
Qassim and Hussein                                     Iraqi Journal of Science, 2021, Vol. 62, No. 3, pp: 950-960 
                         DOI: 10.24996/ijs.2021.62.3.25 

____________________________ 
*Email: mq63582@gmail.com 

 

950 

 
Numerical Solution to Recover Time-dependent Coefficient and Free 

Boundary from Nonlocal and Stefan Type Overdetermination Conditions in 

Heat Equation 

 
Mohammed Qassim 

1
, M. S. Hussein 

2
 

1
Department of Energy, College of Engineering Al-Musayab, University of Babylon, Babel, Iraq 

2
Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq 

 
 

Received: 21/4/2020                                     Accepted: 30/5/2020 
 

Abstract 

     This paper investigates the recovery for time-dependent coefficient and free 

boundary for heat equation. They are considered under mass/energy specification 

and Stefan conditions. The main issue with this problem is that the solution is 

unstable and sensitive to small contamination of noise in the input data. The Crank-

Nicolson finite difference method (FDM) is utilized to solve the direct problem, 

whilst the inverse problem is viewed as a nonlinear optimization problem. The latter 

problem is solved numerically using the routine optimization toolbox lsqnonlin from 

MATLAB. Consequently, the Tikhonov regularization method is used in order to 

gain stable solutions. The results were compared with their exact solution and tested 

via root mean squares error (RMSE). We found that the numerical results are 

accurate and stable. 

 

Keywords: inverse problem; coefficient identification problem; nonlinear 
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الحل العددي لاسترداد معامل معتمد على الزمن والحدود الحرة من شروط إضافية من نهع ستيفان وغير 
 محلية في معادلة الحرارة

 

 ،*٢، محمد صباح حدين ١محمد قاسم تبن
 الطديب، جامعة بابل، بابل، العخاق ،قدم الطاقة، كلية اليظجسة  ١

 قدم الخياضيات، كلية العلهم، جامعة بغجاد، بغجاد، العخاق ٢
 الخلاصة

ىحا البحث يبحث في استخداد معامل معتطج على الدمن والحجود الحخة لطعادلة الحخارة. تم دراسة ىحه      
 الطدألة تحت شخوط إضافية من نهع ستيفان وشخوط الطاقة/ الكتلة. تكطن صعهبة ىحه الطدألة ان الحل يكهن 

نكيلدهن للفخوقات -غيخ مدتقخ وحداس للضهضاء )الأخطاء( في بيانات الادخال. تم استخجام طخيقة كخانك
الطظتيية لحل الطدألة الطباشخة بيظطا تم حل الطدألة الطعكهسة كطدالة أمثليو عجدية غيخ خطية. الطدالة الأخيخة 

. وبالتالي، من اجل الحصهل على حلهل  MATLABمن   lsqnonlinتم حليا عجديا باستخجام الخوتين 
. تطت مقارنو الحلهل العجدية مع الحلهل الطضبهطة وتم اختبارىا عبخ Tikhonovمدتقخة تم استخجام طخيقة 
 . وجج ان الظتائج العجدية دقيقة و مدتقخة.(rmse)خطا جحر معجل التخبيعات 

1. Introduction  

       The field of inverse problems for heat conduction has very wide applications and physical  
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background. It has been applied in almost all fields of scientific engineering computations, such as 

power engineering, aerospace engineering, biomedical engineering, etc... The mathematical modeling 

used in many current applied problems in science and technology revealed the need for numerical 

solutions of inverse problems in mathematical physics, such as the numerical solution of the two-sided 

Stefan problem [1]. We consider a one-sided free domain problem in one-dimensional space for the 

parabolic heat equation, with non-homogenous Dirichlet boundary condition when the thermal 

conductivity is equal to unity. This problem contains free boundary depending on time only [2, 3]. 

Therefore, the shape of the problem varies with time step marching. In this problem, some unknown 

terms or coefficients are determined by using some additional specified information about their 

solution, like Stefan condition and zero and first order heat moment conditions.  Inverse problems are 

usually difficult to be solved analytically and, therefore, the numerical approaches are created to 

overcome complexities of the analytical methods. In [4], the authors suggested an iterative method for 

solving the inverse problem to determine the right-hand side part (heat source problem) with 

separating variables on spatial variables and time. Determination of time-dependent lowest order 

coefficient in heat equation was investigated in [5]. The authors in [6 - 9] investigated the theoretical 

and numerical aspects of several types of parabolic heat equations, in fixed and free domains of one- 

and two-dimensions for various types of additional information. 

