )  (  )                              (12) 

and 

  (      )  (          )  ( )  (  (     )   )  ( ) 

                                                              (  ( )   )  ( )  (      )  (  )                              (13) 

By adding equations (11), (12) and (13), we get 

 ( ⃗      )  (  (     )     )  ( )  (  (     )   )  ( )  (  (     )   )  ( ) 

                              (  ( )   )  ( )  (      )  (  )  (  ( )   )  ( )  (      )  (  )     

                                  (  ( )   )  ( )  (      )  (  )    (        )                                          (14) 

where 

  ( ⃗      )     (       )  (          )  ( )      (       )  (          )  ( )  

                       (       )   (          )  ( )  

with  

  (       )  ∫ (∑      
   

   
 
   

   
      

 
     )

 

 
    

which satisfies 

  (       )        ‖  ‖  ( )  
   , where                             

   (       )       ‖  ‖  ( ) 
 ‖  ‖  ( )  

  ,  where                         . 

The following assumptions are useful to prove the existence theorem of a unique solution of the weak 

form (14). 

 

 Assumption (I): 

a)  (  ⃗      )  is coercive , i.e , 
 (  ⃗⃗    ⃗⃗  )

‖  ⃗⃗  ‖
.  ( )/

 
  

     ‖  ⃗  ‖
.  ( )/

 
  

 
     ,     ⃗    ⃗⃗   
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b)  (  ⃗      ) is continuous, i.e.  

| (  ⃗      )|    ‖  ⃗  ‖
.  ( )/

 
  

 
‖    ‖

.  ( )/
 
  

 
  ,      ,    ⃗       ⃗⃗   

c)    ,    and    are of Carathéodory type on      and the following sub linearity 

conditions with respect to           are satisfied, respectively, i.e. 

             (      )    ( )   ̅        (     )       with      ( ),  ̅    for    

         

d)   (      ) are monotone with respect to    for each     , and   (     )            , 
           
e)   ( ) are of the Carathéodory type on   and satisfy    ( )    ( )        , with   ( )  
  ( ),              
Theorem (1): If assumption (I) is hold, and if one of the functions              in (14) is strictly 

monotone, then for each fixed classical continuous boundary optimal control vector  ⃗   ⃗⃗   , the weak 

form of (14) has a unique "state" solution vector  ⃗   ⃗⃗  . 
Proof: It is clear that the existence of a unique solution of (14) is obtained after the usage of 

assumptions (I), then theorem (1) in reference [18] is applied.    

4. Existence of the Classical Continuous Boundary Optimal Control Vector 

     In this section, the theorem of the existence of a classical continuous boundary optimal control 

vector under the suitable assumptions is proved. However, before proving it, it is necessary to deal 

with the following lemmas and assumptions. 

Lemma (1): If the assumption (I) is hold, the functions           are Lipschitz continuous with 

respect to          ,  res respectively, and if   ( )   ( )   ( ) are bounded, then the mapping 

 ⃗   ⃗ 
 ⃗⃗ 

  is Lipschitz continuous from  ⃗⃗  ⃗⃗       (  ( ))
 
 , i.e. 

‖   ⃗⃗ ⃗⃗   ‖
(  ( ))

 

 
    ‖  ⃗⃗ ⃗⃗  ‖

(  (  ))
 

 
   , with    . 

Proof: Assume that  ⃗   ⃗     ⃗⃗  are two given controls, then there corresponding "state" solution vectors 

(of the weak form (14)) are   ⃗    ⃗  . By subtracting the above three obtained weak forms from their 

corresponding ones in (14), putting   ⃗⃗ ⃗⃗      ⃗    ⃗    and    ⃗⃗ ⃗⃗    ⃗    ⃗  , with      ⃗⃗ ⃗⃗   , then adding the 

obtained three equations, we get 

  (        )    (        )    (        )  (  (         )    (     )    )  ( ) 
   

     (  (         )    (     )    )  ( ) 
   (  (         )    (     )    )  ( ) 

     

                                  (        )  (  )  (        )  (  )  (        )  (  )         (16) 

By using assumption A-(a, d) , taking the absolute value for both sides of (16), it becomes  

 ‖   ⃗⃗ ⃗⃗   ‖
.  ( )/

 

  
   ‖   ‖  ( )

