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Abstract 

     In this paper, by making use of the q-Ruscheweyh differential operator   
     , 

and the  notion of the Janowski function, we study some subclasses of  holomorphic 

functions . Moreover, we obtain some geometric characteristic such as coefficient 

estimates, radii of starlikeness, distortion theorem, close-to-convexity, convexity, 

extreme points, neighborhoods, and the integral mean inequalities of functions 

affiliated to these classes. 

 

Keywords: Analytic functions, Subordination, q-Ruscheweyh derivative, Hadamard 

product, Univalent functions. 

 

 q-Rusceweyh التحليلية المرتبطة بالمؤثر التفاضلي  لدوالبعض الخصائص 
 

،عبدالرحمن سلمان جمعه  *ناظم كدار ةاسام  

الرمادي، العراققدم الرياضيات، جامعة الانبار،   
 الخلاصه

    q-Ruscheweh باستخدام المؤثر التفاضلي  من خلال ،بحثفي ىذه ال     
 ,   ومفيهم الدالة       

ندرس بعض الاصناف الفرعية من الدوال التحليلية. علاوة على ذلك ،  نحرل على بعض   .يانهفدكي
،المحدبة والقريبة من مثل تقديرات المعامل ، نظرية التذهيو ، نرف الاقطار النجمية الخرائص اليندسية  

 ، النقاط المتطرفة  ، والجهارات ، متباينات قيم التكامل للدوال المنتمية  إلى ىذه الاصنافالتحدب 

 

Introduction 

     Let    represents the class of functions   which are holomorphic functions in the unit disc 

   {    | |   } and  of the form 

                                           ∑      

 

   

                                               

            

     The subclass of A consisting of univalent functions is denoted by S . A function   in    is said to 

be starlike of order          in    if this condition satisfies  

        {
      

    
}            

      symbolize this class . In certain, for       we obtain               the class of starlike 

functions.  The class               comprised of convex functions of order   can be expressed 

by the relation        if and only if           
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     Let   and   be  holomorphic functions such that both  the subordination between   and   in     

are written as     or            In addition to that, we say that   is subordinate to   if there 

 is a Schwarz function   with        |    |        ,  

 such that              for all     . Furthermore, if      is univalent in   , then we have 

 the following equivalence: 

    if and only if           and              
For some details, see earlier works [1,2,3] . By the application of the notion of subordination, 

Janowski provided the class [   ] . A given holomorphic function   with        is said to be in 

the class  [   ] , if and only if  the following condition satisfies: 

                         
    

    
           

Geometrically, the function       [   ]  maps the unit disk    onto the domain  [   ]
2l

defined by 

                               [   ]  {  |  
    

    |  
   

    }                                     

     This domain symbolizes an open circular disk centered on real axis with diameter end points 

   
   

   
 and    

   

   
 with            

Consider        Then, the convolution * or Hadamard product  of  in    and  

       ∑        
    are defined as: 

        ∑       

 

   

              

 Now, we define the  Ruscheweyh  derivative operator     as follows 

        
 

        
       

Hence 

       
 (        )

   

  
   

For     {        }      , 

as previously described [4]. We briefly recover here the concept of q-operators, i.e., q-difference 

operator that takes a vital role in hyper geometric series, quantum physics, and operator theories. The  

usage of q-calculus was initiated by Jackson [5] (also see [6, 7]). For the applications of q-calculus in 

geometric function theory, one may refer to the papers of Mohamad and Darus [8],  Mohamad and 

Sokol [9], and Purohit and Raina [10]. 

Next , we provide some fundamental definitions and results of q -calculus which we shall apply in our 

results. For more information, see earlier reports [10,11,12]. The application of q-calculus was 

initiated by Jacks n [13] (also see [14,15]) in ge metric function theory. 

Now, if        
 
is fixed, then  Jacks n explained the q-derivative and the q-integral of      as in 

the next step: 

                                                               
          

      
                                                    

and 

∫     
 

 

          ∑          

 

   

  

if  that  series converges. 

