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Abstract

Our aim in this work is to study the classical continuous boundary control vector
problem for triple nonlinear partial differential equations of elliptic type involving a
Neumann boundary control. At first, we prove that the triple nonlinear partial
differential equations of elliptic type with a given classical continuous boundary
control vector have a unique "state" solution vector, by using the Minty-Browder
Theorem. In addition, we prove the existence of a classical continuous boundary
optimal control vector ruled by the triple nonlinear partial differential equations of
elliptic type with equality and inequality constraints. We study the existence of the
unique solution for the triple adjoint equations related with the triple state equations.
The Fréchet derivative is obtained. Finally we prove the theorems of both the
necessary and sufficient conditions for optimality of the triple nonlinear partial
differential equations of elliptic type through the Kuhn-Tucker-Lagrange's
Multipliers theorem with equality and inequality constraints.
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1. Introduction

In many fields, the optimal control problems play a significant role in life. Different examples of
the applications of such problems are presented in medicine [1], aircraft industry [2], electric power
production [3], economic growth [4], and many other fields.
All these applications pushed many investigators to a higher level of interest in studying the optimal
control problem for nonlinear ordinary differential equations [5], for different types of linear partial
differential equations, including the hyperbolic, parabolic and elliptic [6- 8], or for couple nonlinear
partial differential equations of these three types [9-11]. While other authors [12, 13] studied these
three types but included a Neumann boundary control. More recently, optimal control problems were
studied for triple partial differential equations of these three types [14-16]. Also, the optimal control
problem involving Neumann boundary control for triple partial differential equations of parabolic type
was also recently investigated [17]. All these investigations motivated us to seek the optimal control
problem, involving Neumann boundary control ruled by the triple nonlinear partial differential
equations of elliptic type.
At first, our aim in this work is to prove that system of the triple nonlinear partial differential
equations of elliptic type with a given classical continuous boundary control vector, which has a
unique "state™ solution vector, by using the Minty-Browder Theorem. Then, we prove the existence of
a classical continuous boundary optimal control vector, ruled by the triple nonlinear partial differential
equations of elliptic type with equality and inequality constraints.
We study the existence of the unique solution for the system of the triple adjoint equations related with
the triple state equations. At the end, we prove the theorems of both the necessary and sufficient
conditions for optimality of the triple nonlinear partial differential equations of elliptic type through
the Kuhn-Tucker-Lagrange's Multipliers with equality and inequality constraints.
2.  Problem Description

Let ¥ be a bounded and open connected subset in R? with Lipshitz boundary a¥ . The optimal
control problem is considered by the "state vector equation” which consists of the TNLEPDEs triple
nonlinear elliptic partial differential equations with the Neumann boundary control.

A;b; +b; —by —bs + my(x,by) = 5,(x),in ¥ (1)
Azb; + by + by + by + my(x,b2) = B(x),in¥ (2)
Aszbs + by —6&32 + bz + m3(x,b;3) = K3(x),in ¥ (3)
(Zy_jzl alo_]- 6_I11 = dl ,0n 61{’ (4)

db
g-,]'=1 azo_]- O_nz = d2 ,0on a‘}’ (5)

db
g-,]'=1 a3cj 6_1’1: = d3 ,0n a‘}’ (6)

where
ad O0by o s

Arby = — tz)'.j=1a(aroj x) a_xl) r=123  ar, = aroj(Xoj) ec®¥) , for o,j=12

(dy,dy,d3) = (d;(x),d2(%),d3(x)) € (Lz(a‘{’))3 is the Neumann boundary control vector. The
correspond “state™ solution vector to the Neumann boundary control vector is (by,by,b3) =

(b1(>5): b, (X)'b3(55)) € (Hl(lp))gy (my, my, m3) = (ml()S' by), my(x,by), m3(x, bs)):
(61, 52, 53) = (51 (%), 52 (%), 53 (%)) € (L,(¥))’, which i a vector of functions.

The control constraints are

deE,E c (L,0¥))°, where d = (dy,d,, d3) and E = E; X E, x Es, with
E=Fp={E € (L,(0¥))’[E = (E1,E, E3) eDaeinow |,

where D = D; X D, X D3, with D c R3is aconvex and compact set .

The cost function and the equality and inequality constraints are given by:

TJO( a) = ff\y['ﬁm(x;bﬂ + To2(%,b2) + To3(x, b3)] dx;dx;
+ fow[T04(%,d1) + Tos(x,d2) + To6(%,d3)]dy (7)
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T ( a) = [[u[v11(3,b1) +B12(%,b2) + B13(%, b3)] dx;dx;

~ + [ow[T14(x,dy) + T15(x,d2) + T16(x,d3)]dy = 0 8)
TJZ( d) = ﬂq;['ﬁm()S:bﬂ + T22(X,b2) + T23(x, b3)] dx; dx;
+ [owl[T24(x,d1) + T25(x,d2) + T26(x,d3)]dy < 0 )
The set of admissible control is
Ey={de€ElT;(d)=0,T,(d) <0} (10)

