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Abstract

This paper investigates the recovery for time-dependent coefficient and free
boundary for heat equation. They are considered under mass/energy specification
and Stefan conditions. The main issue with this problem is that the solution is
unstable and sensitive to small contamination of noise in the input data. The Crank-
Nicolson finite difference method (FDM) is utilized to solve the direct problem,
whilst the inverse problem is viewed as a nonlinear optimization problem. The latter
problem is solved numerically using the routine optimization toolbox Isgnonlin from
MATLAB. Consequently, the Tikhonov regularization method is used in order to
gain stable solutions. The results were compared with their exact solution and tested
via root mean squares error (RMSE). We found that the numerical results are
accurate and stable.
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1. Introduction
The field of inverse problems for heat conduction has very wide applications and physical

*Email: mg63582@gmail.com
950



Qassim and Hussein Iragi Journal of Science, 2021, Vol. 62, No. 3, pp: 950-960

background. It has been applied in almost all fields of scientific engineering computations, such as
power engineering, aerospace engineering, biomedical engineering, etc... The mathematical modeling
used in many current applied problems in science and technology revealed the need for numerical
solutions of inverse problems in mathematical physics, such as the numerical solution of the two-sided
Stefan problem [1]. We consider a one-sided free domain problem in one-dimensional space for the
parabolic heat equation, with non-homogenous Dirichlet boundary condition when the thermal
conductivity is equal to unity. This problem contains free boundary depending on time only [2, 3].
Therefore, the shape of the problem varies with time step marching. In this problem, some unknown
terms or coefficients are determined by using some additional specified information about their
solution, like Stefan condition and zero and first order heat moment conditions. Inverse problems are
usually difficult to be solved analytically and, therefore, the numerical approaches are created to
overcome complexities of the analytical methods. In [4], the authors suggested an iterative method for
solving the inverse problem to determine the right-hand side part (heat source problem) with
separating variables on spatial variables and time. Determination of time-dependent lowest order
coefficient in heat equation was investigated in [5]. The authors in [6 - 9] investigated the theoretical
and numerical aspects of several types of parabolic heat equations, in fixed and free domains of one-
and two-dimensions for various types of additional information.

The paper is organized as follows. Section 2 presents the mathematical formulation of the inverse
problem with Stefan condition and zero-order heat moment as measurements data, while the unique
solvability theorems are also stated. In Section 3, a numerical procedure based on the finite difference
method for solving the direct problem, while the numerical approach for the inverse problem is
described in Section 4. The results and discussion are addressed in Section 5. Finally, the conclusions
are highlighted in Section 6.

2. Mathematical formulation

Consider the one-dimensional inverse time-dependent parabolic heat equation [10],

Up = Uy + D(Ouy +c(x, Hu+ f(x,t), (x,t) €Qr, (D
where the free domain Qr = {(x,t):0 < x < h(t), 0 <t < T}, subject to initial and Dirichlet
boundary conditions, is written as

u(x,0) = @(x), 0<x<h(0) (2)
u(0,t) = uq(t) u(h(t),t) = uy(t), 0<t<T, 3)

respectively, with the overspecified conditions of Stefan-type and heat moment of zero order,
h’h((t)) + u, (h(t),t) = ps(t), t€[0,T], 4)

t
-f u(x, t)dx = py(t), t €[0,T]. (5
0

In order to solve this problem, we change the variables by Landau transformation y = %t) t=t to

reduce the free domain problem (1)-(3) to the following fixed domain problem for the unknown
solutionv(y, t). Assume that the transformed solution v(y,t) = u(yh(t),t) is in the area with the
fixed domain Q; = {(y,t):0 <y < 1,0 < t < T}, where the continuous functions ¢(x),u;(t) and
u,(t) are given. This model was investigated theoretically in [10] and no numerical solution is
undertaken, since the purpose of the paper is to find the numerical solution based on reliable
algorithm. The unique solvability of the direct problem is guaranteed by the continuity of the
coefficients b, ¢, f andh. Now, the problem in the fixed domain has the following form:

