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Abstract 

     Petrography, diagenesis, and facies analyses as well as the depositional 

environments of the late Campanian-Maastrichtian sequence in southwestern Iraq 

are studied in five keyholes. The sequence incorporates parts of the Hartha, 

Shiranish and Tayarat Formations. The Hartha Formation comprises creamy and 

organodetrital dolomite, grey dolomitic marl, and evaporites. The Shiranish 

Formation is composed of grey marl and claystone, whereas the Tayarat Formation 

is composed of grey ash, along with tough and fossiliferous dolomitic limestone 

inter-bedded with grey mudstone layers and/or wisps. Several diagenetic processes 

affected the sequence, such as neomorphic replacement, dissolution, dolomitization, 

and sulphate development. Some of these processes obliterated the primary textures. 

The late Campanian-Maastrichtian sequence consists of three microfacies 

(Dolomitic Intraclastic Limestone, Dolomitized Biomicrite, and Biomicrosparite 

Microfacies) and two lithofacies (Mudrock and Sulphates-Rock Lithofacies), in 

addition to Fine- to Medium-Crystalline Dolomite Lithotype. 

The Hartha Formation is evaporitic, possibly with supratidal sabkha deposits. The 

overlying Tayarat and Shiranish Formations reflect deposition in a warm tropical to 

subtropical reefal and open marine conditions, as deduced from faunal assemblages.  

Some effects of deep marine condition are evident by the presence of Shiranish 

facies. The sequence represents deposition in the central reef- fore reef area. The 

absence of isolated back-reef lagoon facies suggests that the reef was patchy without 

isolation of water in the middle shelf region. However, at the top of the sequence, 

i.e. at the end of the Cretaceous Period, restricted lagoons seem to have dominated 

the studied succession. 

 

Keywords: Campanian, Maastrichtian, Hartha, Shiranish, Tayarat Formations, 

Depositional environment, Diagenesis.  
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 –لستأحخ و بيئات التخسيب لتتابع الكسباني ا اتو تحميل الدحش يةدراسة بتخوغخافية و تحهيخ  تتس      

جدء من تكهين ىارثة و تكهيشي  السجروس يزم التتابع . آبار في جشهب غخبي العخاق الساستخختي في خسذ
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شخانر و طيارات. يتكهن تكهين ىارثة من دولهمايت ذو لهن كخيسي  و فتات عزهي و مارل دولهميتي 
يتكهن من مارل و صخهر طيشية رمادية, و يتكهن تكهين طيارات من فرمادي و متبخخات. اما تكهين شخانر 

 جخ طيشي رمادي.تشاوب لحجخ جيخي دولهميتي رمادي صمج و يحهي عمى الأحافيخ مع طبقات أو حدم من ح
تأثخ التتابع بالعجيج من العسميات التحهيخية مثل الأحلال التذاكمي و الأذابة و الجلستة و تكهين الستبخخات مسا 

 .الأولية أدت أحياناَ الى تذهيو الأندجة
الساستخختي ىي:  –تتابع الكسباني الستأحخ  في و سحشتين صخخيتيين ثلاث سحشات دقيقةبالأمكان تسييد 

رايت اة الحجخ الجيخي الفتاتي الستجلست السجيخية و سحشة البايهمكخايت السجيخية سحشة البايهمايكخوسبسحش
الأنهاع الرخارية ذات التبمهر الشاعم  فزلًا عنوسحشة الرخخ الهحمي و سحشة الرخهر الكبخيتاتية السجيخية 

 و الستهسط.
تخسبات سبخة فهق مجية, أما التخسيب لتكهيشي طيارات و شخانر   KH-6يعج تكهين ىارثة الستبخخاتي في بئخ

تأثيخ البحخ العسيق  حيجية وتستج لمبحخ السفتهح. يجل المحين يعمهانو فيه في بيئة دافئة مجارية الى شبو مجارية
غياب سحشة ل يتو و أن الحيج كان رقعي وذلكسحن شخانر. يبين التتابع بانو تخسبات لسخكد الحيج و جب

للاغهن الخمفي بحيث لم يؤدي الى عدل السياه في مشطقة وسط الخف, و عمى اية حال و في أعمى التتابع, ا
 أي نياية العرخ الكخيتاسي,  ساد السذيج تخسبات اللاغهنات السحرهرة.

 Introduction 

     A comprehensive project was executed during the late seventies and early eighties of the last 

Century by the Iraq Geological Survey directorate concerning the hydrogeology of the Southern 

Desert of Iraq. Eleven keyholes and two subsidiary boreholes (Fig. 1) were drilled to various depths 

(full-core drilling) ranging from 120 to 600 m. Both keyholes and boreholes penetrated three 

successions, namely late Campanian-Maastrichtian, Paleogene, and Neogene successions.  A 

preliminary study was carried out on the collected samples in terms of Petrology (Basi, 1984) [1,] 

while Palaeontology and Geochemistry were studied by others and presented as internal reports. 