    ‖   ‖  ( )
    ‖   ‖  ( )

   

           |(        )  (  )|  |(        )  (  )|  |(        )  (  )|                         (17) 

  

By using the Cauchy-Schwarz inequality and then the trace operator in the right side, on (17) , we 

obtain 

 ‖   ⃗⃗ ⃗⃗   ‖
.  ( )/

 

  
    ‖  ⃗⃗ ⃗⃗  ‖(  (  ))

 

 
  ‖   ⃗⃗ ⃗⃗  ‖

.  ( )/
 

  
    

 ‖   ⃗⃗ ⃗⃗   ‖
.  ( )/

 

  
   ‖  ⃗⃗ ⃗⃗  ‖

(  (  ))
 

 
 , where    

   

 
                                                        (18) 

which gives  

 ‖   ⃗⃗ ⃗⃗   ‖
(  ( ))

 

  
  ‖  ⃗⃗ ⃗⃗  ‖

(  (  ))
 

 
                                                                                      (19) 

Assumption (II): 

Assume that ԏ_P1  ,ԏ_P2  ,ԏ_P3 on Ψ×R and ԏ_P4  ,ԏ_P5  ,ԏ_P6 on Ψ×D are of the Carathéodory 

type, then the following are satisfied for each P=0,1,2:  

|ԏ_P1 (ӽ ,b_1  )|≤Υ_(P_1 ) (ӽ)+c_P1 b_1^2 , |ԏ_P2 (ӽ ,b_2  )|≤Υ_(P_2 ) (ӽ)+c_P2 b_2^2 , 

    (      )     
( )       

  ,     (      )     
( )       

  ,  

    (      )     
( )       

  , and      (      )     
( )       

  ,  
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where                 ( )                  (  )  and                             

Lemma (2): If assumption (II) is held, then the functional Ԏ_P ( d    ) is continuous on (L_2 (∂Ψ))^3 

for each P=0,1,2.Proof: For any          , we set 

   
(   ⃗  )     (     )     (     )     (     )  and 

   
(    ⃗  )     (     )     (     )     (     )   

To prove the continuity for any one of the above two integrals, the used technique will be similar. 

Thus, it is enough to prove one of them, which is in this case the second integral. Hence, let  ⃗  
(          ) , with    

        , then from assumption (II), we have 

 ‖    
(    ⃗  ) ‖     

( )       
       

       
  

                                        
( )     ‖ ⃗ ‖

 
  

where     
    

     
    

,         (             ) ,    
   (  ) ,        ( ). 

Then, the        
(    ⃗  )   is continuous on (  (  ))

 
 (by using Proposition (1) in reference [19]). 

Hence, 

  (  ⃗  )   ∬    
(    ⃗  )

 
             

(    ⃗  )   is continuous on (  (  ))
 
 . 

Theorem (2): If the assumptions (I) and (II) are hold,  ⃗⃗     ,           are not dependent on 

          respectively , and          are bounded functions , so that,  

   (      )    ( )   ̅      ,    (      )    ( )   ̅      ,    (      )    ( )   ̅        

   ( )     ,    ( )     ,  and    ( )    ,  

where      ( ) ,  ̅   , and       , for        . 

               are not dependent on             respectively .               (     ) are convex 

with respect to              respectively, for fixed  . Then there exists a continuous classical boundary 

optimal control vector.   

Proof: The set E_σ and D_σ (  σ=1,2,3) is convex and bounded, then E_1×E_2×E_3is convex and 

bounded. On the other hand, by using theorem (2) in reference [19], E_σ    σ=1,2,3 is closed, since 

D_σ is closed, then E_1×E_2×E_3 is closed, too. Therefore, we obtain that E_1×E_2×E_3 is weakly 

compact.   

From the assumption on  ⃗⃗  , there is an element  ⃗   ⃗⃗  . Then there is a minimum sequence { ⃗  +  

*(             )+   ⃗⃗   for each n, with   (  ⃗   )       (  ⃗   )   , , so that 

    
   

   (  ⃗   )      ⃗   ⃗⃗    (  ⃗  ) . 

But  ⃗⃗  is weakly compact, then there is a subsequence of { ⃗  +, which will be symbolized again by 

{ ⃗  +  that converges weakly to  ⃗  in  ⃗⃗  . 