The classical continuous boundary control vector problem is to minimize (7) subject to the state
constraints (8) and (9), i.e. to find d, such that
d € E, and '50(3) = mingg To(€) .
Let T=(T)3= (Hl(lp))3 the notations (t,t) (L 2(¥)),and ITI (L 2(¥)) (ITI (L 2(3¥)))
refer to the inner product and the norm in L 2 (¥) (L_2 (6¥)). The notations [(t ,t) ) (H"1 (‘P))
and ITI_(H*1 (¥) ) refer to the inner product and the norm in H"1 (¥) , the notations (t~ .t
YL 2M))=Y (=1)2i(ti,ti)andlt” I (L2M)3 )= Y (=D)"3ltil (L 2(¥P)) refer
to the inner product and the norm in (L 2 (¥))"3, while the notations (t ~ ,t ~ ) (L 2 (V) )=
Y (=DMt i Lt i), and It 71 ((HM (P)N3 )=y (i=1)3:0t il (HAl (?¥)) refer tothe inner
product and the normin T~ |, finally T ™* is referred to the dual of T~
3. Weak formulation of the triple state equations
To find the weak formulation of problem (1-6) , let

T=T, xT, X T; = H(¥) x H}(¥) x H1(¥)

= {6t = (t,t,t3) € (Hl(‘{’))B, with ty, t,, t3 satisfy (4)-(6), respectively on aW}.

By multiplying both sides of equations (1),(2) and (3) by t; € T;,t, € T, tg € Ty, respectively,
integrating both sides of each one of the obtained equations with respect to x, and then using the
generalize Green's theorem, we get
ai(by,ty) — (by +bs,ty ), cp + (Mg (X, b1), t)r,w)

= (51X, t)L,w) + (d1,t), 0w,V €Ty (11)
az(by,ty) + (by + bs, ty ), w) + (M2(x,b2), t2)1,w)

= (52(%), t2)1, 0 + (d2, t2)1,00w) , V2 €T, (12)
and
az(bs,t3 ) + (by — by, t3 ), w) + (M3(x,b3), t3),w)

= (153(%), t3)r,w) + (d3,t3)1,00w), Vt3 €T3 (13)

By adding equations (11), (12) and (13), we get
a(b ';E) + (M (%,b1) ,t1 ) + (Mz(x,b2), t2)1,w) + (M3 (X, b3), t3)L,w)
= (51(X), t) L,y + (d1,t3),0w) T B2(%), t2) ) + (d2, t2)1, 0w
+(13(%), t3),w) + (d3,t3)1,0w) , V (t1,t2,t3) €T (14)

where
a(b,t) =a; (by,t;) — (b, +bs,t L) + az (by,t2) + (by + bs, tr )1, (w)

+ a3 (bs,t3) + (by + by, t3 ), w)
with

b, atr

artbe ) = Jy (Zhoary 5 5 + byt ) dy
which satisfies
ar(by,t,) = cqp ||br||ﬁ1(q,) ,where ¢;, =20 , r=1,2,3
Iar(br:tr)l < Car ||br||12-11(\p) ”Tr”il(\p) ) where Car =0 , I'= 1 ,2 '3'
The following assumptions are useful to prove the existence theorem of a unique solution of the weak
form (14).

Assumption (I):
a(B b)
el

a) a(b,t) iscoercive,, i.e,
(i)’
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b) a(E,E) is continuous, i.e.
la(b,t)| < ¢1]|b ||(H1(‘¥))3 |t ||(H1(LP))3 ,#1>0,vb,teT
c) m; , m, and my are of Carathéodory type on W X R and the following sub linearity

conditions with respect to by, b, , b are satisfied, respectively, i.e.
Ims (X, b5 )| < $s(%) + Tlbsl , V(X,bs) € ¥ X R with ¢ € L (W), T > 0 foro =

1,2,3
d) m,(x,b, ) are monotone with respect to b, for each x € ¥, and my(x,0) =0,VX€eE WY ,
oco=1,2,3.
e) K, (x) are of the Caratheodory type on W and satisfy |5,(%)| < $j(x) ,Vx € ¥, with ¢j(x) €
L,(¥), 0,j=1,2,3
Theorem (1): If assumption (1) is hold, and if one of the functions m; ,m, or m3 in (14) is strictly
monotone, then for each fixed classical continuous boundary optimal control vector de EA , the weak
form of (14) has a unique "state" solution vector beT.
Proof: It is clear that the existence of a unique solution of (14) is obtained after the usage of
assumptions (1), then theorem (1) in reference [18] is applied.
4. Existence of the Classical Continuous Boundary Optimal Control Vector

In this section, the theorem of the existence of a classical continuous boundary optimal control
vector under the suitable assumptions is proved. However, before proving it, it is necessary to deal
with the following lemmas and assumptions.
Lemma (1): If the assumption (I) is hold, the functions m; ,m,, m3 are Lipschitz continuous with
respect to by, b, ,bs, res respectively, and if ;(%),5,(x),53(%) are bounded, then the mapping

d — by is Lipschitz continuous from Eg into (L,(¥))” , i.e.
|| Ab ||(L2(‘¥))3 <L ||Ad||(L2(aLp))3 , with L > 0.