Finally the work was compiled, discussed, and interpreted in a final report [2, 3]. 

 
Figure 1- Location map of the studied area 
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     A summary of the knowledge about Iraq‟s stratigraphic studies on the region was then compiled [4, 

5] and a series of isopach maps for a set of formations ranging from the Yamama to the Fatha 

(previously named Lower Fars) were constructed [6]. Subsequent to this work, the amount of works 

on the area was increased by the Iraq Geological Survey Teams [1, 2, 3, 7, 8, 9], which resulted 

mainly in producing maps (scale 1:100 000) accompanied with unpublished reports. In general, few 

researches on the late Campanian-Maastrichtian sequence were conducted [e.g. 10, 11, 12]. 

     The aim of this study is to investigate the facies and deduce the depositional environments of the 

late Campanian-Maastrichtian sequence. In addition, we aimed to study the diagenesis, especially the 

rocks of the studied sequence, in general, which have suffered a high degree of diagenetical 

modification.  

Geological Setting 
    The study area represents part of the Southern Desert Subzone of the Arabian Inner Platform of the 

northern part of the Arabian Plate [13]. It has suffered a remarkably slight deformation. The structural 

elements are almost limited to very gently-lying sedimentary strata, mostly of carbonates, mudrock, 

and evaporite successions. The strata incline with very gentle gradient towards the Mesopotamian 

Alluvial Plain. Some of the folds can be attributed to tectonic activities whereas others are expected to 

be secondary structures. They are solution collapse structures which might have been initiated by 

tectonic features, such as faults. The strata were then bent by flexuring and subsequent differential 

settlement and readjustment [14].  

     The studied succession is equivalent to the upper part of Tectonostratigraphic Megasequence AP 9 

(TMS AP9) [15]. The studied sequence incorporates the upper part of the Hartha Formation (upper 

Campanian-Maastrichtian), the Shiranish Formation, and the Tayarat Formation (Maastrichtian). 

Darmoian [16] introduced the name Qurna Formation instead of Shiranish Formation, since it is a lens 

of Shiranish facies in the Tayarat Formation. Correlation diagrams are given in Figure-2. 

     The Hartha Formation is reached in KH-6 in the Ansab area only. The formation was first 

described by Rabanit in 1952 [4] and, later, Owen and Nasr [17] selected an interval in the B.P.C well 

Zu-3 as its type section. In the type section, the Hartha Formation is about 128 m of organodetrital 

glauconitic limestone with grey marls and green shale. The limestone is strongly dolomitized in 

places. Hartha Formation conformably overlies Sa‟adi Formation in the type, locality, and 

disconformably that underlies the Shiranish (Qurna Formation). The Hartha Formation changes 

westwards into dolomite and anhydrite. The evaporite nodules and beds are noticed at the top of the 

sequence in KH-6. The thickness of the penetrated part is about 16.4 metres. It is distinguished by 

alternation of evaporitic layers with creamy organodetrital dolomite grey dolomitic marl. Claystones 

are present at many intervals (drilling depths 580.0, 582.0, and 589.0 metres). Bioturbations and algal 

laminations are noticed in the dolomite. Tiny gastropods are not uncommon.  

    The Tayarat Formation was introduced by Henson in1940 in an unpublished report for about 30 

metres of rubbly, porous, white, buff and pink, rather chalky, fossiliferous, recrystallized, locally 

sandy limestone, about 37 km south of Rutbah town [4]. The Qurna Formation was introduced by 

Rabanit in 1952 in an unpublished report [4] and later, Owen and Nasr [17] selected an interval in the 

B.P.C well Zu-3 as its type section. In the type section, the Qurna Formation is about 112 metres of 

buff or ash grey globigerinal marl, sometimes dolomitic, and occasional marly limestone beds with 

rich microfauna. Similar globigerinal marls of the same age make up part of the much thicker 

Shiranish Formation. However, the name Shiranish was adopted here. The Tayarat and Shiranish 

Formations in the studied area are found in subsurface sections only. The former was reached in five 

keyholes, namely Kh-3, at Al-Salman depression, Kh-4 at Takhadid, Kh-5 at Salhobiya village, Kh-7 

at Abu Radham, and Kh-6 at Ansab. In the Kh-5 at Salhobiya, the penetration took place using rock-

bit (cuttings). Only at Kh-6 the whole sequence is penetrated. In KH-6, the Tayarat deposits comprise 

a lens of Qurna. In the other keyholes, only the uppermost few metres are penetrated. Considering the 

recent results and the previous works of the oil companies, it is concluded that the Tayarat Formation 

interfingers with the Shiranish Formation, especially in the western part of the study area. 
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Figure 2- a) Map showing the cross section lines along which the late Campanian-Maastrichtian 

formations are correlated. b) Correlation along section line A-Aʹ. c) Correlation along section line B-B' 

, and d) Correlation along section line C-Cʹ (from Tamar-Agha and Al-Sagri, 2015) [12]. 