1 b h'
o=+ ()t + SR, OV fOR@,0, 510 € Cr (6)
v(y,0) = p(yh(0)), 0<y<1, (7)
v(0,t) = uq(t), v(L,t) =u,(t), 0<t<T, (8)
R’ LY 0,T 9

O©+2E2= @, teloT] ©)

1
h(o) f o(y,0dy = pg(t), t€[0,T] (10)

0

Definition 1. Consider a solution to the inverse problem (6)-(10), the triplet class h(t), b(t), v(y,t) €
(c*[0, T] x C[0,T] x C**(Q7)) and h(t) > 0, for t € [0, T] that satisfies equations (1)-(5) [10].
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Theorem 1: Assume that the following conditions hold, [10]

1 uj€ c1[o0,T], fori =1,2,3 and y;(t) > 0,i = 1,2,3,fort € [0,T],

f ecC(0,+w) x[0,T]), f(x,t) =0, for x € [0,+),t € [0,T] also ¢ € c[0,+),p(x) = ¢,, for
x € [0, +),

2. @ € C?[0,h(0)], f,c € H*°([0,H,] x [0,T]), where € (0,1), u; (t) # py(t),

for t € [0, T]; where

maxeeo,r) Mz (t)

Cy min [mi"(o,h(o))fp(x)' MiNeeqo,r k1 @®), MiNeeio,r) U2 (t)]
3. The compatibility conditions are expressed as:
9(0) = 1, (0), @(h(0)) = u(0),
¢"(0) + b(0)¢'(0) + c(0,0)9(0) + £(0,0) = 1’1 (0),
¢"' (h(0)) + b(0)¢'(h(0)) + c(h(0),0)¢(h(0)) + f(h(0),0) = u',(0),

h(0) _
b(0) = |w'4(0) + (1(0) — H'(0)) — f [¢" (x) + ¢(x, 0)p () + £ (x, o>]dx] (12(0) — 1, (0))
0

Then it is possible to identify a time T, € (0, T], which is determined by the input data such that there

exists a (local) solution to problem (1)-(5) for (x,t) € Q.
Theorem 2: Assume that the following conditions are satisfied;
1. f,c€C¥([0,+x) x [0,T]);
2. @) =¢y>0 forx €[0,+),and f(x,t) =0, for x € ([0, +) x [0,T])
3. w()>0,i=1,23, fort € [0,T] and u, (t) # p,(t) fort € [0,T]
Then the solution of the problem (1)-(5) is unique.
3. Solution of the direct problem

In this section, let us consider the direct initial boundary value problem (IBVP) (6)-(8), where the
functions b(t), c(x,t), ¢(x) and w;(t),i = 1,2 are known and the solution v(y, t) is to be computed.
In addition to some required information (9)-(10) to solve the problem, we employ the Crank-
Nicolson finite difference scheme.
3.1 Discretization of the problem
The discrete form of the problem (6)-(8) is as follows. We divided the domain Q = (0,1) x (0,1)
into M and N intervals of equal step lengths of Ay and At, where the uniform space and time

increments are At = % and Ay = % , respectively. We denote the solution at the node point
(l,]) as v; ; ='U_(yi, tj),b(tj) = bj 'C(J’i' t]) =Cj and f(yl"tj) = fl,] where Yi = lAy, tj =jAt,
i=0,M, j=0,N.

In order to apply the CN-scheme for equation (6), we simply assume the right-hand side as follows:

v b(t)+h'(t)
Qt,7,v,vy,vyy) = 125+ (RS2 vy + cOR(O), v + fORO, O, 0, €@ (11)

Therefore, equation (6) can be approximated, in which the right hand-side of the heat conduction
equation is expressed in one-half by the temperature function v;; and, in the second-half, by the

temperature function v; ;4 [8],

H0:

Vijgr— Vi 1
% =3 (Qij + Qijs1) (12)
with the initial and boundary conditions

vy, 0) = e(y;h(0)), i=0,M, (13)
v(0,) = m(g) v(Lg) =w(y),  j=0N, (14)
where,

1 Vigj—20i Vi b(t;)+h'(t;)yi\ Vierj=Vi-1; o e .
Ql,] - hz(tj) Ayz + ( h(t]‘) 20y + Cl,jvl,j +ﬁ.,] y L= 0; Mr ] - OIN (15)