     The paper is organized as follows. Section 2 presents the mathematical formulation of the inverse 

problem with Stefan condition and zero-order heat moment as measurements data, while the unique 

solvability theorems are also stated. In Section 3, a numerical procedure based on the finite difference 

method for solving the direct problem, while the numerical approach for the inverse problem is 

described in Section 4. The results and discussion are addressed in Section 5. Finally, the conclusions 

are highlighted in Section 6.  

2. Mathematical formulation 

     Consider the one-dimensional inverse time-dependent parabolic heat equation [10], 

        ( )    (   )   (   )        (   )                                                ( ) 

where the free domain    *(   )      ( )      +  subject to initial and Dirichlet 

boundary conditions, is written as 

 (   )   ( )              ( )                                                                                  ( ) 
 (   )    ( )           ( ( )  )    ( )                                                          ( ) 

respectively, with the overspecified conditions of Stefan-type and heat moment of zero order,   

  ( )    ( ( )  )    ( )                  ,   -                                                          ( ) 

∫  (   )     ( )             ,   -                                                                       ( )
 ( )

 

 

In order to solve this problem, we change the variables by Landau transformation    
 

 ( )
      to 

reduce the free domain problem (1)-(3) to the following fixed domain problem for the unknown 

solution (   ). Assume that the transformed solution  (   )   (  ( )  ) is in the area with the 

fixed domain    *(   )            +  where the continuous functions   ( )   ( )  and 

  ( ) are given. This model was investigated theoretically in [10] and no numerical solution is 

undertaken, since the purpose of the paper is to find the numerical solution based on reliable 

algorithm. The unique solvability of the direct problem is guaranteed by the continuity of the 

coefficients        and . Now, the problem in the fixed domain has the following form: 

   
 

  ( )
    (

 ( )    ( ) 

 ( )
)    (  ( )  )   (  ( )  )     (   )      ( ) 

                                     (   )   (  ( ))                                                                         ( ) 

          (   )    ( )                (   )    ( )                                                    ( ) 

            ( )  
  (   )

 ( )
    ( )               ,   -                                                          ( )  

 ( )∫  (   )   
 

 

    ( )          ,   -                                                                        (  ) 

Definition 1. Consider a solution to the inverse problem (6)-(10), the triplet class  ( )  ( )  (   )  

(  ,   -   ,   -      ( ̅ ))  and  ( )      for   ,   - that satisfies equations (1)-(5) [10]. 
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Theorem 1: Assume that the following conditions hold, [10] 

1.      ,   -   for         and   ( )             for   ,   -  

   (,    )  ,   -)  (   )     for   ,    )   ,   -  also    ,    )  ( )      for 

  ,    )  
2.     ,   ( )-         (,    -  ,   -)   where   (   )   ( )    ( )  
       ,   -       

   
     ,   -   ( )

     0   (   ( )) ( )      ,   -  ( )         ,   -  ( )1
  

3. The compatibility conditions are expressed as: 

 ( )    ( )     ( ( ))    ( )  

   ( )   ( )  ( )   (   ) ( )   (   )     ( )  
   ( ( ))   ( )  ( ( ))   ( ( )  ) ( ( ))   ( ( )  )     ( )  

 ( )  *   ( )  (  ( )    ( ))  ∫ ,   ( )   (   ) ( )   (   )-  
 ( )

 

+ (  ( )    ( ))
  

  

Then it is possible to identify a time    (   -  which is determined by the input data such that there 

exists a (local) solution to problem (1)-(5) for   (   )       

Theorem 2: Assume that the following conditions are satisfied; 

1.         (,    )  ,   -)  
2.  ( )        for   ,    )  and  (   )     for   (,    )  ,   -)  
3.   ( )              for   ,   - and   ( )    ( ) for   ,   - 
Then the solution of the problem (1)-(5) is unique. 

3. Solution of the direct problem 

     In this section, let us consider the direct initial boundary value problem (IBVP) (6)-(8), where the 

functions  ( )  (   )  ( )  and   ( )       are known and the solution  (   ) is to be computed. 

In addition to some required information (9)-(10)  to solve the problem, we employ the Crank-

Nicolson finite difference scheme. 

3.1 Discretization of the problem 

The discrete form of the problem (6)-(8) is as follows. We divided the domain    (   )  (   ) 
into   and   intervals of equal step lengths of     and      where the uniform space and time 

increments are    
 

 
        

 

 
 , respectively. We denote the solution at the node point 

(   )          (     )  (  )       (     )        and  (     )        where                 

     ̅̅ ̅̅ ̅̅       ̅̅ ̅̅ ̅     
In order to apply the CN-scheme for equation (6), we simply assume the right-hand side as follows: 

 (            )  
   

  ( )
 .