 

Materials and Methods 

     Five of the keyholes drilled for the hydrogeology of the Southern Desert of Iraq project have partly 

penetrated the late Campanian-Maastrichtian sequence, namely KH-3 at Al-Salman depression, KH-4 

at Takhadid area, Kh-5 at Salhobiya, KH-6 at Ansab area, and KH-7 at Abu Radham area. The core 

representing the sequence was described by the authors and 132 core samples were taken from them. 

All samples were thin sectioned and stained with Alizarin red S for petrographic study. During this 

work, Folk‟s classification [18] is generally adopted, although, on few occasions, reference is made to 

Dunham‟s terminology [19]. 
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Petrography and Diagenetic History 
    Several diagenetic processes took place in this succession since the sediments were laid down. In 

some areas, such as KH-6 at Ansab and KH-3 at Al-Salman depression, the sediments were partially 

dolomitized, which allowed the study of the preceding processes. In KH-4 at Takhadid area, however, 

pervasive dolomitization has almost eradicated all imprints left by those processes which preceded the 

dolomitization. The following diagenetic processes seem to have operated after deposition of the 

carbonate and/or during the accretion of the carbonate build-up. Deposition seems to have taken place 

in a carbonate platform with patchy distribution of carbonate build-up. The carbonate build-up seems 

not to have yielded a back-reef lagoon. The diagenetic processes in their expected order are: 

1) Neomorphic replacement - The original sediments are believed to constitute both carbonate mud 

and allochems. The petrographic descriptions showed that the carbonate mud was transformed into 

micritic matrix. The allochems are represented chiefly by wide spectrum of faunal assemblage. The 

tests and shells of these skeletal fragments are made of aragonite, high- and low-magnesian calcite 

[20].  

    These sediments were transformed to limestone by inversion of aragonite mud and the aragonite in 

the skeletal components to calcite. Besides, it involves the recrystallization of the calcite mud and 

calcite fibres into calcite mosaic. Hence, both pseudomorphic and non-pseudomorphic replacements 

are encountered. This terminology explains the origin of common dolomite fabrics [21, 22]. In the 

present work, the term pseudomorphic replacement is used to describe the inversion of aragonite 

and/or recrystallization of calcite as volume for volume replacement and maintaining the original 

skeletal architecture. Non-pseudomorphic replacement incorporates those processes whereby the 

original architecture is demolished by the growth of new fabrics. The original pattern is expected to 

have gone into solution followed by the precipitation of a calcite mosaic. 

    These processes are collectively grouped under the umbrella of cementation and can form by the 

fresh-water activity and, to a lesser extent, in the marine conditions. Also, the original textures of the 

skeletal particles, which are formed of aragonite, are commonly not preserved [23, 24]. Instead, a 

drusy mosaic of calcite is formed. Friedman [23] added that those skeletal particles which are formed 

of high- to low-magnesian remain without any significant change in their original texture. 

2- Dissolution: Voids are not uncommonly found in ancient limestones. Some of these voids remain 

empty whereas others are filled with secondary material. The voids, in general, are produced by 

dissolution of aragonite, high- and low-magnesian calcite in natural water. The latter is the least 

soluble mineral than the rest [23, 26]. Voids in the form of biomolds are abundant in the carbonates of 

the late Campanian-Maastrichtian sequence. Since the deposits in question are partly reefal, high 

primary porosity is expected. Secondary porosity was also developed during the course of diagenesis. 

The voids produced as a secondary porosity are mostly formed by simple dissolution of skeletal 

fragments. The dissolution seems selective as some fossils are now represented by biomolds or the 

moulds are filled by cement. A clear imparity is noticed in the dissolution of matrix and allochems. 

The matrix is hardly affected by dissolution. This may be attributed to the difference in the 

composition of the different constituents. 

     The matrix is most probably consisted of low-magnesian calcite during the process of dissolution. 