Proof: Assume that d,d’ € E are two given controls, then there corresponding "state” solution vectors
(of the weak form (14)) are b,b. By subtracting the above three obtained weak forms from their
corresponding ones in (14), putting Ab =b'—b and Ad=d —d, withT=Ab, then adding the
obtained three equations, we get
a;(Aby, Ab; ) 4+ a,(Aby, Ab; ) + az(Abs, Abz ) + (my (X, by + Aby) — my(X,b1), Aby)y,
+ (m3(x, bz + Aby) — my(X,bz), Aby), (wy + (m3(X, b3 + Abs) — m3 (X, b3), Abs)y, ()

= (Ady ,Aby)y,aw) + (Ady , Aby) L, (aw) + (Ad3, Ab3)L, (aw) (16)

By using assumption A-(a, d) , taking the absolute value for both sides of (16), it becomes

—_ 2
c||ab || Y < 01 11Aby [IF1 gy + 82118b2 11 gy + B311Abs 11

(Hiw)
< |(ad, :Abl)Lz(a‘P)l +|(Ad, 'AbZ)Lz(H‘P)| +|(Ad3 'Ab3)L2(6‘P)| (17)

By using the Cauchy-Schwarz inequality and then the trace operator in the right side, on (17) , we
obtain

— 2 v Ab
c|| Ab ||(H1(‘P))3 = 3C1||Ad“(L2(atp))3 + ” Ab”(Hl(LP))3 =

135 1 gy = L8y - where L2 = =22 (18)
which gives
|| ab || (L) < L||ad|| (L,0®)’ (19)

Assumption (11):

Assume that  P1 ,5 P2 ,5 P3 on xR and v P4 ,& P5 ,5 P6 on ¥xD are of the Carathéodory
type, then the following are satisfied for each P=0,1,2:

o P1(x,b 1 )<Y (P 1)(%)tc P1b 1"2,|v P2(x,b 2 )<Y (P 2)(x)tc P2b 272,

Iop3(x, b3 )| < ¥p, (X) + cp3b3 , [opa(x,di )| < Vp, (X) + cpadf ,

Iops(x,dy )| < ¥p (%) + cpsd5 , and |ope(x,ds )| < Yp, (%) + cped5
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where Ypl ,sz ,Yp3 € Ll(lp), YP4_ 'YPS ’YP6 € Ll(aqj) and CPO‘ >0 for o= 1,2,3,4,5,6.
Lemma (2): If assumption (II) is held, then the functional T P (d ~ ) is continuous on (L_2 (6¥))"3
for each P=0,1,2.Proof: Forany P = 0,1,2 , we set
Pp,(%b) =Tp1(x,b1) + Tp2(x,b2) + Tp3 (%, bs) and
Pp,(%,d) = Bpa(x,d1) + ops(x,dz) + Tps(x, d3).
To prove the continuity for any one of the above two integrals, the used technique will be similar.
Thus, it is enough to prove one of them, which is in this case the second integral. Hence, let d=
(dy,d3,d3), with Pp_: ¥ X R3 - R, then from assumption (11), we have

I Pp, (x.d)| < Yp, (X) + cpadf + cpsd3 + cped3

—,2
< Yp, (%) + cp7||d]|
where Yp7 = Yp4_ + YPS + YP6’ Cp7 = maX(CP4 ,Cpsg 'CPG) YYP7 € Ll(alp) , Cp7 € LOO(R)
Then, the [5y Pp, (x,d)dy is continuous on (L, (6‘?))3 (by using Proposition (1) in reference [19]).
Hence,

Tp( 5) = JfyPp, ()g,E ) dx1dx; + [59Pp, (;S,E )dy is continuous on (L, (6‘}’))3 .
Theorem (2): If the assumptions (1) and (Il) are hold, EA # @ , m; ,m,, my are not dependent on
d,, d,, ds, respectively , and &4, 55, i3 are bounded functions , so that,
Imy(x,b1 )| < @1 +Cilbel, Ima(x, b2 )| < By +C2|b2| s Im3(x, b3 )| < B3¢, + C3|bsl,
51 ()| < my , [B2(%)| < my, and [B3(x)] < m3,
where @, € L,(¥) ,¢; = 0,and m; = 0, foro = 1,2,3.
T11,T12,T13 are not dependent on d,,d, ds, respectively . Tp,,Tps, Tpg (P = 0,2) are convex
with respect to d, ,d, ,d3, respectively, for fixed x. Then there exists a continuous classical boundary
optimal control vector.
Proof: The set E 6 and D_o (V 0=1,2,3) is convex and bounded, then E_1XE_2xE_3is convex and
bounded. On the other hand, by using theorem (2) in reference [19], E ¢ V 0=1,2,3 is closed, since
D o is closed, then E_1xXE 2XE 3 is closed, too. Therefore, we obtain that E 1xE 2xE 3 is weakly
compact.
From the assumption on EA, there is an element € € ﬁA. Then there is a minimum sequence {an} =
{(dyn ,dzn ,d3n)} € E, for each n, with Ty (d, ) = 0,T,(d, ) <0, so that
lim To(dp ) = infyg To(&) .
But E is weakly compact, then there is a subsequence of {an}, which will be symbolized again by
{an}, that converges weakly to dinE.
Then, corresponding to the {En}, there is the sequence of the "state" solution vector {Bn} of the
sequence of the weak form. Then, from the proof of Theorem (3), we have:
ai(byn,t;) — (ban +bsn, ty )i, wy + az(bzn,tz) + (bin + bzn,t2 ), w) +az(bsn,t3) +
(bin = ban, t3 ), e + (M1 (X, b1n), t),w) + (M2(X,ban), t2)1, w)
+(m3(x,b3n), t3)1,w)
= (51(X), t)L,w) + (1, t3),0w) + (52(%), t2)1, ) + (dzn , t2) 1, 0w)