 It can simply be seen that for      {         } and     , 

  { ∑      
    

 

    

}  ∑ [   ]         

 

    

 

where 

                                                      [   ]  
    

   
 ∑   

   

   

      [   ]                                        
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For every  non-negative integer n, the q-number shift  factorial is defined by 

[   ]  {
                                                   
[   ][   ][   ] [   ]        

 

In addition, the q-generalized Pochhamer symbol for     is defined as 

[   ]  {
                                                             

[   ][     ] [       ]        
 

Let   be the function given  as   

         ∑
[     ]   

[     ] 

 

   

                                                   

Now, the differential q-Ruscheweyh operator   
      of order      {       }         

and for   given by ( 1) is defined as
       
  

                      

                                                                   ∑   
 [ ]     

    

 

    

                               

where    
 [ ]   

[     ]   

[     ] 
  (for more details see a previous report [16]), 

and   
            also   

                

Equation (6) can be expressed as 

  
      

   
 (        )

[   ] 
          

 
Since 

   
    

          
 

        
  

it follows that 

   
   

  
      

 

        
          

Definition 1. Let              indicate the subclass of   consisting of functions   of the form (1)  

and satisfy the following subordination condition, 

  
     

  
 
    

  |
  

     

  
 
    

  |  
    

    
  

where                                         

We note the following: 

(i) For                             the class               reduces to the class 

  
     discussed by Agrawal and Sahoo [17]. 

(ii) For                  and      the class               reduces to the class   
  

discussed by Ismail et al. [18]. 

(iii) For                      the class               reduces to the class   
       

discussed by Libera [19]. 

(iv) For                      the class               reduces to class         discussed 

by Janowski [20].
 
   

(v) For             and      the class               reduces to the class         

discussed by Padmanabhan and Ganesan [21] . 

(vi) For                      the class               reduces to class              

     discussed by Eker and Owa [22]. 

(vii) For                     and      the class               reduces to the 

class         (0 1)           discussed by Shams et al.[23].  

Definition 2. Let   represents the subclass of functions of   of the form:                      

                                                                  ∑      
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Further, we define the class                                 

For more details  refer to an earlier work [24]. 

Main Results 

In this part, we will prove our main results. 

Theorem 1. A function   of the form ( 1) belongs to the class               if:

           
      ∑ ,   | |     (  

 [ ]     
 [ ]  )  |   

 [ ]     
 [ ]   

|   -                           

 

   
 

where                                    
Proof. It is sufficient to prove that 

|
      

       
|    

 

where 

     
  

     

  
 
    

  |
  

     

  
 
    

  |  

We obtain

 

 

|
      

       
|  |

  
        

 
         |  

        
 
    |

   
 
      [  

          |  
        

 
    |]

| 

 |
∑ ,(  

 [ ]     
 [ ]   

)      
        |∑ (  

 [ ]     
 [ ]   

)     
   |-

       *∑ (   
 [ ]      

 [ ]   
)     

        |∑ (  
 [ ]     

 [ ]   
)     

   |+
| 

 
∑ (  

 [ ]     
 [ ]   

) |  ||  | 
     ∑ (  

 [ ]     
 [ ]   

) |  ||  | 
   

     | |  *∑ |   
 [ ]      

 [ ]   
| |  ||  | 

     | |∑ (  
 [ ]     

 [ ]   
) |  ||  | 

   +
 

 
∑ (  

 [ ]     
 [ ]   

)    
      |  |

      ∑ |   
 [ ]      

 [ ]   
| |  | 

     | |∑ (  
 [ ]     

 [ ]   
) |  | 

   

   

This final statement is bounded above by one if 

      ∑ ,   | |     (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|   -          

 

   

 

hence, the proof is completed.                                                                                                                                                                                                    
Theorem 2. Consider that      Then,                  if and only if: 

      ∑ ,   | |     (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|   -          

 

   

 

Proof. Since                                for functions                    

we can put:

 

|
      

       
|    where      

  
     

  
 
    

  |
  

     

  
 
    

  | 
 

Then 

|

|

|
∑ ,(  

 [ ]     
 [ ]   

)    

 

   

     |∑ (  
 [ ]     

 [ ]   
)    

 

   

|}

 

{
 
 

 
        ∑ (   

 [ ]      
 [ ]   

)     

 

   

     |∑ (  
 [ ]     

 [ ]   
)    

 

   

|
}
 
 

 
 

  

|

|

|
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Since       | |  then we get  

 

  

{
 
 
 
 

 
 
 
 ∑ ,(  

 [ ]     
 [ ]   

)    

 

   

     |∑ (  
 [ ]     

 [ ]   
)    

 

   

|}

 

{
 
 

 
        ∑ (   

 [ ]      
 [ ]   

)    

 

   

     |∑ (  
 [ ]     

 [ ]   
)    

 

   

|
}
 
 

 
 

  

}
 
 
 
 

 
 
 
 

    

Now taking z to be real and letting       , we 2l have 

      ∑ ,          (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|   -          

 

   

 

or equivalently 

      ∑ ,       | |  (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|   -          

 

   

 

By this the proof  is finished.                                                                                                                                                                                                                          
Corollary 1. A function     is in the class                 Then:

     
   

,       | |  (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|   -

                          

 
The  result of the function is sharp, as follows: 

       
   

,       | |  (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|   -

                     

That is, the function defined in (10) can achieve the equality. 