The skeletal fragments on the other hand seem to have constituted high- magnesian calcite, aragonite 

and, to a lesser extent, low-magnesian calcite [20, 25, 26]. The low-magnesian calcite is more resistant 

to dissolution. Two kinds of vugs are found, having the following setting: 

a) Some samples showed the presence of skeletal fragments filled with drusy and blocky cement, 

formed of fibrous calcite and biomolds embedded in micritic matrix. Such textures can possibly be 

formed if the dissolution preceded the other processes, i.e. early diagenetical dissolution. By such 

process, the aragonitic shells and tests which are formed of low-magnesian calcite and aragonite are 

more susceptible to solution than the rest. Later neomorphic processes led to fossils having their 

internal architecture preserved. The moulds produced by the early stage diagenesis either remained 

empty or were filled later by drusy and blocky cement. 

b) Other samples demonstrated the presence of dolomitized (finely crystalline) skeletal fragments and 

biomolds embedded in finely- and medium-crystalline dolomitized matrix. Such rocks can possibly be 

formed by one of the following manners: 

 Selective dolomitization, whereby shells, tests, and matrix formed of low-magnesian calcite are the 

least affected, as they commonly refrain from metasomatic replacement by dolomite. 



Tamar-Agha and Basi                                  Iraqi Journal of Science, 2021, Vol. 62, No. 3, pp: 897-911 
 

902 

 Dissolution preceding the dolomitization, i.e. late diagenetic dolomitization. Accordingly, the 

skeletal particles which previously refrained from dolomitization are more susceptible to dissolution 

and thus leaving an empty space (mould) instead.  Another way to explain these features is the whole-

sale dolomitization of the limestone described in item (a) above. 

Either of these procedures can be deduced. The authors are not totally committed to either of these 

procedures, rather they are relying on the intuition they tend to believe in the first explanation. 

3) Dolomitization: This process is undoubtedly the most dominant and ubiquitous process amongst all 

other processes. The entire succession in KH-4 at Takhadid, for example, was affected by 

dolomitization. There are many attempts to summarize most models for dolomitization to fit into one 

of the following genetic classifications: penecontemporaneous dolomitization (the synsedimentary 

replacement of sediments), early-diagenetic dolomitization (replacement after consolidation controlled 

predominantly by surface generated fluids), and late-diagenetic dolomitization (replacement after 

consolidation or burial by reacting fluids generated in the subsurface) [24- 29].  

In the late Campanian-Maastrichtian sequence, the presence of dolomitized skeletal fragments is 

usually taken as a sufficient proof to disqualify the primary origin of dolomite (Figure- 3). The 

'primary' origin is taken here to mean the direct precipitation of dolomite by sea water, unlike the 

sense inferred by Nicholas and Siberling [25]. The dolomite has a patchy distribution. In KH-3 and 

KH-6, primary limestone and dolomitic limestone are encountered. In KH-4, the entire sequence is 

dolomitized. This kind of distribution further emphasizes the secondary origin of these dolomites. The 

dolomitization front commonly cuts across the bedding planes of unaltered limestones. The dolomite 

crystals are fine to medium crystalline (0.06 to 0.25 mm), zoned, and commonly showing equigranular 

rhombic texture, i.e. mosaic texture. Some rocks show anhedral, equigranular texture, i.e. xenotopic 

texture. Relics of the obliterated bioclasts can still be observed. Considering the evidence collected, 

this kind of dolomitization is late diagenetic (Figure- 3). The late diagenetic dolomitization can be 

produced during the migration of the intrastratal solution containing dissolved ions [26]. In general, 

the dolomites in the late Campanian-Maastrichtian sequence can be correlated with Mattes and 

Mountjoy‟s [27] dolomite types 2 and 4, i.e. mosaic and white sparry dolomite, respectively. 

 
Figure 3- Photomicrographs showing selective dolomitization. The skeletal fragments usually remain 

unaltered. Both samples are from Tayarat Formation, KH-4 at Takhadid. Plane polarized light x35. 

 

4) Sulphate development: The sulphates grow as interlocked crystals of gypsum and anhydrite in the 

pore space representing the intraparticle voids, such as the spaces in the fossils, or even replacing 

some of the pre-existing dolomite (Figure- 4). The gypsum is usually found in the periphery whereas 

anhydrite occupies the centre. The crystals are usually radial or bladed (Figure- 5). The gypsum and 

anhydrite are frequently found to contain carbonate inclusions as remains. Gypsum usually replaces 

anhydrite with the destruction of its original fabric.  