+(13(%), t3)L,w) + (d3n, t3)1,(0w) (20)

With ”E“”(Hl(%f for each n is bounded, then {b,} has a subsequence, which will be symbolized

again by {Bn}, such that Bn - b weakly in v (Alaoglu theorem [20]).

Now, we have to show that (20) converges to
ar(by,ty) — (by +bs,ty ), p + az(by,tz )+ (by +bs,ty ), ) +as(bs,t3) + (by —
by, t3 ),y + (M1 (X, b1), t),w) + (M2(X, b2), t2)1, w) + (M3(x,b3), t3)1, w)
= (51X, t)L,w) + (d1, t3),0w) + B2(%), t2),w) + (A2, t2) 1, 0w) + B3(%), t3)L,w)
+(d3 , t3)1,(0w) (21)
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First, let (t;,t,,t3) € (C(P))3, and, first for the left hand side, since by, = b, weakly in T, i.e
bsn = bs Weakly in L, (W) , for each 0 = 1,2,3 , then from the left hand side of (20) and
(21) and by using the Cauchy-Schwarz inequality, one has
| ag(bin,ty ) — (ban +ban,ty )i, w) +az(bzn,tz ) + (bin +bsn, t2 ), w)
+az(bzy,tz ) + (b1n —ban,ts ),y — ar(by,ty ) + (by +bs,ty ), w)
—ay(by,t; ) — (by +bs,ty ),w) — az(bs,tz3 ) — (by —by,t3),w) |
< (c1ll bin = byllrgy + 11 b2n = bally,wy + I ban = bsll, )l talle, vy +
+(czll ban = ballyyryy + b1 = bylli, wy + II'ban — ballp, ) )l t2ll, cwy +
(c3ll ban = bally1eyy + 1 bin = bylly,cwy + I bzn — ballL, ) )l tall, ey = 0
(22)
i From assumption (Il) and Proposition (1), the functions [fym;(x,b;,)t;dx;dx,
fJym,(x,byn)t, dx;dx, and [fyms(X,bs,)tsdx,dx, are continuous with respect to by, ,b,, and
bz, respectively.
But En > b weakly in (Lz(ll’))?’, because Bn > b weakly in T, then by using the Rellich-
Kondrachov theorem in [21], we get that Bn > b strongly in (L2 (‘P))3 , hence
(my (X, b1n), t)L, ey + (M2 (X, b2n), t2)1,w) + (M3(X, bsn), t3)L, w)
— (my(X,bq), t1),w) + (M2 (X, b2), t2)r, vy + (M3(X, b3), t3)r, w) (23a),
i.e. the left hand side of (20) — the left hand side of (21).
Second, since d;,, — d;,d,, — d, and d;, — d; weakly in L, (d¥), then
(din — dy, t)r,0w) + (dan — da, t2)1,0w) + (d3n — d3, t3),0w) — 0 (23b)
From (23a) and (23b), we obtain that (20) converges to (21).
Since (C(‘P))3 is dense in V, then this convergence satisfies for any (t;,t,,t3) € T . This leads to

b — b= b~ is a solution of the weak form of the triple state equations.

From Lemma (2), the functional 'Gp( d) is continuous on (L, (0¥))3, VP =0,1,2.

From the assumptions on ©;; , 12, B13, T;l( an ) is continuous and from the strongly converged

bin, — by ,by, — by and by, — by in Ly (W), we get

By (d) = limB4 (dn) = 0.

Also, from the assumptions on p;(x,b;) and ©p,(x,d;) (VP = 0,2) and Lemma (2) , the integrals
[pp1(x,b)dx,dx, and [y Tps(x,d;)dy are continuous with respect to b, and d,, respectively, but

Tpa(%,d;) , (VP =0,2)is convex with respect to d; , then [y Tps(x,d;)dy is weakly lower
semicontinuous with respect to d, , i.e.

ﬂq; Tpy (%, by)dx; dx; +faw'5p4()S d,)dy

< fftp Tpy (X, by)dx;dx; + falPT’PzL()S dyp)dy

= nh_,n; ff [vpy (%,b1) — T’Pl()s' b1n)]dx;dx;
a5, )y e G5, by d

= nh_)rr:o (ﬂq; Tpy (X, b1n)dx1dX; + [owTpa(x,din)dy)

By the same manner, and for each P = 0,2, we get the following two convergences:
ff Tpz (X, b2)dx1dx; + [outps (X, dz)dy

li

—— ([fy op2 (5, b2n)dx1dXz + [owps (%, dzn)dy)

s n—-co
and
ff T’P3 (x,b3)dx;dx; + [owtpe (X, d3)dy

=5 (ff Tp3 (X, b3n)dx;dx; + [owTpe (X, dzn)dy)

From the above inequalities, one gets that T)pg(d) (v P =0,2) is weakly lower semicontinuous with
respect to (b, d). Thus T, (d) <- [im '[}Z(dn) <0,and
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lim

To(d) < =% To(dn) = lim T(dy) = infegy To@) =

d is a continuous classical boundary optimal control vector .