Now we substitute Q; ; and Q; ;41 in equation (12) and get
—A;j41Vic1je1 + 1= Bij + 1vij — Ci jr1Visrj+1
At
= AyjVic1j + [1+Byjia]vij+ Cijvigyj + > (fij + fijs1) (16)
where
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At At At At At At

Ai_jzfyz—mbj, Bi,j :?Ci,j—A—yz, Ci'jzw+mbj. (17)

Generally, the three values on the right hand of (16) are known, whereas values on the left hand are
unknown. If we divide the y-interval into M quad intervals, we have M — 1 interval mesh points per
time step, due to the available data from boundary conditions. Then, for j = 0, i.e. at initial time and
i=1,......,M—1, equation (17) gives a linear system of the M —1 unknown values
V11, V21 eoe e ,Vy—-11 In the firsttime step in terms of the initial value vgg,vg1,...., V95, as the
Dirichlet boundary values v, (= p1(t(0)), var1 (= p2(t(0)). Similarly for the next time step,j =
1,2, ..., and so on, that is, for each time step t;. For j = 0, N — 1, the above difference equation (10)
can be reformulated as (M — 1) x (M — 1) system of a linear equation of the from

Av™t =By +d (18)

where v™* = (vy 141,V j41, .....,vM_LjH)tr, V™ = (0, Vg jy e e o ,vy-1,;)"" and A and B
are (M —1) x (M — 1) as follows:

_1_ Bi,j+1 _Ci,j+l 0 0
- A2,j+1 1- Bz,j+1 - C2,j+1
A= . . .
0 B AM ~2.j+1 1- BM—Z,j+1 _CM—Z,j+1
L 0 0 0 - AM—l,j+1 1- BM—l,j+1_
1+B,,, G, 0 0 (.
A, 14B,, C,, 0 0
B . . . : .
AM—Z.j 1+ BM—z,j _CM—Z,j+1
0 0 0 Aus;  1+By,
_ At _
Ai,j+1V0,j+1 +?(fl,j + fl,j+1)
At
?(fz,j + f2,j+1)
0
d= :
0
At
?(fM—Z,j + fM—Z,j+1)
At
E(fi,j + £ 10) +CynjaVi

3.2 Example for the direct problem
Consider the case where the unknown coefficients are given, so we have a direct problem with the
input data being as follows;
b(t) =e7t, c(x,t) =t?+x?
u(x,t) = et + cos?(x)
flx,t) = et + 2cos?(x) — (t% + x2) (et + cos?(x)) + 2 et cos(x) sin(x) — 2 sin?(x)
using Landau transformation,

h(t) =1+t
(19)

_ X _ X
y - m - mu
we have the transformed quantities
b(t) = et
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c(y,t) = t? + (1 +t)%y?,
f,0)=e'+2cos?((1+1)y) —(*+ (1 +0)?%y?) (et + cos?((1+t)y) )
+2e "t cos((1 + D)y) sin((1 + £) y) — 2 sin®(((1 + t)y))
v(y,t) = e + cos?((1 + t)y), 20)
Therefore, the input data will be
@y) =et +cos?(y), u;(t) =v(0,t) =et +1, py(t) =v(1,t) =et +cos?(1+1t),

us(t) = h'(t) + Lvy(l, t)=1-—2cos(1+t)sin(1+1t), 21

h(t)
1 1 in(2(1
1@ =h(® | vG,0dy = A+ O+ et +%) : (22)
0

Equations (21) and (22) can be computed numerically using the following finite difference
approximation formulas and the trapezoidal value for integral.

us(t) = h(t;) = h(tj-1) | 4Vu-1j = V-2 — 3Vm, =T, (23)
3\ At 2(8y)h(t)) ’ T
M-1
_ M) 2 i=T,N 24
ua(t) =N (vos tom;t vij |, i=1 (24)
i=1
<1072 <1073
2 22
=
g 5 g .,;":::0:.
= = 1 y /;';::0:0’ P
=2 = oSN,
2, 2, .,,;;';':?::ff:fo‘:t::‘:&:“\\\ W
o o e o SRRSO
022 = 0.5
y t

Absolute error.
o
[4,] L

-0

Figure 1-The absolute error graphs for the solution of the direct problem (6)-(8) for various mesh
sizesM = N € {10,20,40,80}.