Distortion theorems 

Theorem 3. Consider the function   defined by (7) in the class                 Then: 

|    |  | |  
   

,     | |    (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|   -

| |   

and 

|    |  | |  
   

,     | |    (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|   -

| |   

The result is sharp. 

Proof . From Theorem 2, let the function: 

     ,     | |    (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|   -  

Then, it is obvious that it is an increasing function of         therefore: 

    ∑|  |

 

   

 ∑      |  |

 

   

      

That is 

∑|  |

 

   

 
   

    
  

Thus, we get 

|    |  | |  | | ∑|  |

 

   

  

|    |  | |  
   

,     | |    (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|   -

| |   
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Likewise, we get 

|    |  | |  ∑|  |

 

   

| |  |    |  | |  | | ∑|  |

 

   

  

 | |  
   

,     | |    (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|   -

| |   

Lastly, we can achieve the equality for  the  function, as follows: 

               
   

,       | |  (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|   -

                    

At | |    and                    This ended the result.                                                                                                       

 

Theorem 4. Let the function   be defined by ( 7) in the class                 Then: 

|     |    
          

,     | |    (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|   -

| |  

and: 

|     |    
          

,     | |    (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|   -

| |  

The result is sharp. 

Proof. Since 
    

 
 is an increasing function for         then from Theorem 2, we get 

    

 
∑|  |

 

   

 ∑
    

 
 |  |  ∑      |  |  

 

   

 

   

      

that is: 

∑|  |

 

   

 
      

    
  

Thus, we obtain 

|     |    | | ∑  |  |

 

   

  

|     |    
          

,     | |    (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|   -

| |  

Likewise, we obtain: 

|     |    | | ∑  |  |

 

   

 

   
          

,     | |    (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|   -

| |  

Lastly , we can notice that the affirmations of the theorem are sharp for  the function    defined by 

(11). This  finishes  the proof.                                                                                                                                                                                                                                 

Convexity, Radii of starlikeness and close-to-convexity 

Theorem 5.  A function  of the from (7) belongs to the class                  Then: 

(i)   is starlike of order          in | |     where: 

         {
,       | |  (  

 [ ]    
 [ ]  ) |   

 [ ]    
 [ ]   

|   -

      
 (

   

   
)}

 

   

                     

(ii)   is convex of order  in          in | |      where: 

         {
,       | |  (  

 [ ]    
 [ ]  ) |   

 [ ]    
 [ ]   

|   -

      
 (

   

      
)}
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(iii)   is close to convex of order         in | |      where: 

         {
,       | |  (  

 [ ]    
 [ ]  ) |   

 [ ]    
 [ ]   

|   -

      
 (

   

 
)}

 

   

                     

The function   is provided by (10). All of these results are sharp. 

Proof.  We need to show that 

|
      

    
  |      where | |     

where    is specified by(12) . Indeed, we get from (7) that: 

|
      

    
  |  

∑        | |    
   

  ∑   | |    
   

  

Hence, we obtain: 

|
      

    
  |       

if and only if: 

                                            
∑        | |    

   

     
                                        

By Theorem
2l

 2, the
2l

 relation (15)  is true if: 

(
   

   
) | |    

,       | |  (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|   -

      
  

That is, if: 

| |  {
,       | |  (  

 [ ]    
 [ ]  ) |   

 [ ]    
 [ ]   

|   -

      
 (

   

   
)}

 

   

    for      

Implies 

         {
,(      | | ) (  

 [ ]    
 [ ]  ) |   

 [ ]    
 [ ]   

|   -

      
 (

   

   
)}

 

   

        

This completes the proof (12). 