5. The Necessary and Sufficient Conditions for Optimality of the Continuous Classical
Boundary Optimal Control Vector

The following assumptions are useful in this section to derive the Fréchet derivative of the
Hamiltonian.

Assumption (111)

a) My My, Mgy are of the Carathéodory type on ¥ x R and satisfy

n—oo

m1b1(>S'b1 )| <¢, |m2b2(>g,b2 )| <¢,, |m3b3()g,b3 )| < &5, with ¢;,¢,,63=0
mlbl(x,bl ) = O,mzbz(g,bz ) = 0and m3b3()g,b3 )=0.
b) K;,H,,K3 are of the Carathéodory type on W and satisfy
51| < Ty, [52(%)] < C5 and [B3(X)| < T , With Ty ,T5,8 =0 .
C) TP1p, + TP2p, » TP3p, » TPaq, TPS 4, » TP6d, (VP =0,1,2) are of the Carathéodory type on
Y x R and satisfy

|Typ1b1| < Yp, +cpybyl, |T’P2b2| < Yp, + cpz by, |Typ3b3| <Yy, + cp3lbyl,

|T'P4'd1| < Yp4 + Cp4|d1|, |T}1>5d2| < Yps + Cp5|d2|, and |T’P5d3| < Ypﬁ + CP6|d3|

where cps =0 ,Yp ,Yp, Yp, € L,(W) and Yp, e, Ve, € L,(0¥), for 6 =1,2,3,4,5,6 and P =
0,1,2.

Theorem (3): If the assumptions (1), (I1), and (111) are hold, the Hamiltonian is given as:

U(x,by, by, b3, 24,22, 23, d1, dg, d3)

= 21 (51(%) = m; (%, b1)) + o1 (X, by) + Toa(x,d1) + 22 (52(%) — m,(x,by))

+ o2 (%, b2) + Tos (X, d2) + 23 (63(X) — m3(x,b3)) + To3(X, b3) + Tos(x,d3)
The triple adjoint equations of the triple state equations (1-6) are :

Ayt 22+ 23+ 7amyp, (X,b1) = To1p, (X,bg) ,in ¥ (24)
Ay 2, — U + 22 — 3 + oMb, (X, b2) = To2p,(X,bz),in¥ (25)
A373 — U+ 22 + 73 + 3M3p, (X, b3) = Tozp,(X,b3),in¥ (26)
071 _ .
. = 0,in 0¥ (27)
622 _ .
I, 0,in 0¥ (28)
62‘3 _ .
I, 0,in 0¥ (29)

Then the Fréchet derivative of G is
To(d).Ad = [, H%.ﬁ dy , where

141

T g, (%,21,22:¢3,d1,d2,d3) (Z1+T’04d1
3 =

Ha, (5,21.22.23d1,d2,d3) Zzﬂost) and 7 = Z; is the triple adjoint equation of the triple state
U4, (% .,221:22,23,d1,d2,d3) L3+ To6d3
equation y; .
Proof: Formulating the triple adjoint equations (24-29) by their weak forms, then adding them, and
then setting t = Ab in the resulting equation, yield
a1(zq,4by ) + (22 + 73, Aby ), vy + a2(22,4by ) — (24 + 23, Aby ), w) + a3(z5,Abs)
— (24 — 22 ,Ab3 ), w) + (ZamMyp, (b1), Aby) 1, w) + (ZzMap, (b2), Aby) L, (w)
+(Z3m3p, (b3), Ab3) 1, w) = (To1b, (b1), Aby), (w)

+(To2b, (b2), Aby)1, w) + (Tosb, (b3), Abs) L, w) (30)
One can easily prove that the weak form (30), with fixed continuous classical boundary optimal
control vector d € E, has a unique "state” solution vector 7 =75, by applying the same manner
employed in the proof of theorem (3).
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Now, by setting once the solution b, in the weak forms of the state equations (11) and once again the
solution b; + Ab,, then subtracting the 15 obtained weak form from the other one , we obtain
a; (Aby,ty ) — (Aby + Absz, ty ), w) + (my(by + Aby) —my(by),t1 )i, w)

= (Ady,t; )r,w) Vit €Ty (31)
The same above substituting and subtracting are repeated but from a side with the solutions b, and
b, + Ab, in the weak form of equation (12) and from thither side with the solutions b; and b; + Ab,
in the weak form of the state equation (13), respectively, to obtain
ap (Aby,t; ) + (Aby + Abg, t3 )1, w) + (M3 (b, + Aby) — my(by) , ts )i, (w)