 ( )   ( ) 

 ( )
/    (  ( )  )   (  ( )  ) (   )              (  )  

Therefore, equation (6) can be approximated, in which the right hand-side of the heat conduction 

equation is expressed in one-half by the temperature function      and, in the second-half, by the 

temperature function        , -  
           

  
 

 

 
(           )                                                                      (  ) 

with the initial and boundary conditions 

                   (    )   (   ( ))                ̅̅ ̅̅ ̅̅                                                (  ) 

 (    )    (  )      (    )    (  )                ̅̅ ̅̅ ̅                                      (  ) 
where, 

     
 

  (  )

                 

    (
 (  )   (  )  

 (  )
)

           

   
                     ̅̅ ̅̅ ̅̅       ̅̅ ̅̅ ̅     (  )  

Now we substitute       and         in equation (12) and get   

               [        ]                  

            [        ]               
  

 
(           )                                   (  ) 

where 
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                                            (  ) 

     Generally, the three values on the right hand of (16) are known, whereas values on the left hand are 

unknown. If we divide the y-interval into M quad intervals, we have      interval mesh points per 

time step, due to the available data from boundary conditions. Then, for     , i.e. at initial time  and 

            , equation (17) gives a linear system of the     unknown values 

                   in the first time step in terms of the initial value                     as the 

Dirichlet boundary values     (   ( ( ))     (   ( ( ))   Similarly for the next time step   

        and so on, that is, for each time step   . For        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   the above difference equation (10) 

can be reformulated as (   )  (   ) system of a linear equation of the from 

                                                                                                                 (  )                          

where      (                           )
  
       (                    ) 

   and A and B 

are (   )  (   ) as follows: 
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3.2 Example for the direct problem  

     Consider the case where the unknown coefficients are given, so we have a direct problem with the 

input data being as follows; 

 ( )            (   )                ( )       
                               (   )         ( )                                                                         (  ) 

 (   )          ( )  (     ) (       ( ))           ( )    ( )        ( ) 
using Landau transformation, 

  
 

 ( )
 

 

   
, 

we have the transformed quantities 

 ( )       
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 (   )     (   )     

 (   )          ((   ) )  (   (   )   ) .       ((   ) ) /

        ((   ) )     ((   )  )        (((   ) ))  

                                 (   )         ((   ) )                                                          (  )  
Therefore, the input data will be  

 ( )         ( )      ( )   (   )            ( )   (   )         (   ), 

  ( )    ( )  
 

 ( )
  (   )        (   )    (   )                              (  ) 

  ( )   ( )∫  (   )   (   )(
 

 

 

 
    

   ( (   ))

 (   )
)                               (  ) 

Equations (21) and (22) can be computed numerically using the following finite difference 

approximation formulas and the trapezoidal value for integral. 

  (  )  
 (  )   (    )

  
 

                    

 (  ) (  )
             ̅̅ ̅̅ ̅       (  ) 

  (  )  
 (  )

  
(           ∑     

   

   

)             ̅̅ ̅̅ ̅                              (  ) 

 
Figure 1-The absolute error graphs for the solution of the direct problem (6)-(8) for various mesh 

sizes     *           +  
 

Table 1-The exact and numerical values for the desired output   ( ) compared at various time nodes 

and mesh sizes     *           +. 

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 T 

1.6330 1.4516 1.2545 1.0469 0.8441 0.6470 0.4641 0.3052 0.1722 M=N=10 

1.6188 1.4463 1.2566 1.0575 0.8561 0.6611 0.4800 0.3199 0.1872 M=N=20 

1.6138 1.4437 1.2560 1.0582 0.8583 0.6641 0.4834 0.3234 0.1904 M=N=40 

1.6124 1.4428 1.2557 1.0584 0.8587 0.6648 0.4842 0.3243 0.1912 M=N=80 

1.6119 1.4425 1.2555 1.0584 0.8589 0.6650 0.4845 0.3245 0.1915 exact 
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Table 2-The exact and numerical values for the desired output   (t) compared  at various time nodes 

and mesh sizes     *           +. 