Tamar-Agha and Basi                                  Iraqi Journal of Science, 2021, Vol. 62, No. 3, pp: 897-911 
 

903 

 
Figure 4-Sulphate nodules in the Tayarat Formation, diameter of the core is 11 cm. a) and b) – A 

solitary nodule of gypsum and anhydrite (G) grown in voids in organodetrital dolomitic limestone 

(calcirudite) with rudists (R) and Loftusia sp. (L) – a cross section, from KH-6 at Ansab (sample a – at 

drilling depth 383.4 m and sample b – at drilling depth 382.0 m). c) Celestite rosettes in organic 

dolomitic limestone from KH-6 at Ansab, at drilling depth 385.1 m. 

 
Figure 5-Photomicrographs of gypsum nodules in the Tayarat Formation from KH-4 at Takhadid: a) 

Fibrous and radial blades of gypsum and anhydrite crystals with finely crystalline dolomite rhombs. 

Some of the dolomite rhombs are inclusions in the evaporite, reflecting its replacive origin. Plane-

polarized light X45. b) Fibrous and radial blades of gypsum and anhydrite. The light area is anhydrite 

(A) which generally occupies the central part of the nodule, whereas the grey is gypsum (g) which is 

found at the periphery (Crossed Nicols X45). 
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Facies Analysis 

     The term „biogenic‟ is used here frequently, especially in the dolostone. It is meant to indicate the 

presence of fossils and avoid the strict terminology given by Folk to distinguish fossiliferous (1-10 %) 

and the biomicrite or biosparite (10 %) fossils. During the course of the thin section studies, the biota 

recognized is a number of invertebrate fossils such as pelecypods, gastropods. and bryozoans, as well 

as other microfossils such as nummulites, miliolids, ostracods, a1gae etc. The classification of the rock 

samples into microfacies was attempted but, on some occasions, it was not possible. The cause is 

obviously the intensive destruction imposed by the physicochemical alterations. Instead, the rock 

samples were grouped into “lithotype” which are considered as a function of diagenesis rather than 

depositional environment. The use of terminology [18, 19] and interpretations relied on several 

sources [20, 28, 29, 30, 31].  

    The late Campanian-Maastrichtian sequence is characterized by five facies and severely 

dolomitized intervals which cannot be assigned to the original facies and thus lump-summed under a 

class 6, called here lithotype. These facies and lithotypes are:  

1) Dolomitic Intraclastic Limestone Microfacies: This facies is exceptional in the studied area and is 

restricted to the Tayarat Formation only. It can be classified as dolomitic Intrabiosparite and dolomitic 

Intrabiomicrite (Figure-6). It can also be referred to as Intraclastic Packstone-Grainstone Rudite 

Microfacies, using Dunham‟s terminology. 

 
Figure 6-Dolomitic Intraclastic Limestone Lithofacies representing reef talus from the Tayarat 

Formation, KH-6 at Ansab (drilling depth is 355.7 metres and width of core is 11 cm). 

 

     This lithofacies comprises endogenetic rock fragments of varying sizes, reaching up to 20 

centimetres in diameter, embedded in a primary clay micritic matrix (Figures- 6). The intraclasts are 

generally cobble size with angular and sharp boundaries with enveloping matrix. The intraclasts are 

intrabasinal products and are essentially reworked fragments of penecontemporaneous lithified lime 

deposits (Figure-6). 

     The limestone fragments are formed of sparsely to densely fossiliferous biomicrosparite 

(wackestone). The fossils are normally diversified, being of various types of forams, dasycledacean 
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algae, echinoids, fragments of corals, some rudist fragments, pelecypods, brachiopods, and ostracods 

(Figures- 4a and b). Some phosphatic grains are also present. Dolomite is present in the fragments in 

the form of disseminated rhombs. Pyrite can often be found in small patches or framboids. The 

claystone forms an enveloping matrix which is usually densely penetrated with rhombs of dolomites. 

Fossils are rare, represented by various forams and echinoids. Some phosphatic fragments and pyrites 

are also present. The claystone is characterized by pigmentation of organic substances. The intraclasts 

are seemingly intrabasinal products and are essentially reworked fragments of penecontemporaneous 

lithified lime deposits. The lithification of the clasts is inferred from their sharp boundaries. 

It is believed that this facies represent reef talus. The clasts were formerly, more or less, a continuous 

bed, as evident from the various structures on the fragments (such as mottling, bioturbation etc.). The 

continuous bed is seemingly torn up and transported for short distances, as indicated by their angular 

outlines, either by current or subaquatic slumps. Undoubtedly, a critical slope is needed in the source 

area onto which these clasts rolled down. Fragments were accumulated at the toe of their parent areas 

by an action of one or more of the following factors: storms, floods, catastrophic waves, earthquakes 

etc. [28, 29, 30]. The amount of clay/carbonate matrix is considerably low and it is interpreted as an 

indication of separate phase of sedimentation. After the deposition of the very coarse clasts, the fine 

material was kept in suspension and deposited mostly beyond the zone of fragments‟ deposition. A 

quiescence episode followed the first turbulent one. During this rather calm period, which probably 

lasted much longer time, the fine clayey material was deposited even in the area of fragments 

accumulation. Some of the clay particles had infiltrated into the interstices of the conglomerates [29, 

30, 31]. 