Then, corresponding to the { ⃗  +, there is the sequence of the "state" solution vector { ⃗  + of the 

sequence of the weak form. Then, from the proof of Theorem (3), we have: 

  (        )  (            )  ( )     (        )  (            )  ( )          (        )  

 (            )  ( )  (  (      )   )  ( )  (  (      )   )  ( ) 

  (  (      )   )  ( ) 

  (  ( )   )  ( )  (       )  (  )  (  ( )   )  ( )  (       )  (  ) 

       (  ( )   )  ( )  (       )  (  )                                                                               (20)                                                                                                                       

With  ‖ ⃗  ‖
.  ( )/

 

  
 for each n is bounded, then { ⃗  + has a subsequence, which will be symbolized 

again by { ⃗  +, such that   ⃗     ⃗   weakly in   ⃗⃗   (Alaoglu theorem [20]). 

 

Now, we have to show that (20) converges to  

  (       )  (          )  ( )     (       )  (          )  ( )    (       )         (   

       )  ( )  (  (     )   )  ( )  (  (     )   )  ( )  (  (     )   )  ( )  

 (  ( )   )  ( )  (      )  (  )  (  ( )   )  ( )  (      )  (  )  (  ( )   )  ( )     

         (      )  (  )                                                                                                              (21) 
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First, let (          )  ( ( ̅)) , and, first for the left hand side, since         weakly in      i.e 

        weakly in   ( ) , for each         , then from the left hand side of (20) and 

(21) and by using the Cauchy-Schwarz inequality, one has   

           (         )  (             )  ( )    (         )  (             )  ( ) 

     (         )   (             )  ( )     (        )   (           )  ( )   

     (        )   (           )  ( )     (        )    (           )  ( )  

           (  ‖       ‖  ( ) 
   ‖       ‖  ( ) 

   ‖       ‖  ( )
  )‖   ‖  ( ) 

      

 (  ‖       ‖  ( ) 
   ‖       ‖  ( ) 

   ‖       ‖  ( ) 
  )‖   ‖  ( )

     

          (  ‖       ‖  ( ) 
   ‖       ‖  ( ) 

   ‖       ‖  ( ) 
  )‖   ‖  ( ) 

                         

(22) 

i. From assumption (II) and Proposition (1), the functions      (      )         

     (      )          and      (      )         are continuous with respect to           and 

       respectively. 

But  ⃗     ⃗   weakly in  (  ( ))
 
, because  ⃗     ⃗   weakly in  ⃗⃗  , then by using the Rellich-

Kondrachov theorem in [21], we get that  ⃗     ⃗   strongly in (  ( ))
 
 , hence 

(  (      )   )  ( )  (  (      )   )  ( )  (  (      )   )  ( )  

                           (  (     )   )  ( )  (  (     )   )  ( )  (  (     )   )  ( )          (23a),   

i.e. the left hand side of (20)   the left hand side of (21). 

Second, since        ,        and           weakly in   (  ), then  

(         )  (  )  (         )  (  )  (         )  (  )                           (23b)                          

From (23a) and (23b), we obtain that (20) converges to (21). 

Since ( ( ̅))  is dense in  ⃗⃗  , then this convergence satisfies for any (          )   ⃗⃗   . This leads to 

 ⃗     ⃗   ⃗ 
 ⃗⃗ 
 is a solution of the weak form of the triple state equations. 

From Lemma (2), the functional   (  ⃗  ) is continuous on (  (  )) ,            . 

From the assumptions on               ,   (  ⃗   ) is continuous and from the strongly converged  

                 and         in   ( ) , we get  

  ( ⃗ )     
   

  ( ⃗  )   .  

Also, from the assumptions on    (     ) and     (     ) (       ) and Lemma (2) , the integrals  

      (     )       and        (     )   are continuous with respect to    and   , respectively, but 

   (     ) , (       ) is convex with respect to    , then       (     )   is weakly lower 

semicontinuous  with respect to    , i.e. 