Table 1-The exact and numerical values for the desired output u;(t) compared at various time nodes
and mesh sizes M = N € {10,20,40,80}.

T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
M=N=10 | 0.1722 | 0.3052 | 0.4641 | 0.6470 | 0.8441 | 1.0469 | 1.2545 | 1.4516 | 1.6330
M=N=20 | 0.1872 | 0.3199 | 0.4800 | 0.6611 | 0.8561 | 1.0575 | 1.2566 | 1.4463 | 1.6188
M=N=40 | 0.1904 | 0.3234 | 0.4834 | 0.6641 | 0.8583 | 1.0582 | 1.2560 | 1.4437 | 1.6138
M=N=80 | 0.1912 | 0.3243 | 0.4842 | 0.6648 | 0.8587 | 1.0584 | 1.2557 | 1.4428 | 1.6124

exact 0.1915 | 0.3245 | 0.4845 | 0.6650 | 0.8589 | 1.0584 | 1.2555 | 1.4425 | 1.6119
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Table 2-The exact and numerical values for the desired output w4 (t) compared at various time nodes
and mesh sizes M = N € {10,20,40,80}.

T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
M=N=10 | 1.9676 | 2.2352 | 2.5350 | 2.8745 | 2.2615 | 3.7051 | 4.2150 | 4.8022 | 5.4784
M=N=20 | 1.9678 | 2.2347 | 2.5340 | 2.8728 | 2.2592 | 3.7019 | 4.2109 | 4.7971 | 5.4723
M=N=40 | 1.9678 | 2.2346 | 2.5338 | 2.8724 | 2.2586 | 3.7011 | 4.2098 | 4.7958 | 5.4708
M=N=80 | 1.9678 | 2.2346 | 2.5337 | 2.8723 | 2.2584 | 3.7009 | 4.2096 | 4.7955 | 5.4704

exact 1.9364 | 2.2345 | 2.5337 | 2.8723 | 2.2584 | 3.7008 | 4.2095 | 4.7953 | 5.4703

Figure-1 presents the absolute graph of interior points for various mesh sizes M =N €
{10,20,40,80}. From this figure, it can be seen that the mesh independence is achieved. In addition,
the convergence of the numerical solution toward an exact solution and the excellent agreement were
obtained. From Tables- 1 and 2, one can clearly notice the convergence of numerical results for u; and
U, for exact ones as the number of discretization increased.

4. Numerical approach for the inverse problem

In this section, we aim to find the numerical solution for the inverse problem described in section 2.
We focus on finding stable reconstructions for unknown coefficient b(t) and unknown free boundary
h(t) > 0 of the one-dimensional heat equation, together with temperature distribution u(x,t) or
v(y, t), satisfying the problem given by equations (1)-(5) or the transform inverse problem (6)-(10). At
initial time, i.e, t = 0, we can use input data to obtain values for b(0) and h'(0), where h(0) is given by
the problem setting. These values will be considered as initial guesses in the process of solving the
problem. In order to solve this problem, we recast the inverse problem as a nonlinear minimization
problem. In other words, we minimize the gap between the measured data and the computed solution.
Since the problem is ill-posed, we adapted Tikhonov regularization method to find a stable and smooth
solution. The zero-order Tikhonov regularization functional can be constructed from the over
determination conditions (9)-(10) as:

1, 1
F(hb) = | W)+ ”yh((t)t) ~ @[+ 10O [ v0.0dy = w@ I + IO
0

+ B,Ib()I1?, (25)
or, in a discredited form as
N

2 N 2 N
1,t; 1
pny = Y (w29 ey b (h(tj) | vy - m(t;)) By ) 12
. 2,

= h(t;) =
N

+ B, Z b?; (26)
=

where 8; = 0,i = 1,2 are regularization parameters and should be determined according to a
suitable selection strategy. The norm is taken in the space L?[0,T]. Also, v(y,t) solves (6)-(10) for
given h and b. The minimization of the objective functional (26), subject to simple physical bound
constrain h > 0, is accomplished using Isgnonlin routine from MATLAB optimization toolbox. This
routine does not require providing the gradient of the objective function [11]. This routine aims to find
the minimum of a sum of squares by starting from initial guesses. Moreover, within Isgnonlin, we use
the trust region reflective (TRR) algorithm that is described in [12,13, 14], which is also based on the
interior-reflective- Newton method. Each iteration includes a large linear system of equations whose
solution, based on preconditioned Conjugate Gradient method (PCG), allows a regular and sufficiently
smooth decrease of the objective functional (26). During the numerical simulation, we use the
parameters of the routine Isgnonlin, as follows;

e Maximum number of iterations = 10° x (number of variables) .
e Maximum number of objective function evaluation= 108 x (number of variables) .
e Solution tolerance (SolTOL)= 10710,
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e  Objective function tolerance (FunTOL)= 10~1°,
The inverse problem (1)-(5) is solved subject to both exact and noisy measurements (4) and (5),
respectively. The noisy data is numerically simulated by adding random errors as follows;

us () = us(t)) +e;,  j=1N, (27)

ue () =ma(t) + €25,  j=1TN, (28)
where €4, €, are random vectors generated from a Gaussian normal distribution with a zero mean
and standard deviations of g; and a,, respectively, given by

01 = p X maxeepo s (O); 02 = p X maxeepo,rlpa(®)l, (29)
where p is the percentage of noise. We use the MATLAB builtin function normrnd to generate the
random  variables €, = (€,;),j =0,N and € =(e;)j=0N as follows:,

€, = normrnd (0,04,N) , €, = normrnd (0, o1, N).
5. Results and discussion

In this section, we present numerical results for the recovery of time-dependent coefficients b(t)
and h(t) > 0and the temperature (y,t) , in the case of noisy and exact data (9)-(10). To assess the

accuracy of the numerical solution, we utilize the RMSE which is defined as:
1

N 2
T .
rmse(b) = Nz (bnumerlcal(tj) _ bexact(tj))Z ’ (30)
j=1
N 2
r numerical exact 2
rmse(h) = NE (h (tj) —h (tj)) , (31)
j=1

In our simulation, we fix T = 1.
5.1 Example for the inverse problem

Consider the inverse problem (1)-(5) with unknown coefficient b(t) and unknown free
boundary h(t), with the following given input data:

o(x)=1+x)? @) =1+10t,  uy(t) =10t + (2 +t)?
fl,t) =8+3(1+t)(1 +x), Us(t) =14+2@2 +1),

One can easily remark that the conditions of Theorems 1 and 2 are hold and, therefore, the local
existence and uniqueness of the solution are guaranteed. In fact, the exact solution for this problem is
given by:

u(x,t) =10t + (1+x)?, b(t)=-1—-t, h(t)=1+t, (32)
and the transformed solution is given by
vy, t) =10t + (1 + (A +t)y)?%, b)=-1-t, h()=1+t (33)

Let us fix the mesh size to be M = N = 40, which gives us reasonable and accurate results (see
direct problem output u5(t) and u,(t), Tables 1 and 2, respectively).
In the beginning of our investigation, we start with a noise free case, i. e. p = 0 in equation
(29). Figure 2 shows the objective function (26) values as a function of the number of iterations for the
no regularization applied; 8, = B, = 0. From this figure, the speed convergence minimization toward
local minima can be observed with a very low value of order 0(10722) in 11 iteration. Whilst, the
associated numerical results are presented in Figures 3 and 4. From these figures, one can clearly see
the overlap between the exact and numerical solution for unknown functions h(t) and b(t), which
indicates an excellent agreement with rmse(h) = 4.9 — 5 and rmse(b) = 7.9 — 4, respectively.
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10"

Objective function

102

10° L ) L L L )
0 2 4 6 8 10 12

Number of iterations
Figure 2-The objective function (26), where no noise and no regularization are applied.