= (Ady,t; )1,0w) V2 ET, (32)
ag (Abs,t3 ) + (Aby — Abs, t3 )1, w) + (m3(bs + Abs) — m3(b3), t3)1,w)
= (Ad3,t3 )1, ow) V3 €Ty (33)

Adding (31),(32) and (33), then substituting t = (z; ,75 ,73) in the resulting equation, yield

a1(4by, 71 ) — (Aby + Abs, 74 )i, w) + a2 (Aby, 75 ) + (Aby + Abs, 75 ), w)

+ a3 (Absz ,z3 ) + (Aby — Ab, , 73 )1, (w) + (M1 (x,by + Aby),74) —my(X,b1), 24 )i, w)

+ ((my(x, by + Aby),72) — my (X, b2) , 72 I, w) + ((M3(x,bs + Abs),z3) — m3(X,b3), 23 ), w)

= (Ady , 73 )1, 0w) + (Ady, 22 )1, 0w) + (Ads , 25 )1, 0w) V= (24,22,73) €V (34)
From the assumptions on m; ,m, ,m5 and by using Proposition (2) in reference [19], the Fréchet
derivative of m;,m,,m5 exists. Hence, from Lemma (1) and the Minkowski inequality, (34)
becomes

a;(Aby, 71 ) — (Aby + Abs , 74 )i, w) + a2 (Aby, 72 ) + (Aby + Abs, 25 )1, w)
az(Abz,73) + (Aby — Aby, 75 ), (w) + (Mg, Aby,74)1,cw) + & (Au)|Au ||(L2(a\p))3

+(ngy,8bz , 72)1, 00 + B2 (BU) A0 | 505 + (Mapy Ab3 28D, c)

+& (H)”E ||(L2(6‘{J))3
i(Ad1 »Z_l?LZ(O‘{—') +(Ad2 » 21, (0%) + (Ad3,73)1,(09) . (35)
where & (Ad) , &,(Ad) and &5(Ad) — 0 and ||Ad || (Lyowy® — 0asAd —0.
Subtracting (30) from (35) , to get
(Bo1b, (b1), by, wy + (Tozb, (b2), Aby)1, w) + (Tosb, (b3), Abs)L, w)
+ Es BB,y + QDB gy + E5 DI,
= (Ady, 21,09 T (Ad2 , 22)1,0w) + (Ad3, 231, 0w) (36)

Now, from the assumptions on T©yq,To2 , To3 » Toa » Tos » Tog, Proposition (2) in reference [19], and
then using the result of Lemma (1), we have

T’o(a + m) — Ty (a) = ffw(“01b1 (X, b1)Ab; + Toap, (X, b2)Ab,
+T03b, (%, b3)Abz)dx; dx,
+ [ow (Toaq, (X, d1)Ady + Tgsq, (X, d2)Ad;
+ Tosd; (%, dg)Adg)dy + e4(Bd)[Ad]| |2
where £,(Ad) — 0, as Ad — 0
By substituting (36) in the above equality, we get
TJo(a + m) — Tg (a) = faw(h :'504d1)Ad1dY + faw(Zz rT'osdz)Adde
+ faw(Zs :"506d3)Ad3dY + ES(E))HH ||(L2(a\p))3 (37)
where
#5(Ad) = &,(Ad) — & (Ad) — &,(Ad) — &;(Ad) — 0, a5 Ad — 0.
But from the definition of the Fréchet derivative of T, , one gets
Tp(d)ad = [, M Ad dy, where W is defined above, (38)
Note: In the proof of the above theorem, we have found the Fréchet derivative for the functional G, ,
so the same technique is used to find the Fréchet derivative for T;and T, .
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Theorem (4):
(@) If assumptions (1) ,(I1), and (I11) are held, then E is convex, and if d € EA is a continuous
classical boundary optimal control vector , then Vv P = 0,1,2 and there exist multipliers &p € R , with

£ =0, >0 Y3_ |5 | =1, so that the following Kuhn-Tucker- Lagrange's Multipliers conditions
are held:

fyp¥g . Addy >0, with Ad=w—d ,v&€E (39a)
wheret,gj = Y50 &p Toaj& 2j = Xp=o p zpj,(forj = 0,1,2, 0 = 4,5,6) in (Theorem (5)),
£,T,(d) = 0, (Transversality conditions) (39b)

(b) (Minimum Principle in point wise weak form): The inequality (39a) is equivalent to

W3 d=ming 5 U3 E ae. in oY (40)

Proof: (a) from Theorem (3) , Tp(d) VP =0,1,2 andatanyd € E) has a continuous Fréchet
derivative. Since the continuous classical boundary optimal control vector de E, is optimal, then by
using the Kuhn-Tucker- Lagrange's Multipliers theorem vV P = 0,1,2, there exist multipliers &p € R
withg, > 0,8 >0, Y5_,|& | = 1, such that

(Zfa:o & Tr—’l,a)(a))L P d)=0 ,veeE (41a)
§To(d) =0 (41b)

Then, from Theorem (3), (41a) with the setting Ad; = e; —d; ,Ad, = e, —d, ,Ad; =e; —d3,
we can rewrite V @ € E as

faq;[(ll + B4q,) Ady + (22 + Tsq,)Ad; + (23 + Ted, )Ad3]dy = 0

where 7 = Y30 & Zjp » Todj = Lp=o & Todj » forj=1,23,0 =456

:>faqJ H%.ﬁdyzo,vgeﬁ,ﬁ:é’—a .