∬     
(     )             (     )    

  ∬     
(     )       

   

   
       (      )   

  
   

   
∬ ,    

(     )     (     )-       

  
   

   
       (      )          (      )       

  
   

   
(∬     

(      )              (      )  ) 

 

By the same manner, and for each        ,  we get the following two convergences:   

 ∬     
(     )             (     )   

  
   

   
(∬     

(      )              (      )  ) 

and  

 ∬     
(     )             (     )   

  
   

   
(∬     

(      )              (      )  ) 

From the above inequalities, one gets that    ( ⃗ ) (       )  is weakly lower semicontinuous with 

respect to ( ⃗    ⃗ ). Thus   ( ⃗ )  
   

   
   ( ⃗  )    , and  
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  ( ⃗ )  
   

   
   ( ⃗  )     

   
   ( ⃗  )      ⃗⃗⃗   ⃗⃗⃗⃗    ( ⃗⃗⃗ )         

 ⃗  is a continuous classical boundary optimal control vector . 

5. The Necessary and Sufficient Conditions for Optimality of the Continuous Classical 

Boundary Optimal Control Vector 

The following assumptions are useful in this section to derive the Fréchet derivative of the 

Hamiltonian. 

Assumption (III) 

a)     
      

      
 are of the Carathéodory type on     and satisfy 

         |    
(      )|   ̆   |    

(      )|   ̆   |    
(      )|   ̆ , with   ̆    ̆    ̆     

              
(      )         

(      )            
(      )    . 

b)            are of the Carathéodory type on   and satisfy 

       ( )   ̆       ( )   ̆          ( )   ̆   , with  ̆    ̆    ̆    . 

c)      
       

       
       

      
       

 (         ) are of  the Carathéodory type  on 

    and satisfy 

   |     
|     

        , |     
|     

        , |     
|             ,  

   |     
|     

        , |     
|     

        , and |     
|     

          

where       ,    
     

     
   ( ) and     

     
     

   (  ), for                and    

       
Theorem (3): If the assumptions (I), (II), and (III) are hold, the Hamiltonian is given as:   

  (                             ) 
    (  ( )    (     ))     (     )     (     )    (  ( )    (    )) 

              (     )      (     )    (  ( )    (    ))     (     )     (     ) 
The triple adjoint equations of the triple state equations (1-6) are : 

                     
(     )       

(      )                                                    (24)                    

                     
(     )       

(      )                                                   (25)            

                     
(     )       

(      )                                                   (26) 
   

   
                                                                                                                                (27) 

   

   
                                                                                                                                (28) 

   

   
                                                                                                                                (29) 

Then the Fréchet derivative of    is  

  
 ⃗⃗⃗⃗  ⃗( ⃗ )   ⃗⃗ ⃗⃗   ∫  

 ⃗⃗ 
 

  
   ⃗⃗ ⃗⃗      , where 

 
 ⃗⃗ 
  (

   
(                    )

   
(                    )

   
(                    )

)  (
        
        
        

) and      
 ⃗⃗ 
 is the triple adjoint equation of the triple state 

equation  ⃗ 
 ⃗⃗ 

 . 

Proof: Formulating the triple adjoint equations (24-29) by their weak forms, then adding them, and 

then setting       ⃗⃗ ⃗⃗    in the resulting equation, yield  

  (        )  (           )  ( )     (        )  (           )  ( )    (        )       

  (           )  ( )  (      
(  )    )  ( )  (      

(  )    )  ( ) 

 (      
(  )    )  ( )  (     

(   )    )  ( ) 

                                                    (     
(   )    )  ( )  (     

(   )    )  ( )            (30) 

One can easily prove that the weak form (30), with fixed continuous classical boundary optimal 

control vector  ⃗   ⃗⃗   has a unique "state" solution vector      
 ⃗⃗ 
   by applying the same manner 

employed in the proof of theorem (3). 

 



Al-Hawasy and Al-Ajeeli                            Iraqi Journal of Science, 2021, Vol. 62, No. 9, pp: 3020-3030 

 

3027 

Now, by setting once the solution    in the weak forms of the state equations (11) and once again the 

solution       , then subtracting the     obtained weak form from the other one , we obtain 

   (        )  (            )  ( )  (  (      )    (  )     )  ( ) 

                                                              (        )  (  )                                                    (31)  

The same above substituting and subtracting are repeated but from a side with the solutions     and 

       in the weak form of equation (12) and from thither side with the solutions     and        

in the weak form of  the state equation (13), respectively, to obtain  

   (        )  (            )  ( )  (  (      )    (  )     )  ( ) 

                                                              (        )  (  )                                            (32) 

   (        )  (            )  ( )  (  (      )    (  )     )  ( ) 