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 T 

5.4784 4.8022 4.2150 3.7051 2.2615 2.8745 2.5350 2.2352 1.9676 M=N=10 

5.4723 4.7971 4.2109 3.7019 2.2592 2.8728 2.5340 2.2347 1.9678 M=N=20 

5.4708 4.7958 4.2098 3.7011 2.2586 2.8724 2.5338 2.2346 1.9678 M=N=40 

5.4704 4.7955 4.2096 3.7009 2.2584 2.8723 2.5337 2.2346 1.9678 M=N=80 

5.4703 4.7953 4.2095 3.7008 2.2584 2.8723 2.5337 2.2345 1.9364 exact 

 

     Figure-1 presents the absolute graph of interior points for various mesh sizes     
*           +  From this figure, it can be seen that the mesh independence is achieved. In addition, 

the convergence of the numerical solution toward an exact solution and the excellent agreement were 

obtained. From Tables- 1 and 2, one can clearly notice the convergence of numerical results for    and 

   for exact ones as the number of discretization increased.   

4. Numerical approach for the inverse problem 

     In this section, we aim to find the numerical solution for the inverse problem described in section 2. 

We focus on finding stable reconstructions for unknown coefficient  ( ) and unknown free boundary 

 ( )    of the one-dimensional heat equation, together with temperature distribution  (   )  or 

 (   )  satisfying the problem given by equations (1)-(5) or the transform inverse problem (6)-(10). At 

initial time, i.e,      we can use input data to obtain values for b(0) and h'(0), where h(0) is given by 

the problem setting. These values will be considered as initial guesses in the process of solving the 

problem. In order to solve this problem, we recast the inverse problem as a nonlinear minimization 

problem. In other words, we minimize the gap between the measured data and the computed solution. 

Since the problem is ill-posed, we adapted Tikhonov regularization method to find a stable and smooth 

solution. The zero-order Tikhonov regularization functional can be constructed from the over 

determination conditions (9)-(10) as: 

 (   )     ( )  
  (   )

 ( )
   ( ) 

 
   ( )∫  (   )     ( )

 

 

 
 
     ( ) 

 

     ( ) 
                                                                                                                           (  ) 

or, in a discredited form as  

 (   )  ∑(  (  )  
  (    )

 (  )
   (  ))

 
 

   

    ∑( (  )∫  (   )     (  )
 

 

)

  

   

   ∑  
 

 

   

   ∑  
 

 

   

                                                                                                                            (  ) 

     where            are regularization parameters and should be determined according to a 

suitable selection strategy. The norm is taken in the space   ,   -  Also  (   ) solves (6)-(10) for 

given h and b. The minimization of the objective functional (26), subject to simple physical bound 

constrain       is accomplished using lsqnonlin routine from MATLAB optimization toolbox. This 

routine does not require providing the gradient of the objective function [11]. This routine aims to find 

the minimum of a sum of squares by starting from initial guesses. Moreover, within lsqnonlin, we use 

the trust region reflective (TRR) algorithm that is described in [12,13, 14], which is also based on the 

interior-reflective- Newton method. Each iteration includes a large linear system of equations whose 

solution, based on preconditioned Conjugate Gradient method (PCG), allows a regular and sufficiently 

smooth decrease of the objective functional (26). During the numerical simulation, we use the 

parameters of the routine lsqnonlin, as follows; 

 Maximum number of iterations       (number of variables)     
 Maximum number of objective function evaluation      (number of variables)   
 Solution tolerance (SolTOL)          
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 Objective function tolerance (FunTOL)        
The inverse problem (1)-(5) is solved subject to both exact and noisy measurements (4) and (5), 

respectively. The noisy data is numerically simulated by adding random errors as follows; 

         
  (  )    (  )                       ̅̅ ̅̅ ̅                                                                        (  ) 

 

  
  (  )    (  )                       ̅̅ ̅̅ ̅                                                                           (  ) 

     where       are random vectors generated from a Gaussian normal distribution with a zero mean 

and standard deviations of     and     respectively, given by 

          ,   -|  ( )|              ,   -|  ( )|                                      (  )   

where p is the percentage of noise. We use the MATLAB builtin function normrnd to generate the 

random variables    (    )      ̅̅ ̅̅ ̅  and     (    )      ̅̅ ̅̅ ̅  as follows:,  

           (      )  ,            (      ). 

