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Abstract

In this article, the numerical and approximate solutions for the nonlinear
differential equation systems, represented by the epidemic SIR model, are
determined. The effective iterative methods, namely the Daftardar-Jafari method
(DJM), Temimi-Ansari method (TAM), and the Banach contraction method (BCM),
are used to obtain the approximate solutions. The results showed many advantages
over other iterative methods, such as Adomian decomposition method (ADM) and
the variation iteration method (VIM) which were applied to the non-linear terms of
the Adomian polynomial and the Lagrange multiplier, respectively. Furthermore,
numerical solutions were obtained by using the fourth-orde Runge-Kutta (RK4),
where the maximum remaining errors showed that the methods are reliable. In
addition, the fixed point theorem was used to show the convergence of the proposed
methods. Our calculation was carried out with MATHEMATICA®10 to evaluate
the terms of the approximate solutions.

Keywords: SIR epidemic model; Semi-analytical method; Daftardar-Jafari method,;
Temimi-Ansari method; Banach contraction method; Maximum error remainder.
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1. Introduction

In the SIR epidemic model, individuals are categorized into three groups; S is the fraction of the
population that is susceptible to disease; | is the fraction of the population that is infectious at any
given time; and R is the fraction of the population that has recovered (removed) after infection.
Numerous methods were studied by many researchers to solve the epidemic SIR model, as reviewed
before [1].

The differential equations play a prominent role in the disciplines of engineering, physics,
economics and biology [2- 6]. The nonlinear problems are difficult to solve analytically and efficient
methods must be used to obtain either approximate or numerical solutions. Mathematical methods in
epidemiology were introduced at the beginning of the 20th century by Ronald Ross [7]. However, the
most influential contribution in this field of research is apparently that made by Anderson Gray
McKendrick in 1927. It was an ideal model for many infectious diseases. The model includes three
types of persons: those at risk of infection, infected individuals with an infection, and those recovering
from the disease [8].

In this paper, three iterative methods will be used to solve the epidemic SIR model and obtain a new
approximate solution. The first method, namely the DJM, was proposed by Daftardar-Gejji and Jafari
in 2006[9- 10]. This method has been used to solve various linear and nonlinear differential equations
[11] and the solution of nonlinear ODEs of second order in physics [12]. The second iterative method,
namely the TAM, was proposed by Temimi-Ansari in 2011 [13] and used to solve different types of
nonlinear ODEs [14], PDEs with the KdV equations [15], and differential algebraic equations (DAES)
[16- 17]. The third iterative method, namely the BCM, was proposed by Daftardar-Gejji and Bhalekar
in 2009 [18], which provided the required solution for various types of nonlinear equations.

We have organized this paper as follows: The SIR mathematical model for epidemic diseases is
shown in section 2. In section 3, the basic ideas of the three iterative methods are given. The
convergence of the proposed methods is presented in section 4. In section 5, the solving model by the
proposed methods is described. The proof of the convergence analysis for the proposed methods is
presented in section 6. The numerical simulations and the error analysis of the approximate solutions
are shown in section 7. Finally, the conclusions are presented in section 8.

2- SIR mathematical model for epidemic diseases

The SIR model contains three categories and cases [19], where t is the independent variable. The

model can be presented as follows:

S =A—pSI+yR—pS; T =pSI—vl—pl;5 = vl —yR - uR. (1)
with the initial conditions

S(0) =1y, I1(0) =1, and R(0) = 13, 2
where A is vulnerable to growth , g is the infection rate, u is the death rate, v is the recovery rate,
and yis the rate of individuals who lost their immunity and became susceptible to infection after
recovery. In this study, consider the following values, based on [19], that guarantee the convergence of
the proposed methods:
n=181=021r=04=3,v=y=05 =01, =0.2. 3)

Consequently, the following diagram shows the SIR model [20]:

JTA wul uR
0 0 T
1 1 1
1 1 1
BsI y
41— S = A R
ED
¥R

Figure 1-The diagram of SIR model.
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3. The basics of the three iterative methods
3.1. The basic concept of the DIM
Consider the following general functional equation, [9, 10]:

S=h+N(S), 4)
where h is a known function and N is the nonlinear term The above equation is solved by the
following series form

S = Z 5;. )
=0

All terms of this series are calculated as:
Stepl: Sy =h,

Step 2: S; = N(Syp),

S, = N(So + 51) - N(So)'

S3 = N(Sp + 51 +S2) = N(Sp + S1), (6)
Sn:N(SO+51+"'+Sn—1)_N(SO+51+"'+Sn—2)r (7)
n=23..
Step 3: By putting it back (7) in (4), we shall obtain Sy +S; + -+ S, =Sy + N(Sg + S; + - +
Sn—2), n=12,. (8)
Ys=s+N( )5 ©)
j=0 j=0
We put Egs. (9) and (10) next to each other and call them (9). Then we have
n-—1
S~ Z S;. (10)
j=0

3.2. The basic concept of TAM
The general differential equation is expressed as follows [21]:

L(S(8)) = N(S(8)) + h(t) =0, (11)
D(s.5)=0 (12)

where t is the independent variable, S(t) is unknown function, h(t) is known function, L and N are
linear and nonlinear terms, respectively.
In the first step, we assuming that S, (t) is a first evaluation for (11) and (12),

L(So()) + h(t) = 0; D (So,22) =0, (13)
and the next approximate S, (t),
d
L(S:(®) + N(So(®) +h() =0; D (51,%) = 0. (14)
We continue to the n + 1 iteration approximation, as follows
L(Sne1(8)) + N(Su(®)) + A(t) = 0; D (Spyq, Z2) = 0, n = 0,1,2. (15)

Each term represents a solution to Eq. (11).

Finally, S(t) = lim,_, o Sp41 (t).

3.3. The basic concept of the BCM [18]

The following successive approximations were considered to solve Eq. (4):
So(t) = h(0),

§1(8) = S () + N(So (D)),

S5(t) = So() + N($: (1)),

Sn(t) = So(®) + N(Sp—1(1)), n=1,2,.. (16)
In the final step, the solution is S(t) = lim,_, S;, (£).
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4. Convergence of the proposed methods

In this section, the convergence for the proposed techniques will be discussed. The convergence for
the DJM can be applied directly by selecting the obtained component terms, but the convergence
between TAM and BCM is shown below.
First, for the TAM:

k-1
L(Bx(®)) + h(t) + N Z B/(t)|=0, k=12,.. 17)
i=0
Second, for the BCM:
k-1
By (t) = By(t) + N Z B.(®)|, k=12 .. (18)
i=0
where,
BO = SO(t)l
By = V(By),
B, =V (B, + By),
By.1 = V(Bo + By + -+ By). (19)

where V represents the following operator. In general, the term W, is the solution for the problem in
the form

where V(By,) = Wy, (t) — Zf=¢ B; (1), k =12, ...... (20)
By using (19) and (20), one can obtain the solution by

The following theorems [22] are carried out for the convergences of DJM, TAM, and BCM methods:
Theorem 1 [22]. "Let V, which is introduced in Eg. (20), be an operator from Hilbert space
Hto H. S,(t); I,(t); R,(t) = Xi=, B; converges; and 3 0< a < 1if |[V[By + By + - + Bj;1|l <
allV[By + By + -+ B;|| (so that ||B; 41|l < «||B;|l) Vi=0, 1,2,...."
The condition for studying the convergence of our proposed iterative techniques is based on the
Banach fixed-point theorem.
Theorem 2 [22]. "If the series S(t); 1(t); R(t) = Xj2, B; converges, then this series represents the
exact solution S; I; R.
Remark

For Eqg. (4), theorems 1 and 2 state that the solution obtained by the DJM given in (9), by the TAM
given in (15), by the BCM given in (16), or obtained by (19), is a convergent solution to the exact
solution under the given condition: 30 < @ < 1 such that ||V[By + By + - + Biz1]ll < a||V[By +
By + -+ Bi]ll (that is ||Bi+1|l < al|B;ll ) Vi=0, 1, 2,..... . In a different way, if the parameters for
each iteration i takes the form:

1Bis1ll [IBisall
il IB] # 0 ——,||Bill # 0
pll = B; I l” for S(¢t); plZ ={ B; I l” } for I(t);
0, IB;ll =0 0, IB:[l = 0
1B+l
—,||B;|| # 0
p =1 B 1Bl for R(¢). (22)
0, IB;ll =0

then X2, B; of Egs. (1) and (2) converges to the exact solution S(¢); 1(¢); R(t) when 0 < p! < 1,Vi
=0,1,2,.....,j=1,2,3.
5- Solving the SIR model by the proposed methods
In this section, the three iterative methods are used to solve the nonlinear differential systems (1)
with the initial condition in (2).
5.1. Solving SIR model by the DIJM
To solve the SIR model (1) and (2) by the DIM:
First, rewrite Eq. (1) as:
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S'(®) = Ny(S®); I'(®) = No(I(D); R' () = N3(R(D)). (23)
where,
N, (S(®)) = A= BS(®I(E) + yR(t) — u S(&); N (1(2)) = BS®I(t) — vI(t) — uI(t);
N3(R(®)) = vI(t) —yR(t) — u R(0). (24)

By integrating Eq. (23) from 0 to t, and using Eq. (3), we have
S(t) = 1.8+ 3t + fot((—ﬁS(w)I(a)) +YR(®) — pu S())dw,
I(t) = 0.2 + [, (BS()I(w) — vI(w) — puI(w))dw,
R(t) =0+ fot((vl(w) — YR(®) + p R(w) )dw, (25)
Then, as in the first step in section 3.1 (i.e Sy = h)

So(t) = 1.8 + 3t;I,(t) = 0.2; Ry(t) = 0.
Sequentially, we applied step 2 in section 3.1

S (8) = Ny (So(0) + $1(0) + -+ 55(0)) = Ny (S0 + 51.(8) + - + 5, 5(®)),
I () = Ny (I8 + H(0) + -+ L) = Ny (o () + H(6) + -+ [, 1 (),

Rur1(6) = Ny (Ro(®) + Ri(t) + -+ Ry(®) = Ny (Ro(®) + Ry (®) + -+ Ry (), (26)
such that the first approximation is
S;(t) = —0.252t — 0.21t?%; I;(t) = —0.048t + 0.06t%; R,(t) = 0.1¢t.

and the second approximation

S,(t) = 5551121077 ¢ + 0.05128t% + 0.0113936 t*> — 0.008748t* + 0.000504t>,
L(t) = 1.38778107'7 t + 0.00072t% — 0.0163936t> + 0.0.008748t* — 0.000504¢°,
R,(t) = 0.042t% + 0.01¢3.

In the following steps we apply step 3 in section 3.1

So() = So(t) = 1.8 + 3t; Iy(t) = Io(t) = 0.2; Ry(t) = Ro(t) = 0. (27)
and,
S1(t) =So(t) + 5,(t) = 1.8+ 2.748t — 0.21t%; I,(t) = I,(t) + [;(t) = 0.2 — 0.048¢t +
0.06t%; R, (t) = Ry(t) + R,(t) = 0.1¢. (28)

S,(t) = So(t) + 51(t) + 5,(t) = 1.8 + 2.748t — 0.15872t% + 0.0113936t3 — 0.008748t* +
0.000504¢°;
L(t) = I,(t) + [,(t) + [,(t) = 0.2 — 0.048t + 0.06072t% — 0.0163936t> + 0.008748t* —
0.000504t5;

R,(t) = Ro(t) + Ry (t) + R,(t) = 0. + 0.1t — 0.042t% + 0.01¢3. (29)
We continue with the iterations to n = 6, for S,,(t), I,,(t) and R,,(t), where these terms are not listed
to ensure brevity.
5.2. Solving SIR model by the TAM
By applying TAM to the equations (1) and (2), we have

Li(S@®) = S'(6); L, (1(0)) = I'(¢); L3(R(®)) = R'(D).

and Ny (S(®) = —(=BSMI®) +YR(®) — 1w S®)); No(1(1)) = —(BSOI(®) —vI(®) -
pI®); N3(R®) = —(vI(t) —yR(®) — k R()).
such that,

hy(t) = 3 = 4; hy(t) = 0; h3(t) = 0. (30)