2) Dolomitized Biomicrite Microfacies: This microfacies is found at many levels. The allochems are 

dominated by fossils with some minor content of peloids and intraclasts. The fossil content is 

extremely variable. At certain level in KH-6 at Ansab area (drilling depths 392-452 metres), the rocks 

can be assigned to as biomicrudite (or packed foraminiferal micrudite), i.e. coquina (Figure-( 7 and 8). 

 
Figure 7-Photomicrograph of dolomitized biomicrite from the Tayarat Formation, borehole KH-4 at 

Takhadid. The groundmass is dolomite and clayey admixtures whereas the skeletal fragments are 

partly calcite. a) Dolomitized biomicrite (plane polarized light x35). b) Dolomitized biomicrite 

showing both drusy and blocky cements. The drusy cement surrounds the tests both externally and 

internally. The blocky cement in the small fossil (X) did not completely fill the internal gap (Plane-

polarized light and x40). 
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Figure 8-Packed biomicrudite from the Tayarat Formation, KH – 6 at Ansab (drilling depth 494.4 m). 

Biomoldic porosity is high. Diameter of the core is 11 cm. 

 

The fossils are diversified, including foraminifers, bryozoan, coralline algae, pelecypods, and 

gastropods (Figure- 4a and b). The allochems are embedded in micrite and/or clay/micrite matrix. The 

clay admixtures are extremely variable, hence this facies range from pure carbonate to marl. Zoned 

fine- to medium-crystalline dolomite rhombs and mosaic are frequent. At certain instances, the 

dolomitization is so intensive that the original texture is almost completely obliterated. However, 

“ghost” textures helped at many instances to deduce the original texture. 

     Rich fauna indicate normal salinity and an open circulation sea. Abundance of micrite and clay 

admixture reflects quieter sheltered water, where  the „fines‟ could settle and the organic debris were 

buried intact, irrespective to size or fragility. It was hence believed that there was some partial 

protection, possibly caused by discontinuous barrier of coral or bryozoan reef or shoal. These deposits 

seem to have suffered from late diagenetic processes which can be deduced from the nature of the 

dolomite crystals, its discursive distribution, and the high porosity of the succession. 

3) Biomicrosparite Microfacies: This microfacies incorporates rocks which comprise both allochems 

and calcite cement. They are consanguineous with Dunham‟s wackestone. The allochems are 

represented by a variety of fauna of various sizes, such as echinoids, gastropods, pelecypods, forams, 

coral, algae etc., with occasional biomolds (Figures-4 and 9). 

The cement is represented mostly by dolomitic microspar. The microspar is 8 to 20 microns in 

diameter. This microfacies represents field lithofacies named calcsiltite. Solitary and scattered zoned 

dolomite crystals are commonly found floating in the microsparite background. The dolomite crystals 

are found on some occasions clustered to form a mosaic texture. Porosity of the rocks of this 

microfacies is variable. Some rocks are massive, i.e. with porosity ranging from 0 to 2 %. The pores 

are generally in the form of mesovug and intraparticle. The porosity in other rocks, occurring less 

frequently, ranges from 2 to 10 %. The pores are mostly in the form of mesovug and biomolds. 

    The depositional environment inferred for this microfacies is believed to be the same as that of the 

biomicrite microfacies. Microspar is restricted to recrystallization (neomorphism) of micrite. The 

neomorphic enlargement of cement seems to have taken place prior to the dolomitization. 

4) Mudrocks Lithofacies: It is a subordinate in the late Campanian-Maastrichtian sequence, consisting 

of shale, claystone and marl layers. Three sublithofacies are recognized in this lithofacies, which are 

described below:  
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4a) Black bituminous shale sublithofacies: This sublithofacies is present near or at the top of the late 

Campanian-Maastrichtian sediments. In KH-3 and KH-4, it is located at the contact with the 

Paleogene Umm Er Radhuma Formation. In KH-6 and KH-7, it is found at many levels in the few 

metres of the late Campanian-Maastrichtian sequence, as well as in the lower few metres of the Umm 

Er Radhuma Formation. The contact there is gradational. 