5. Results and discussion  

     In this section, we present numerical results for the recovery of time-dependent coefficients  ( ) 
and  ( )    and the temperature (   ) , in the case of noisy and exact data (9)-(10). To assess the 

accuracy of the numerical solution, we utilize the RMSE which is defined as: 

    ( )  *
 

 
∑.          (  )        (  )/

 
 

   

+

 
 

                                                           (  ) 

    ( )  *
 

 
∑.          (  )        (  )/

 
 

   

+

 
 

                                                            (  ) 

In our simulation, we fix      
5.1 Example for the inverse problem 

          Consider the inverse problem (1)-(5) with unknown coefficient b(t) and unknown free 

boundary  ( ), with the following given input data: 

 ( )  (   )    ( )          ( )      (   )  

 (   )     (   )(   )   ( )     (   )  
One can easily remark that the conditions of Theorems 1 and 2 are hold and, therefore, the local 

existence and uniqueness of the solution are guaranteed. In fact, the exact solution for this problem is 

given by: 

 (   )      (   )      ( )               ( )                                                    (  ) 
and the transformed solution is given by  

 (   )      (  (   ) )         ( )                ( )                                    (  ) 
     Let us fix the mesh size to be          which gives us reasonable and accurate results (see 

direct problem output   ( )  and   ( )  Tables 1 and 2, respectively). 

            In the beginning of our investigation, we start with a noise free case, i. e.     in equation 

(29). Figure 2 shows the objective function (26) values as a function of the number of iterations for the 

no regularization applied;          From this figure, the speed convergence minimization toward 

local minima can be observed with a very low value of order  (     ) in 11 iteration. Whilst, the 

associated numerical results are presented in Figures 3 and 4. From these figures, one can clearly see 

the overlap between the exact and numerical solution for unknown functions  ( ) and b(t), which 

indicates an excellent agreement with     ( )        and     ( )                      
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Figure 2-The objective function (26), where no noise and no regularization are applied. 

 
Figure 3-The exact and numerical solutions for  ( ), where no noise and no regularization are 

applied. 

 
Figure 4-The exact, initial guess, and numerical solutions for   ( ) , where no noise and no 

regularization are applied. 

 

     Next, we perturb the measured data with         noise, added as in equations (27) and  (28) for 

   and    , respectively. In the case where no regularization is applied, i.e.         , we obtain an 
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accurate and stable solution for  ( )  while the solution for  ( )            . This is expected since the 

problem under investigation is ill-posed and any slight error in the input data can lead to enormous 

errors in the output solutions. Consequently, we will not present results for this case. However, in 

order to overcome this difficulty, a kind of regularization / stabilization should be applied. We employ 

Tikhonov regularization method by adding a penalty term (     
       

 ) to the objective 

functional (25). We fix      because it seems that the inverse problem is ill-posed only in  ( )   
Various  regularization parameters    *              + are applied in order to gain a stable 

solution. Trial and error strategy of parameter selection is adapted. We deduce that the appropriate 

selection for      is       which meets the lowest rmse values for  ( ), as demonstrated in Figures 5 - 

7 and Table 3. Also, it is reported here, but not listed, that the numerical solution for the transformed 

solution  (   ) has an excellent agreement with exact one.  

 
Figure 5-The regularized objective function (26), where          noise is included in the input 

data, with a regularization    *              +. 
 

 
Figure 6-The exact and numerical solutions for  ( ), where         noise is included in the input 

data, with a regularization    *              +. 
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Figure 7-The exact and numerical solutions for  ( ), where         noise is included in the input 

data, with a regularization    *              +. 
  

Table 3-Numerical information for various regularization parameters with          noise 

Regularization parameters,      

                              0    

401 401 39 38 38 41 12 No. of iterations 

33366 33366 3320 3237 3237 3486 1079 
No. of function 

evaluations 

9.09873 9.4E-1 9.4E-2 9.4E-3 9.5E-4 9.5E-5 1.8E-23 

Function value 

(26) at final 

iteration 

0.0050 9.5E-4 2.3E-4 2.3E-4 2.46E-4 2.54E-4 2.5E-4 rmse(h) 

0.1782 0.0804 0.0528 0.0694 0.1307 0.1674 0.1737 rmse(b) 

13234.3 16083.5 1350 1359.72 1334.91 414.74 439 
Computational 

time in sec. 

 

6. Conclusions  

     The problem of the determination of time-dependent coefficients in one-dimensional heat equation 

was investigated. In order to find the solution of the inverse problem, a quasi-solution was sought, 

which looked at the minimization of the gap between the measured data and numerically simulated 

data. However, the problem was still ill-posed and sensitive for error (noise) inclusion in the input 

data. This implied that we need to apply a regularization method to stabilize the solution, which was 

ensured by using Tikhonov regularization method. The presented results are accurate and stable.  
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