2271

exact

—g— numerical .>'1=.;'2=0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3-The exact and numerical solutions for h(t), where no noise and no regularization are
applied.

e
)\E\ﬂ\s\ ——exact
-1.1 “\\ —o— Numerical M=N=40

a2} \

1.3F e
-1.4 N

-1.5

b(t)

16+
1.7 S\ﬂ\ﬂ\

1.8 N

19 \\S\
-2 I ! I | I ‘\E\ﬂ\&

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

Figure 4-The exact, initial guess, and numerical solutions for b(t), where no noise and no
regularization are applied.

Next, we perturb the measured data with p = 0.01% noise, added as in equations (27) and (28) for
U3 and py , respectively. In the case where no regularization is applied, i.e. 8; =, = 0, we obtain an
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accurate and stable solution for h(t), while the solution for b(t) is unstable. This is expected since the
problem under investigation is ill-posed and any slight error in the input data can lead to enormous
errors in the output solutions. Consequently, we will not present results for this case. However, in
order to overcome this difficulty, a kind of regularization / stabilization should be applied. We employ
Tikhonov regularization method by adding a penalty term (B;lIhl? + B,1IblI?) to the objective
functional (25). We fix B, = 0 because it seems that the inverse problem is ill-posed only in b(t).
Various regularization parameters S, € {107%,1073,1072} are applied in order to gain a stable
solution. Trial and error strategy of parameter selection is adapted. We deduce that the appropriate
selection for B is 1073, which meets the lowest rmse values for b(t), as demonstrated in Figures 5 -
7 and Table 3. Also, it is reported here, but not listed, that the numerical solution for the transformed
solution v(y, t) has an excellent agreement with exact one.

Regularized objective function

10
10° 10’ 102 10°
Number of iterations
Figure 5-The regularized objective function (26), where p = 0.01% noise is included in the input
data, with a regularization g, € {107%,1073,1072}.

225 ——exact
2 L +:’f=10.4
18l —o— =10
= —*— 3=102
E1 6

0.2 0.4 0.6 0.8 1

t
Figure 6-The exact and numerical solutions for h(t), where p = 0.01% noise is included in the input
data, with a regularization 8, € {107%,1073,1072}.
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b(t)

2.2 - ' ' ' '

0 0.2 0.4 0.6 0.8 1

t
Figure 7-The exact and numerical solutions for b(t), where p = 0.01% noise is included in the input
data, with a regularization g, € {107%,1073,1072}.

Table 3-Numerical information for various regularization parameters with p = 0.01% noise
Regularization parameters, 8; = 0
S 0 10°° 107> 10~* 1073 1072 1071
No. of iterations 12 41 38 38 39 401 401

No.of function | 1029 | 3486 | 3237 | 3237 | 3320 | 33366 | 33366
evaluations
Function value

(26) at final 1.8E-23 | 9.5E-5 9.5E-4 9.4E-3 9.4E-2 9.4E-1 | 9.09873

iteration
rmse(h) 2.5E-4 2.54E-4 | 2.46E-4 2.3E-4 2.3E-4 9.5E-4 0.0050
rmse(b) 0.1737 0.1674 0.1307 0.0694 0.0528 0.0804 0.1782

Computational

L 439 414.74 | 133491 | 1359.72 1350 16083.5 | 13234.3
time In sec.

6. Conclusions

The problem of the determination of time-dependent coefficients in one-dimensional heat equation
was investigated. In order to find the solution of the inverse problem, a quasi-solution was sought,
which looked at the minimization of the gap between the measured data and numerically simulated
data. However, the problem was still ill-posed and sensitive for error (noise) inclusion in the input
data. This implied that we need to apply a regularization method to stabilize the solution, which was
ensured by using Tikhonov regularization method. The presented results are accurate and stable.
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