                                                              (        )  (  )                                            (33) 

Adding (31),(32) and (33), then substituting     (          ) in the resulting equation, yield   

   (        )  (            )  ( )     (        )  (            )  ( ) 

     (        )  (            )  ( )  ((  (         )   )    (     )     )  ( )  

  ((  (         )   )    (     )     )  ( )  ((  (         )   )    (     )     )  ( )  

  (        )  (  )  (        )  (  )  (        )  (  )     (          )   ⃗⃗                            (34) 

From the assumptions on             and by using Proposition (2) in reference [19], the Fréchet 

derivative of            exists.  Hence, from Lemma (1) and the Minkowski inequality, (34) 

becomes 

  (        )  (            )  ( )     (        )  (            )  ( ) 

  (        )  (            )  ( )  (    
       )  ( )   ̃ (  ⃗⃗ ⃗⃗ )‖  ⃗⃗ ⃗⃗  ‖(  (  ))

 

 
  

 (    
       )  ( )   ̃ (  ⃗⃗ ⃗⃗ )‖  ⃗⃗ ⃗⃗  ‖(  (  ))

 

 
 (    

       )  ( ) 

    ̃ (  ⃗⃗ ⃗⃗ )‖  ⃗⃗ ⃗⃗  ‖(  (  ))
 

 
 

  (       )  (  )  (       )  (  )  (       )  (  )                                                   (35) 

where  ̃ (  ⃗⃗ ⃗⃗  )   ̃ (  ⃗⃗ ⃗⃗  )      ̃ (  ⃗⃗ ⃗⃗  )        ‖  ⃗⃗ ⃗⃗   ‖
(  (  ))

 

 
        ⃗⃗ ⃗⃗       

Subtracting (30) from (35) , to get  

(     
(   )    )  ( )  (     

(   )    )  ( )  (     
(   )    )  ( ) 

   ̃ (  ⃗⃗ ⃗⃗  )‖  ⃗⃗ ⃗⃗   ‖(  (  ))
 

 
   ̃ (  ⃗⃗ ⃗⃗  )‖  ⃗⃗ ⃗⃗   ‖(  (  ))

 

 
   ̃ (  ⃗⃗ ⃗⃗  )‖  ⃗⃗ ⃗⃗   ‖(  (  ))

 

 
 

 (       )  (  )  (       )  (  )  (       )  (  )                                                    (36) 

Now, from the assumptions on                             , Proposition (2) in reference [19], and 

then using the result of  Lemma (1), we have 

  ( ⃗    ⃗⃗ ⃗⃗  )    ( ⃗ )  ∬ (      
(    )         

(     )     

                                              
(     )   )       

                                             (     
(     )         

(     )    

                                              
(     )   )      (  ⃗⃗ ⃗⃗  )‖  ⃗⃗ ⃗⃗  ‖(  ( ))

                              

where   (  ⃗⃗ ⃗⃗  )    , as   ⃗⃗ ⃗⃗                                            

By substituting (36) in the above equality, we get 

  ( ⃗    ⃗⃗ ⃗⃗  )    ( ⃗ )      (         
)          (         

)       

                                          (         
)       ̃ (  ⃗⃗ ⃗⃗  )‖  ⃗⃗ ⃗⃗   ‖(  (  ))

 

 
                         (37) 

where  

 ̃ (  ⃗⃗ ⃗⃗  )   ̃ (  ⃗⃗ ⃗⃗  )   ̃ (  ⃗⃗ ⃗⃗  )   ̃ (  ⃗⃗ ⃗⃗  )   ̃ (  ⃗⃗ ⃗⃗  )    , as    ⃗⃗ ⃗⃗    . 