Palynological study on three specimens from KH-3, KH-4 and KH-6 showed the presence of 

Botryococcus braunii Kutz [32]. This indicates that the bitumen is primary because of the presence of 

the hydrocarbon producing algae. According to the palynomorphs assemblage, it has been deduced 

that the black bituminous shale was deposited in a marine/marginal lagoonal environment. A brackish 

water environment is not excluded but is considered less likely. 

4.b) Bluish grey claystone sublithofacies: This facies is restricted to the Hartha Formation, which is 

partly penetrated in KH-6 at Ansab area only. It is found associated with gypsum-anhydrite nodules 

and nodular beds. Some gastropods and pelecypods are found in these claystones. It was most 

probably deposited in a quiet lagoon of high salinity. 

4.c) Claystone with disseminated dolomite rhombs sublithofacies: This sublithofacies is found as thin 

beds throughout the late Campanian-Maastrichtian sequence at several levels. The dolomite rhombs 

are disseminated in a clay and micritic clay/carbonate groundmass (Figure- 9). The dolomite rhombs 

are fine to medium sized and generally show zonality. Few planktonic forams and echinoid fragments 

are found frequently. Other components, such as phosphate grains and pyrite-filling patches occur at 

various levels (Figure-9). Secondary gypsum and calcite crystal aggregates are also recognized.  

This claystone sublithofacies with pelagic or planktonic fauna and echinoids fragments reflect a long 

period of calm sedimentation away from the influence of carbonate clasts. Echinoid fragments were 

deposited in a deeper zone due to their low density, which is caused by pores filled with air (and gas) 

and travelled for longer distances floating before final settling. The dolomite rhombs were probably 

formed by a subsequent diagenetic effect. Magnesium is probably released from the Mg-rich clay 

minerals. 

 
Figure 9-Claystone with disseminated dolomite rhombs (yellow arrow) from KH-4 at Takhadid. 

Dolomite rhombs are sparse and clear; seem “floating” in clay/carbonate aphanocrystalline matrix. 

Pyrite fillings (red arrow) represent plane polarized light, x35. 

   

5) Sulphates-rock Lithofacies: The name sulphate is used here to indicate the association of gypsum 

and anhydrite. The sulphate-rock lithofacies is found in the form of nodular beds and nodules in the 

Hartha Formation and as few scattered nodules in the Tayarat Formation. 

The sulphates nodules in the Tayarat Formation are solitary, sparse, and large, having up to 15 cm 

diameter (Figures-(4a and b). Generally, these nodules have a large centre of sugary white, crystalline 

mosaic of gypsum and anhydrite with a rather thin and fibrous rim of gypsum. Other forms of 
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sulphates were also found, such as veinlets, micro-concretions, rosettes, and laths. Celestite is not 

uncommonly found, being associated with the gypsum and anhydrite (Figure-4c). 

The thick beds of sulphates in the Hartha Formation are formed almost entirely of nodules (Figure-12). 

Some veinlets and rosettes of gypsum occur far less frequently. Such beds are termed here as nodular 

evaporites. The sedimentary structures are sometimes destroyed by hydration-dehydration processes. 

Nonetheless, the structures encountered include the enterolithic folding, chicken-wire texture (Figure-

10), and wispy, massive, and occasionally laminated evaporites. Carbonate-clay rim usually 

circumscribes the nodules. This rim is sometimes veneer or even absent. Clay minerals and carbonates 

are commonly found as inclusions in the nodules, giving rise to poikilotopic texture (Figure-5).  

 
Figure 10-Nodular gypsum from: a) the Hartha Formation, KH-6 at Ansab (drilling depth 584.0 

metres) showing chicken-wire texture. Gypsum nodules are circumscribed by thin filament of 

carbonate/clay rim (diameter of the core is 11 cm). b) Gypsum nodules from the Hartha Formation, 

KH-6 at Ansab (drilling depth 584.0 metres) showing chicken-wire texture and the nodules which 

truncate the original laminations (indicated by arrows, diameter of the core is 11 cm). 

 

In the Hartha Formation, this lithofacies indicates that the deposition of evaporite occurred by 

diagenetic replacement of the pre-existing clay/carbonate mud. The diagenetic alterations took place at 

early stages of the physicochemical changes, almost penecontemporaneous to deposition. Such 

alteration generally takes place in continental sabkhas [33], coastal sabkhas [34], and at the rims of 

some lagoons, such as the Laguna Madre, Texas [35].  

The association of marine fauna excludes the first possibility. It is rather difficult to choose one 

satisfactory model due to lack of unequivocal evidence. Nevertheless, the authors are inclined to 

believe that the deposition took place in a semi-barred lagoonal environment, especially because of the 

development of thick evaporite and lack of criteria that characterize the peritidal environments, such 

as stromatolites. On the other hand, the nodules in the Tayarat Formation are believed to have formed 

at later diagenetic processes, i.e. after changing of the depositional regime of the Tayarat deposits. The 

ascending and descending intrastratal solutions were rich in sulphates, as they originate from the 

Hartha Formation below and the Paleogene succession above.  

