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Abstract 
      Assume that G is a finite group and X is a subset of G. The commuting graph is 

denoted by С(G,X) and has a set of vertices X with two distinct vertices x, y  X, 

being connected together on the condition of xy = yx. In this paper, we investigate 

the structure of Ϲ(G,X) when G is a particular type of Leech lattice groups, namely 

Higman–Sims group HS and Janko group J2, along with  X as a G-conjugacy class 

of elements of order 3. We will pay particular attention to analyze the discs’ 

structure and determinate the diameters, girths, and clique number for these graphs. 
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 معينه Leech Lattice في زمر الثالثة الرتبةعناصر من ل التبادلية اتالبيانالتحقق من 
 

 ضحى عباس عزيز *علي عبد عبيد
بغجاد, بغجاد ,العخاققدم الخياضيات , كلية العلهم , جامعة   

 
 الخلاصة

لجية الطجطهعة С(G,X) .البيان التبادلي ويخمد لو  Gجدئية من  مجطهعة Xو ىه زمخه مظتييوG افتخض ان 
X  مختلفين في  تطثل الخؤوس وكل رأسينx,y∊X    تحت شخط تكهن مختبطة بضلعxy=yx  في ىحا البحث.

مثلا  Leech latticeنهع خاص من زمخ   Gعظجما يكهن   С(G,X)نجخي تحقيق حهل بظاء البيان التبادلي 
Higman-Sims group HS  وJanko J2 group   ويكهنX  سهف نبحل الثالثة . الختبةصف تكافؤ من

 .تحجيج الاقطار , الخصهر وعجد العصب ليحه البياناتجيج خاص لتحليل البظاء 
 

1. Introduction and Preliminaries 

      It is believed that studying the action of a group on a graph is one of the best comprehensible ways 

of analyzing the structure of the group. Suppose that G is a group and X is a subset of G; the 

commuting graph denoted by С(G,X) has  the set  of vertices X with two vertices x, y  X, which are 

connected if x ≠y, where xy = yx. The commuting graphs were first illustrated by Fowler and Brauer 

in a seminal paper [1]. They were eminent for giving evidence of a prescribed isomorphism of an 

involution centralizer, where there is a limited number of non-abelian groups capable of containing it. 

These graphs were extremely vital for the works of the Margulis-Platanov conjecture [2], as the graphs 

mentioned in [1] have X = G\{1} where 1 is the identity element of G). When X is a conjugacy class 

of involution (conjugacy class X of G means that for any two elements x, y  X there are an element 
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g G such that x
g
=y, whereas involution means that all elements of X have order 2), then the 

commuting graph is known as the commuting involution graph. Rowley, Hart (nѐe Perkins), Bates, 

and Bundy put their efforts into investigating the commuting involution graphs and supplying the  

diameters and disc sizes [3,4,5 6]. Suppose that X is a conjugacy class of elements of order 3. Nawawi 

and Rowley [7] analyzed the С(G,X) when G is either a symmetric group Sn or a sporadic group McL. 

The aim of this paper is to investigate the commuting graphs when G is a particular type of Leech 

lattice groups, such as the Higman–Sims group HS and Janko group J2, along with  X as a G-

conjugacy class for elements of order 3. The research involves scrutinizing the discs’ structures and 

calculating the diameters, girths, and clique number for these graphs. From now, we shall assume that 

G is one of the aforementioned groups. Also,  we let t be an element of order 3 in G and X = t
G
. It is 

clear that G, acting by conjugation, induces graph automorphisms of С(G,X) and is transitive on its 

vertices. For x   X and i   ℤ+, ∆i(x) denotes the set of vertices of С(G,X) which has a distance i 

from x. Using the usual distance function for graphs, this distance function will be denoted by d(; ). 

We use Gx(= CG(x)) to denote the stabilizer in G of x. Obviously, ∆i(x) will be a union of certain Gx -

orbits. Therefore, we are looking for finding the Gx-orbits of X. In the computational group theory of 

Magma [8] and GAP [9], packages are considered most commonly utilized. In most steps of the 

algorithm, Gap will be dominant in the implementation, while the permutation character of the 

centralizer of t in G (CG(t)) may be verified using Magma and, hence, the number of CG(t)-orbits 

(Permutation Rank on X) under the action of X on CG(t) is calculated. Finally, we will use the online 

Atlas of Group Representations [10] to get a class name of the groups and we refer to it as The Online 

Atlas. 

For the aforesaid groups, the sizes of conjugacy classes for elements of order 3 and the permutation 

ranks on each class, as well as the structure of the centralizer of t in G, which can be seen in [11], are 

given in the next table. 