Then, Eqg. (1) has changed to the following, after using Eq. (15),
L1(Sns1(®) + N1(Sn () + hy(8) = 0, Sp41(0) = 1.8,
L, (In+1(t)) + N, (In(t)) +hy(t) =0, I,4,(0) =0.2,

L3(Rn+1(t)) + N3 (Rn(t)) + h3(t) =0, R,11(0) =0, (31)
and Eq. (3) was used for Eq. (2).
S50(0) = 1.8;1,(0) = 0.2; Ry(0) = 0. (32)

In addition, from (13) the initial approximation is
So(t) = 1.8 +3¢t; I4(t) = 0.2; Ry(t) = 0.
In the second step for the first approximation, we have
S1(®) = Ny(So), $1(0) = 1.8; I1(t) = N,(ly), I1(0) = 0.2; Ri(t) = N3(R,), R1(0) =0 (33)
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Meanwhile, the same result (28) was obtained when going through the same processes (25) to solve
(33).
The same step for finding S,(t), I,(t), and R,(t) are use, which means solving the following
problem

S2(6) = Ny(S1), $2(0) = 1.8,13(t) = No(I1), I5(0) = 0.2,R3(¢) = N3(Ry),R,(0) = 0 (34)
The steps in section 5.1 were used to get S,(t),1,(t) and R, (t), where the result is quite similar to
(29).
Furthermore, we continue to achieve the approximations to n = 6 for S,,(t), I,,(t) and R,,(t).
5.3. Solving SIR model by the BCM
Let us start with the same steps of integration processes given in section (5.1), which implies that we
obtain an integral (25). After following the BCM steps, we re-rewrite (1) as (23), (24) and (25) with
(27)

S'(0) =N (S®); I'(M) = N,(ID); R'() = N3(R(D)). (35)

where,
N1 (S(®) = A= BSOI®) +yR(®) — u S(©); N2 (I(1)) = BSDI(E) — vI(t) = 1(8); N3(R(D)) =
vI(t) — YR(t) — u R(D). (36)

In general, we have
Sn41(8) = Sp(t) + fot Ny (Sn(w))da); L1 () = Ip(t) + fot N, (In(w))dw;

Rns1(0) = Ro(®) + [ N3(Rp())dw. (37)

where, Sy (t) = 1.8 + 3¢t; I5(t) = 0.2; Ry(t) = 0.
Therefore,
S,(t),1;(t) and R, (t) are similar to Eq. (28),
and
S,(t),I,(t) and R, (t) are similar to Eq. (29)
6. Proof of the convergence analysis for the proposed methods
In this section, we prove the convergence analysis for the DJM, TAM and BCM and calculate the
values of p;.
First, for S(t)

LIS LISl L lIssll

= =0.06925 < 1; pl = —0.117813 < 1; pl = —0.121651 < 1;
RN S TAT AT
pl = 1Sall _ 4 140792 < 1; pl _ISsH_ 6 116682 < 1; pi _WSell _ 4 0972425 < 1.
1S3l AT T ISsl
Second, for I(t)
o Al , L]l Il
2 = 006<1; p2 =2 =0619133<1; p2 = = 0.0483844 < 1;
Tl 1141l A
o _ Ll sl sl
p? = =0.139044 < 1; p? = = 0.111496 < 1; p? = = 0.0957768 < 1.
A A A
Finally, for R(t)
IRl IRl [R5l
3 = =0<1;p3= =032<1; p3= = 0.181362 < 1;
"t ”ROH "R IRs | "R IRell
R R
3 Ry 3 5 3 6
= _0.150153 < 1; p3 = = 0118191 < 1; p3 = = 0.0974857 < 1.
I T T 75 = IRl

All values of pi] are less than one, for i=1, 2 ...6, 0 <t< 1. From theorems (1) and (2), the DJM, TAM
and BCM methods provided convergence.
7. The numerical results
In this section, we carry out more numerical calculations and test some of the error indicators to verify
the accuracy of the proposed methods. The residual error function is calculated by [23]
ERy,(t) = Sp— (A= BSuly + YRy — 1 Sp),
ERZ,n(t) =In — (BSpln — vl — 1 1),