But from the definition of the Fréchet derivative of    , one gets  

  
 ⃗⃗⃗⃗  ⃗( ⃗ )  ⃗⃗ ⃗⃗   ∫  

 ⃗⃗ 
 

  
  ⃗⃗ ⃗⃗      ,  where  

 ⃗⃗ 
  is defined above.                                                  (38) 

Note: In the proof of the above theorem, we have found the Fréchet derivative for the functional    , 

so the same technique is used to find the Fréchet derivative for   and    .   
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Theorem (4): 

(a) If assumptions (I) ,(II), and (III) are held, then  ⃗⃗  is convex, and if  ⃗   ⃗⃗   is a continuous 

classical boundary optimal control vector , then           and there exist multipliers      , with 

     ,       ∑    
 
       , so that the following Kuhn-Tucker- Lagrange's Multipliers conditions 

are held:    

    ∫  
 ⃗⃗ 
 

  
    ⃗⃗ ⃗⃗        ,  with    ⃗⃗ ⃗⃗    ⃗⃗⃗   ⃗   ,    ⃗   ⃗⃗                                                      (39a)                                                              

     where     ∑   
 
       &    ∑   

 
      ,(                    ) in (Theorem (5)), 

       ( ⃗ )    , (Transversality conditions)                                                                 (39b) 

 

(b) (Minimum Principle in point wise weak form): The inequality (39a) is equivalent to 

             
 ⃗⃗ 
   ⃗      ⃗   ⃗⃗    ⃗⃗ 

   ⃗⃗   a.e. in                                                                                 (40) 

Proof: (a) from Theorem (3) ,   ( ⃗ )                        ⃗   ⃗⃗ ) has a continuous Fréchet 

derivative. Since the continuous classical boundary optimal control vector  ⃗   ⃗⃗   is optimal, then by 

using the Kuhn-Tucker- Lagrange's Multipliers theorem           , there exist multipliers      

with      ,      ,  ∑    
 
       , such that   

(∑   
 
     

  ⃗⃗ 
 ⃗⃗ ⃗⃗ ⃗⃗  ⃗( ⃗ ))

  (  )
 ( ⃗   ⃗ )     ,    ⃗   ⃗⃗                                                                (41a)                                                                 

    ( ⃗ )                                                                                                                           (41b) 

Then, from Theorem (3), (41a) with the setting                       ,           , 

we can rewrite    ⃗   ⃗⃗  as  

∫ ,(       
)

  
    (       

)    (       
)   -       

where     ∑    
 
        ,      ∑    

 
         ,              ,         

 ∫   
 ⃗⃗ 
 

  
   ⃗⃗ ⃗⃗        ,    ⃗   ⃗⃗  ,   ⃗⃗ ⃗⃗    ⃗   ⃗   . 

 (b) Let * ⃗  + be a sequence, dense in  ⃗⃗  ⃗⃗  , and      be a measurable set, such that 

       ⃗⃗ ( )  {
 ⃗  ( )                   

 ⃗ ( )                       
  

Hence (41a) , becomes  

∫   
 ⃗⃗ 
 

 
 ( ⃗    ⃗  )     , for any      . Then, by using Theorem (2) in reference [19], we obtain 

 
 ⃗⃗ 
  ( ⃗    ⃗  )     , a.e  on   .   

The above inequality satisfies on     except in a subset     with  (   )   , for each n , where   is 

a Lebesgue measure, then this equality holds on    except in ⋃      with τ(⋃     )    . But * ⃗  + 

is a dense in  ⃗⃗ , then there exists  ⃗   ⃗⃗  , such that 

 
 ⃗⃗ 
   ⃗      ⃗   ⃗⃗    ⃗⃗ 

   ⃗   , a.e, on      . 

6. The Sufficient Conditions for Optimality of the Continuous Classical Boundary Optimal 

Control Vector 

Theorem (7): In addition to assumptions (I), (II), and (III), if                           are affine 

with respect to   ⃗                 are affine with respect to   ⃗  ,            are bounded functions for ӽ. 

Also, if    
(                    )   are convex with respect to                         , 

respectively, for each ӽ, then the necessary and sufficient conditions for optimality in the previous 

theorem (6), with        are sufficient . 

Proof: Assume that  ⃗   ⃗⃗   ,  ⃗  satisfies the conditions (39a) and (39b). 