 

Table 1-Class size and Permutation Rank of X  

Group Class Size of Class Permutation Rank CG(t) 

HS 3A 12300 399 С3 x S5 

J2 3A 560 10 С3 . A6 

 3B 16800 531 C3 x A4 

 

2. Computational Method     

     Let x  ∆i(t) and z  CG(t), then one can see immediately that x
z
  ∆i(t). Thus, for a finite group G, 

each disc ∆i(t) of the commuting graph Ϲ(G,X) is a union of specific CG(t)-orbits. 

The size of CG(t) -orbits under the action of conjugation on t
G
 can be calculated by using the character 

table of the group, as we can see in the following result: 

Proposition 2.1. [12]. Let G be a group acting transitively on a finite set Ω, with a permutation 

character . Suppose that α  Ω and Gα has exactly k orbits on Ω. Then ˂,˃ = k. 

The quantity k in Proposition 2.1 is called the permutation rank of Gα on Ω .Therefore, the 

permutation rank of CG(t) on X is the number of CG(t)-orbits under the conjugation action on X. 

Now, let C be a G-conjugacy class. It is obvious that the set XC = {x  X : tx C} under the 

conjugation action of CG(t) breaks up into sub orbits. Thus, to find all the sub orbits of X, we have to 

identify the CG(t)-orbits of XC, for all those C, such that XC ≠ Ø . The next definition gives us the size 

of the set XC and, therefore, the size of sub orbits of XC: 

Definition 2.2. [13]. Let Ci , Cj and Ck  be  the conjugacy classes of a finite group G. Then, for a fixed 

element g  Ck, the following set is defined: 

aijk = |{(gi, gj)  Ci x Cj | gigj = g}|. 

Then, for all possible i, j, and k, the value aijk is called a class structure constant for G. 

The next lemma will be used to compute the class structure constants for G. 

Lemma 2.3. [13]. Let G be a finite group with n conjugacy classes C1,C2, …,Cn. Then for all i, j, and 

k, we have  gi as follows: 

aijk =
   

                
 ΣIrr(G )  

            ̅̅ ̅̅ ̅̅ ̅̅
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where gi , gj, and gj are respectively in Ci, Cj and Ck,  and        is the  irreducible character table 

in G.  

 

For the proof  of the above lemma, see [13], page 128, Lemma 2.12.. Now, since |XC| = |{(c, x)  C x 

X | cx = t}|= | aijk |, then  by employing Lemma 2.3, we get 

 

|XC| = 
   

              
    ΣεIrr(G )  

       

   
 

 

     Therefore, from the complex character table of G, which is available in the GAP character table 

library, and using the GAP function of "Class Multiplication Coefficient", we immediately obtain the 

size of XC.  

3. Diameters, Girths, and Clique Number 

     To determinate the diameters, girths, and clique number for the Ϲ(G,X), we will 

generated the graph by using the gap package YAGS [14] (specifically, Graph By Relation) in the next 

algorithm, which can be realized by using the definition of the 

commuting graph. The algorithm is given as follows: 

Algorithm 1 

Input: The group G, t  G (the elements of order 3); 

i: X = t
G
 the G-conjugacy class of t. 

ii: Relation = {the set of elements satisfies the condition : x ≠y and x*y = y *x} 

iii: С (G,X) is the graph generated by  X and relation. 

v: Calculate Diameter(С(G,X)), Girth(С (G,X)) and Clique number (С (G,X)) . 

Output: The diameter, girth and the clique number of С (G;X). 

The results in table 2 are obtained by applying Algorithm 1 on the groups specified in the table. 

 

Table 2-Diameter, Girth, and clique number of commuting graphs 

Graph Diameter Girth clique number group 

Ϲ(HS,3A) 4 3 8 C3 x C3 

Ϲ(J2,3A) disconnected no girth (forest) 2 C3 

Ϲ(J2,3B) 8 3 6 C3 x C3 

 

The last column of Table-2 represents the maximum elementary abelian group generated by the 

maximum clique. 

4. Analyzing the Discs Structures  

This section is dedicated to analyze the structures of the ∆i(t) of the commuting graph Ϲ(G, X). 

4.1. CG(t)-Orbits of ∆i(t)  

The next algorithm is employed to break ∆i(t) into CG(t)-sub orbits of XC , for all those С (G-

Conjugacy class), such that XC  ≠ φ, where their sizes are also provided.  
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Algorithm 2.  