ER3,n(t) =Ry — (Wl — YRy — 1L Ry), (38)
and the maximal error remainders are
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MERy , = maxo<r<t |[ERin(®)| ,k =1,2,3

Tables-1-3 show the maximal error remainder MER,,,, values at 0 <¢ < I for the numerical solutions
with the comparison with other iterative methods, such as the ADM [24- 25] and the VIM [26, 27, 28].
It can be seen that the error decreases with increasing the iterations.

Table 1- MER, ,, comparison of the proposed methods solution with those of ADM and VIM methods

for S(t).

n MER; ,by the proposed methods MER; ,byADM MER; ,byVIM
1 0.104269 0.104269 0.291059

2 0.017224 0.016078 0.0471248
3 0.00351953 0.002823 0.00972674
4 0.000523294 0.00051242 0.00162459
5 0.0000619428 0.0000778422 0.000197424
6 6.04317107° 9.02448107° 0.0000196617

Table 2- MER, ,, comparison of the proposed methods solution with those of ADM and VIM methods

for I(¢t).

n MER, , by proposed methods MER, ,byADM MER, ,byVIM
1 0.0152688 0.0152688 0.142291

2 0.000636481 0.000915055 0.00996162

3 0.000171276 0.000549563 0.000323757
4 0.0000243462 0.0000487929 0.0000781984
5 2.9116810°° 4.4301610°° 9.2168710°°
6 2.854151077 1.5256910°° 9.283461077

Table 3- MER;3, comparison of the proposed methods solution with those of ADM and VIM

methods for R(t).

n MER; by proposed methods MER3 ,byADM MER3 ,byVIM
1 0.054 0.054 0.084

2 0.0154852 0.01546 0.0511632

3 0.00330242 0.00332673 0.00992314
4 0.000497864 0.00056013 0.00155806
5 0.0000590103 0.0000733912 0.00018844
6 5.75742107° 7.4984510°° 0.0000187372

We note that the error value of the proposed methods is lower than those of the ADM and the VIM,
which indicates that the proposed methods converged faster. Further investigations were carried out by
comparing the numerical results with the classical Runge-Kutta 4 (RK4) method. In Figures- 2-4, a
good agreement between the proposed methods and RK4 can be observed for S (t), I (t) and R (t).
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Figure 2- Comparison of the RK4 method with the proposed methods solution forS(t).
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Figure 3-Comparison of the RK4 method with the proposed methods solution forI(t).
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Figure 4-Comparison of the RK4 method with the proposed methods solution for R(t).
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Table-4 shows the maximum errors remainder MER, , values at 0 < ¢ < 3.5. The accuracy
deteriorates and MER), ,, increases if the interval of t is extended. If the interval of t is extended, we
actually move away from the starting point. As a result, the accuracy of the new methods is less
reliable than the original value.

Table 4-The maximal error remainder MER, , of SIR by the proposed methods where 0 < ¢ <
35andn =1,2,..6

n MER,,, MER,,, MER;,
1 0.34445 0.5247 0.0735

2 0.691357 0.429229 0.22844

3 0.108786 0.13244 0.0395636
4 0.118443 0.0571519 0.0610343
5 0.0101842 0.00455294 0.0147208
6 0.0109364 0.00369686 0.0072386

8-Conclusions

In this paper, three iterative methods, namely DJIM TAM and BCM, were used to solve the
epidemic model SIR. All the proposed methods provided an approximate solution in a number of
terms. The convergence of the proposed methods is proved on the basis of the Banach theorem. In
addition, the obtained numerical results were compared with the numerical results of the Runge-Kutta
4 (RK4). It is worth to mention that we modified the work previously achieved [27- 28] to solve the
model given in Eq. (1), where good matches were achieved. The proposed methods were used to solve
the nonlinear problem without additional assumptions, in order to work with the nonlinear term which
is used in other methods, such as ADM and VIM.
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