6) Crystalline Dolomite Lithotype: This class incorporates rocks which are intensively dolomitized.  

The dolomitization was so severe that the original texture cannot be recognized. They were assigned 

the term lithotype because they are of diagenetic origin and do not represent depositional environment. 

This lithotype is usually formed of dolomite crystals showing inequigranular subhedral to euhedral 

mosaic texture. These subhedral, rarely euhedral, crystals show zoning with frequent dark nucleus 

(Figure-11). 
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Figure 11- Photomicrographs of fine to medium crystalline dolomite from Tayarat Formation from 

KH-4 at Takhadid: a) Mosaic of the fine, zoned dolomite crystals with cloudy centres and successive 

dolomite growth (Plane polarized light x35); b) Details of a mosaic texture with organic compounds 

filling the intercrystalline pores (Plane polarized light x35); c) Mosaic of dolomite rhombs with 

organic compounds filling the intercrystalline pores. Zoning is faded and the crystal centres are rather 

clear. The inclusions make vague zones only (Plane polarized light x35). 

 

     Skeletal grains are occasionally noticed as “ghosts”, biomolds, or partially preserved. The 

identified fauna are forams (orbitoides large coiled loftusia and globigerina), crinoid fragments and 

ossicles, corals, gastropods, pelecypods and algae. Non-skeletal grains are less frequent. Pellets and 

peloids are more common than intraclasts. Ooliths have not been reported in this sequence. Clay 

admixtures are present in the interstices at many depths. Organic matter and phosphate fragments are 

commonly found as scattered in this facies. Minor amounts of iron pyrites are observed as framboids 

and small nodules. Gypsum rosettes are found occasionally. Near the top of the formation, in KH-6 at 

Ansab area, vanished evaporites are noticed (drilling depth 279 metres). Porosity generally ranges 2 – 

10 %, although at few intervals it exceeds 10 %. The pores are mesovugs, mesobiomolds, and meso 

and microintercrystalline. 

Depositional Environments 
     The sedimentation seems to be almost continuous in keyholes KH-6 and KH-4, as the Danian is 

most probably present whereas there is an eminent unconformity in KH-3 and KH-7. During the 

Maastrichtian period, the sea seems to have transgressed over the area. This is evident by the presence 

of planktonic fauna of the Shiranish Facies as tongues in the Tayarat Formation overlying the 

evaporitic Hartha Formation. 

     The deposition seems to have taken place in the central reef - fore reef area with some intervals, 

which can be attributed to back reef. The absence of any facies, which reflects isolated back-reef 

lagoon (i.e. hypersaline and/or super saline conditions), suggests that the reef was patchy and did not 

lead to the isolation of water in the middle shelf region. 

The sequence in KH-6 at Ansab area shows that the Hartha Formation is evaporitic, possibly with 

supratidal sabkha deposits. The overlying Tayarat and Shiranish Formations reflect that the deposition 
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took place in a warm tropical to subtropical reefal and open marine conditions. Some effects of deep 

marine conditions are evident by the presence of Shiranish facies. The deep marine facies supervene 

the reefal Tayarat near the top of the Maastrichtian succession. Restricted lagoons seem to have 

dominated the scene in the Southern Desert area during the end of the Cretaceous. These lagoons are 

deduced by the impartial distribution of the black bituminous shale over the whole area, which is 

observed in our keyholes and the other boreholes in the area [4]. 

Conclusions 
     The late Campanian-Maastrichtian sequence comprises three distinct lithostratigraphic units, 

namely Hartha, Shiranish, and Tayarat Formations. Numerous diagenetic changes affected the 

sequence, such as neomorphic replacement, dissolution, dolomitization, and sulphate development. 

Some are so severe that they obliterated the primary textures.  

The lowermost Hartha Formation is characterized by evaporite deposition, representing coastal sabkha 

environment. The topmost unit is the Tayarat Formation which is characterized by limestones and 

dolomitic limestone representing deposition of patchy reef-fore reef environment. A tongue of the 

Shiranish Formation in KH-6 at Ansab area infers hemi-pelagic pelagic environment. Restricted 

lagoons seem to have dominated the scene towards the closure of the Cretaceous, as indicated by the 

black bituminous shale. The few scattered evaporite nodules in the Tayarat Formation are late 

diagenetic, unlike the underlying Hartha Formation. 
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