Let 

  ( ⃗ )  ∑   
 
    ( ⃗ )    

 ⃗⃗⃗⃗  ⃗( ⃗ )  ⃗⃗ ⃗⃗   ∑   
 
    ∫ ,((         

)    (         
)     

  

                                                                                       (         
)   )-    

                                                           ∫  
 ⃗⃗   
(                        )    ⃗⃗⃗⃗⃗⃗       .  

and 

  (     )     ( )      ( ),   (     )     ( )      ( ),    
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   (     )     ( )      ( ) , and   ( ) are bounded for           ,          

Let  ⃗  (          )   ⃗̅
  ( ̅    ̅    ̅ ) be given two continuous classical boundary optimal control 

vectors, then the corresponding "state" solution vector are   ⃗  (          ) ,  ⃗̅  ( ̅    ̅    ̅ ) By 

substituting ( ⃗    ⃗  ) in (1)-(6) and multiplying the resulting  equations by    ,   - once, we again the 

substitution of the pair ( ⃗̅    ⃗̅  ) in (1)-(6). By multiplying the result by  ̅  (    ), and finally summing 

each pair from the corresponding equations together, we get: 

  (     ̅ ̅ )  (     ̅ ̅ )  (     ̅ ̅ )  (     ̅ ̅ )     ( )(     ̅ ̅ )  

    ( )    ( )                                                                                                                (42a) 

∑      
 

   

 
     (     ̅ ̅ )       ̅ ̅                                                                             (42b) 

  (     ̅ ̅ )  (     ̅ ̅ )  (     ̅ ̅ )  (     ̅ ̅ )      ( )(     ̅ ̅ )  

    ( )    ( )                                                                                                                (43a) 

∑      
 

   

 
     (     ̅ ̅ )       ̅ ̅                                                                            (43b) 

and 

  (     ̅ ̅ )  (     ̅ ̅ )  (     ̅ ̅ )  (     ̅ ̅ )     ( )(     ̅ ̅ )  

    ( )    ( )                                                                                                                (44a) 

∑      
 

   

 
     (     ̅ ̅ )       ̅ ̅                                                                             (44b) 

Now, if we have the continuous classical boundary optimal control vector  ⃗̿  ( ̿    ̿    ̿  ) with  ̿   

      ̅  ,  ̿        ̅ ̅  and  ̿         ̅  . Then, from (42a&b) , (43a&b), and (44a&b) , 

one gets that the "state" solution vector ( ̿      ̿  
   ̿      ̿  

   ̿      ̿  
) with  ̿        

 

 ̅   ̅ 
      ̅ ̅   ̿        

  ̅   ̅ 
      ̅ ̅  and   ̿        

  ̅   ̅ 
      ̅ ̅   are 

their corresponding solution, i.e. they satisfy (1-6), respectively . So, the operators        
 , 

       
 and        

 are convex-linear with respect to (       ) , (       ) and (       )  

respectively. 

Now, from this result and since                              are affine with respect to 

                         respectively, on  , we get that         ,   ( ⃗ ) is convex-linear in ( ⃗    ⃗ ). 
Also, since (        &        )                              are convex with respect to             

       and    respectively, i.e.  ( ⃗ ) is convex with respect to  ⃗  and  ⃗  , then  ( ⃗ ) is convex in   ⃗  and 

 ⃗  i n the convex set   ⃗⃗  and has a  continuous  Fréchet derivative that satisfies      

  
 ⃗⃗⃗⃗  ⃗( ⃗ )     ⃗⃗ ⃗⃗        ( ⃗ ) has a minimum at  ⃗  , i.e.  ( ⃗ )    ( ⃗⃗⃗ )  ,   ⃗   ⃗⃗  , then we have 

 ∑   
 
    ( ⃗ )  ∑   

 
    ( ⃗ )                                                                                            (45) 

Now,  let  ⃗⃗  be also admissible and satisfies the Transversality condition, then (45) becomes   ( ⃗ )  

  ( ⃗ )   ,    ⃗   ⃗⃗  , i.e.  

  ⃗  is a classical continuous boundary control vector problem . 

 

Conclusions 

     The existence and uniqueness theorem for the "state" solution vector of the triple nonlinear partial 

differential equations of elliptic type is proved successfully, when the classical continuous boundary 

control vector is given. The proof of the existence of the classical continuous boundary control vector, 

ruling by the considered triple nonlinear partial differential equations of elliptic type, is demonstrated 

with the equality and inequality constraints. The studying of the existence solution of the triple adjoint 

equations related with the triple nonlinear partial differential equations of elliptic type is demonstrated 

with the  equality and inequality constraints. Finally, the theorems of both the necessary and sufficient 

conditions for optimality of the triple nonlinear partial differential equations of elliptic type, through 

the Kuhn-Tucker-Lagrange's Multiplires with equality and inequality constraints, is demonstrated. 
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