(b) Let {En} be a sequence, dense in Eﬁ ,and S c d¥ be a measurable set, such that

EQx) = {-» .
d(x) , for x not belong in S

Hence (41a) , becomes
fS I/ITa.(En - E)ds >0, forany S c d¥ . Then, by using Theorem (2) in reference [19], we obtain
My (dy—d) =0 ,ae onow.
The above inequality satisfies on dW, except in a subset 0¥, with t(d¥,) = 0, for each n, where T is
a Lebesgue measure, then this equality holds on ¥ except in U, 0¥, with t(U,d¥,) = 0 . But {3n}
is a dense in E, then there exists d € E , such that
I/ITa d= ming g I/ITa e ,ae,on J¥.
6. The Sufficient Conditions for Optimality of the Continuous Classical Boundary Optimal
Control Vector
Theorem (7): In addition to assumptions (1), (I1), and (111), if m; ,m, ,m3,T11,Tq2, T3 are affine
with respect to E,Tm ,B15 , By are affine with respect to d, K1, 52 , K3 are bounded functions for x.
Also, if gp (P=02,0=1234,56) are convex with respect to b;,b,,bs,d;,d;,ds ,
respectively, for each x, then the necessary and sufficient conditions for optimality in the previous
theorem (6), with &, > 0, are sufficient .

Proof: Assume that d € EA , d satisfies the conditions (39a) and (39b).
Let
"5(5) =Y3-0%p ’G(E) = T’B(a)m = Y-8 falp[((Zm + Tpad, )Ad; + (2p2 + Tpsq,)Ad,
+(2p3 + Tpea,)Ad3)]dy
= Jow g (%,21,22,73,d1 ,dz ,d3).Addy 2 0 .

En (%), for x belong in S

and
m; (x,b;) = my;(X)by + my,(x), my(x,bz) = myy (X)b, + my,(X),
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m3(x,b3) = m31(>g)b1 + m3, (%) , and B, (x) are bounded forc = 1,2,3 ,vxe ¥.

Letd = (dq,d,,d3), d (d1 ,d,, 3) be given two continuous classical boundary optimal control
vectors, then the corresponding "state™ solution vector are b= (by,by,b3) ,b = (b1 ,b,,b 3) By
substituting (b,d ) in (12-(9) and multiplying the resulting equations by 6 €[0,1] once, we again the

substitution of the pair (b,d ) in (1)-(6). By multiplying the result by 8 =(1— 8), and finally summing
each pair from the corresponding equations together, we get:

+my; (%) = B1(%) (42a)
¥Zi—0ayj % (6by + 8b,) = 6d, + 6d, (42b)
A,(6b, + 8b,) + (6by + 6b, ) + (8b, + Bb,) + (6bz + 8b3) + my, (x)(6b, + 6b,)
+my;, (%) = 52(%) (43a)
Fi=0azij 5= (6D, +85,) = Ou, + 0d, (43b)
and
A3(0bs + Bb3) + (6by + 8by) — (8b, + 6b,) + (6bz + 6b3) + m3, (x)(6bs + 6bs)
+1n32(x)-— 53(X) (44a)
fi=0azij -— ™ (eb3 + 0b3) = 0d; + 8d; (44b)

Now, if we have the continuous classical boundary optimal control vector d = (d;,d,,ds) withd;, =
Ou; +&d; ,d, = 6u, +6d, and d; = Ou; + ad; . Then, from (42a&b) , (43a&b), and (44a&b) ,
one gets that the "state™ solution vector (b1 = b101 ,b2 = bZd , b3 = b3cl ) with b1 = eb1u +
ebldl = 0b, 4+ 0b; b, = 6b,,, + eb2012 = 0b, + 0b, and by = eb3l13 + eb2013 = 0b; + Ob; are
their corresponding solution, i.e. they satisfy (1-6), respectively . So, the operators d; +— b, d,
d, n—>b2d2 and ds n—>b3d3 are convex-linear with respect to (b;,d;) , (b,,d,) and (bs,ds3),
respectively.
Now, from this result and since Tq;,T12,T13,T14,T15,T1g are affine with respect to
by ,by,bs,d;,d,,ds, respectively, on W, we get that vV x € ¥ , Tp(d) is convex-linear in (b, d).
Also, since (V P=0,2 &V x € ¥) Tp; , Tpz , Tp3 , Tpa , Tps , Tpg are convex with respect to b, , b, , bs,
d, ,d, and d5 respectively, i.e. '[}(a) is convex with respect to band d, then TJ(H) is convex in b and
d i nthe convex set E and has a continuous Fréchet derivative that satisfies
T,_;,’(a) Ad > 0 = T(d) hasaminimumatd , i.e. T(d) < T(W) ,V € € E, then we have

Tp-05 T(d) < Tpoo 8 TE (45)
Now, let E be also admissible and satisfies the Transversality condition, then (45) becomes T, (3) <
Ty(8) ,VEEE,i.e.
d is a classical continuous boundary control vector problem .