For  proving (13) and (14), we need only to show that: 

                                       |  
    

     
  |                    | |        

and 

                                       |       |                   | |       
respectively.                                                                                                                                                                                                                                                                                       
Extreme points 

Theorem 6. Consider that          and: 

        
   

,     | |      (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|   -

            

Then,  in               if and only if it can be written in the  following
2l

 form: 

     ∑   

 

   

        

where                                       ∑   
 
       

Proof. Assume that: 

     ∑   

 

   

       

            ∑   

 

   

     

,     | |     (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|   -
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Then, by Theorem
2l

 2, we get: 

∑ *
,     | |     (  

 [ ]     
 [ ]  )  |   

 [ ]     
 [ ]   

|   -      

,     | |     (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|   -

  +

 

   

 

      ∑   

 

   

                    

Thus, in view of Theorem 2, we obtain                   

Contrariwise, let us assume that,  in               then 

   
      

,     | |     (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|   -

  

By setting 

   
,     | |     (  

 [ ]     
 [ ]  )  |   

 [ ]     
 [ ]   

|   -

     
   

for 

     ∑     

 

   

 

we obtain 

     ∑   

 

   

        

This completes the  proof.                                                                                                                                                                                                                

Corollary 2. The extreme points of the class                are given by 

         
and 

        
   

,     | |      (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|   -

            

Integral mean inequalities 

Lemma 1.[ 25] Let   and   be holomorphic functions in    with: 

           
then for     and                  

                                       ∫ |    |    ∫ |    |   
  

 

  

 

                                      

Now, we find the following  result by taking Lemma 1. 

Theorem 7. Suppose that                                              

     and       is defined  by 

        
   

,     | |      (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|   -

    

for                 we get 

∫ |    |    ∫ |     |
   

  

 

  

 

  

Proof . For                    

 

       ∑       
           

the relation     is equivalent to prove  that 

∫ |  ∑     
   

 

   

|

 

  
  

 

  

∫ |   
   

,     | |      (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|   -

 |
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By using Lemma 1, it suffices to show that 

  ∑     
   

 

   

   
   

,     | |      (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|   -

   

By setting 

  ∑     
   

 

   

   
   

,     | |      (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|  -

      

and
2l

 using      
2l

we get 

|    |  |∑
,     | |      (  

 [ ]     
 [ ]  )  |   

 [ ]     
 [ ]   

|  -

    
       

 

   

| 

 | | ∑
,     | |      (  

 [ ]     
 [ ]  )  |   

 [ ]     
 [ ]   

|  -

   
    

 

   

 

     | | ∑
,     | |      (  

 [ ]     
 [ ]  )  |   

 [ ]     
 [ ]   

|  -

   
    

 

   

 

              | |     
This completes the proof.                                                                                                                                                                                                                              

Neighborhoods for the class                

We define the   -neighborhood 
2l

of a function  in   by 

   
    {           ∑         ∑  |     |

 

   

      

 

   

}                 

In particular, for         

   
    {           ∑            ∑  |  |

 

   

      

 

   

}                      

On the other hand, a function      defined by     is said to be in the class                if there 

exists a function                   such that 

                                             |
    

    
  |                                                    

 

 

Theorem 8. If 

,     | |      (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|  - 

      ,     | |      (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|  -             

and 

   
      

,     | |      (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|  -

  

then 

                  
     

Proof. Let                 .Then from Theorem 2 and the condition 

,     | |      (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|  - 

      ,     | |      (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|  -            

We get, 

,     | |      (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|  - ∑    
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,     | |      (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|  - ∑   

 

   

 

           
which implies 

∑   

 

   

 
     

,     | |      (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|  -

          

By using Theorem 2  with (19), we obtain 

,     | |      (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|  - ∑   

 

   

 

               

 ,     | |      (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|  - ∑   

 

   

 

                  

∑     
      

,     | |      (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|  -

 

 

   

 

By       we get      
     . 

This completes the proof of Theorem 8 .     

Theorem 9. If                  and 

    
  
 

,     | |      (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|  -

,     | |      (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|  -       

           

Then      
                    

Proof. Let   be in    
   . We find by     that 

∑  |     |

 

   

      

which means the coefficient of inequality 

                                                      ∑|     |

 

   

  
  
 
                                                       

It follows that, since                 , then from (19) we obtain  

∑    
     

,     | |      (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|  -

 

 

   

        

Using      and     , we get 

|
    

    
  |  

∑ |     | 
   

  ∑   
 
   

 
  

 (  
     

,     | |      (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|  -

)

 

 

 
  
 

,     | |      (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|  -

,     | |      (  
 [ ]     

 [ ]  )  |   
 [ ]     

 [ ]   
|  -       
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provided that   is given by       
hence, by condition         in                is given by     .   
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