Conclusions

The existence and uniqueness theorem for the "state” solution vector of the triple nonlinear partial
differential equations of elliptic type is proved successfully, when the classical continuous boundary
control vector is given. The proof of the existence of the classical continuous boundary control vector,
ruling by the considered triple nonlinear partial differential equations of elliptic type, is demonstrated
with the equality and inequality constraints. The studying of the existence solution of the triple adjoint
equations related with the triple nonlinear partial differential equations of elliptic type is demonstrated
with the equality and inequality constraints. Finally, the theorems of both the necessary and sufficient
conditions for optimality of the triple nonlinear partial differential equations of elliptic type, through
the Kuhn-Tucker-Lagrange's Multiplires with equality and inequality constraints, is demonstrated.

3029



Al-Hawasy and Al-Ajeeli Iragi Journal of Science, 2021, Vol. 62, No. 9, pp: 3020-3030

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Grigorenko, N. L., Grigorieva, E. V., Roi, P. K., and Khailov, E. N. 2019. Optimal control
problems for a mathematical model of the treatment of psoriasis. Computational mathimatics and
modeling, 30(4): 352-363.

Kahina, L., Spiteri, P., Demim, F., Mohamed, A., Nemra, A., and Messine, F. 2018 Application
optimal control for a problem aircraft flight. Journal of engineering science and technology
review, 11(1): 156-164.

Aderinto, Y. O., Afolabi, A. O., and Issa, I. T. 2017. On optimal planning of electric power
generation systems. Journal of mathematics, 50(1): 89-95.

Kryazhimskii, A. V., and Taras'ev, A. M. 2016. Optimal control for proportional economic
growth. Pleiades publishing. Ltd, 293(1): S101-S1109.

Afshar, M., Merrikh-Bayat, F., and Razvan, M. R. 2016. Stepwise solution for optimal Control
problems. Journal of science and engineering, 13(2): 024-037.

Mabonzo,V. D., Ampini, D. 2019. Existence of optimal control for a nonlinear partial Differential
equation of hyperbolic-type. European Journal of Pure And Applied Mathematics, 12(4):1595-
1601.

Kadhem, G.M. 2015. The continuous classical optimal control problem of partial differential
equations. M.Sc. Thesis, Department of mathematics, College of Science, Mustansiriyah
University, Irag.

Al-Rawdanee, E.H.M. 2015. The continuous classical optimal control problem of a non-Linear
partial differential equations of elliptic type. M.Sc. Thesis, Department of mathematics, College of
Science, Mustansiriyah University, Iraq.

Al-Hawasy, J. 2019. The continuous classical boundary optimal control of couple nonlinear
hyperbolic boundary value problem with equality and inequality constraints. Baghdad science
journal, 16(4): 1064-1074.

Kadhem, G.M. 2015. The continuous classical optimal control problem of partial Differential
equations. M.Sc. Thesis, Department of mathematics, College of Science, Mustansiriyah
University, Irag.

Al-Hawasy, J. and Al-Qaisi, S. 2019. The solvability of the continuous classical Boundary optimal
control of couple nonlinear elliptic partial differential equations with State constraints. Al-
Mustansiriyah journal of science, 30(1):143-151.

Al-Hawasy, J. and Naeif, A. 2017. The continuous classical boundary optimal control of A couple
nonlinear parabolic partial differential equations. 1% Scientific international conference, Special
Issus: 123-136.

Al-Hawasy, J. and Ali, Lamyaa 2020. Constraints Optimal Control Governing by Triple
Nonlinear Hyperbolic Boundary Value Problem. Journal of Applied Mathematics, Hindawi, 2020:
1-14.

Al-Hawasy, J. and Jaber, M. 2020 The continuous classical optimal control governing by triple
parabolic boundary value problem. Ibn Al-Haitham for Pure and Applied Science, 33(1): 129-142.
Al-Hawasy, J. and Jasim, D. 2020. The continuous classical optimal control problems of a triple
elliptic partial differential equations. Ibn Al-Haitham for pure and applied science, 33(1):143-151.
Al-Hawasy, J. 2019. Solvability for continuous classical optimal control associated with triple
hyperbolic boundary value problem. Accepted in Ijpam,

Al-Hawasy, J. and Jaber, M. 2019. The continuous classical boundary optimal control Vector
governing by triple linear partial differential equations of parabolic type. Accepted in Ibn Al-
Haitham for pure and applied science.

Borzabadi, A. H., Kamyad, A. V., and Farahi, M. H. G. 2 Optimal Control of the Heat Equation in
an Inhomogeneous Body. J. Appl. Math. and Computing, 15(1-2): 127-146

Chryssoverghi, 1. and Bacopoulos, A. 1993. Approximation of Relaxed Nonlinear Parabolic
Optimal Control Problems. Journal of Optimization Theory and Approximations, 77(1).
Bacopoulos, A. and Chryssoverghi, 1. 2003. Numerical Solutions of Partial Differential
Equations by Finite Elements Methods. Symeom Publishing Co, Athens.

Brezis, H. 2011. Functional Analysis, Sobolev Spaces and Partial Differential Equations.
Springer, New York-USA

3030