Input: the group G, t ∈ G, (the elements of order 3), С (G-Conjugacy Class) 

i: X → t 
G
 the G-conjugacy class of t  

ii: CG(t) → centralizer in G of t.  

iii: O → the orbits in CG(t) of X.  

iv: |XC | =→ ”Class Multiplication Coefficient” of C in X. 

v: For i → 1 to size (O) Do 

vi: If t ∗ O[i][1] Conjugate to C → YC ∪ O[i]  

vii: Repeat the steps vi, vii until |XC | = |YC |.  

viii: XC → XC = YC . ix: For j → 1 to size O Do  

x: If t in O[j] → t = Oj ( there is only one)  

xi: Y0 → Y0 ∪ j  

xii: For i in O[j] Do  

xiii: For h → 1 to size (O) Do  

xiv: If d(O[h][1], i) = 1 → {Y1 ∪ {h}}\{Y0}  

xv: For x in Y1 → ∆1(t) ∪ O[x]  

xvi: for j in Y1 Do 

xvii: Repeat the steps x1, x2 and 

xviii: If d(O[h][1], i) = 1 → {Y2 ∪ {h}} \{Y1 ∪ Y0}  

xix: For x in Y2 → ∆2(t) ∪ O[x]  

xx: Repeat the above steps and replace the Yi+1 with Yi and ∆i+1(t) with ∆i(t) 

Output: The positions of the sets XC in the ∆i(t) with their sizes. 

 

       For each graph in Table-2, we provide information about the discs structure. We should note that, 

in the next tables, the value n ∗ m means the number and the size of CG(t)-orbits in certain ∆i(t), 

respectively. The exceptional case is С(J2, 3A) as the graph is disconnected. The cases are:  

1- Ϲ(J2, 3A): Form Table- 1, the permutation rank of 3A is 10 and CG(t) C3 . A6. In Table- 2, one can 

see that the graph is disconnected and, by Algorithm 1, there are 280 connected 2-components of Ϲ(J2, 

3A).  

2- Ϲ(J2, 3B): Form Table- 1, the permutation rank of 3B is 531. Form Table- 2, the graph is connected 

with diameter 8. The centralizer of t ∈ 3B is isomorphic to C3 x A4. The disc structure of the Ϲ(J2, 3B) 

is described in Table-3.  

 

Table 3-Discs structure of Ϲ(J2, 3B) 

Class Name Δ1(t) Δ2(t) Δ3(t) Δ4(t) Δ5(t) Δ6(t) Δ7(t) Δ8(t) 

1A 1 
       

2A 
   

3*2 12 
   

2B 
 

12*2 
 

36*2 
    

3A 4*2 12*2 
      

3B 4*2,1 12*2 
36*2 

12*2 

36*4 

12*4,3*2 

36*2, 

12 
36*4 12*6 

 

4A 
  

36*2 36*3 
 

12*4 36 12*2 

5A 
    

12*2 36 12*2,3 12 

5B 
    

12*2 36 12*2,3 12 

5C 
   

36*2 36 36*4 
 

36 

5D 
   

36*2 36 36*4 
 

36 
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6A 
  

36*4 

12*2 
12*4 

 
36*12 36*4 

 

6B 
 

12*2 36*4 
 

36*4 36*20 
  

7A 
   

36*3 36*36 36*24 36*8 
 

8A 
   

36*4 36*28 36*32 
  

10A 
    

36*6 36*12 
  

10B 
    

36*6 36*12 
  

10C 
   

36*10 36*12 36*26 36*2 
 

10D 
   

36*10 36*12 36*26 36*2 
 

12A 
   

36*6 36*16 36*4 
36*2, 

12*12  

15A 
   

36*4 
36*10, 

12*2 

36*9, 

12*6 

36*4, 

12*4  

15B 
   

36*4 
36*10, 

12*2 

36*9, 

12*6 

36*4, 

12*4  

 

3- Ϲ(HS, 3A): Form Table-1, the permutation rank of 3A is 399. Form Table-2, the graph is 

connected with diameter 4. The centralizer of t ∈ 3A is isomorphic to C3 x S5. The discs structure of 

the С(HS, 3B) is described in Table-4.  

 

Table 4-Discs structure of Ϲ(HS,3A) 

Class Name Δ1(t) Δ2(t) Δ3(t) Δ4(t) 

1A 1 
   

2A 
 

120,15 90 
 

2B 
   

18*2 

3A 20*3,1 120*4,15 90 360*4,90*4,18*2 

4B 
  

360 360*3,90*5 

4C 
  

360*8,180 360*6,90*2 

5A 
  

18*2 
 

5B 
 

60,120 360,180 
 

5C 
  

360*18 360*27 

6B  120*3 360*10 360*4,90*3 

7A 
 

 360*11 360*70 

8A   360*4 360*16,90*8 

8B 
  

360*2 360*12 

8C 
  

360*2 360*12 

10A 
  

360*6 360*18,90*6 

10B    360*2 

11A 
  

360*3 360*25 

11B 
 

 360*3 360*25 

12A 
 

  360*16,90*8 

15A 
 

120*3  360*8 

20A 
 

 360*2,90*2 360*2,90*2 

20B 
 

 360*2,90*2 360*2,90*2 
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4.2. The subgroup < t, x >  

For any x, y in the arbitrary CG(t)-orbit, the subgroup generated by t and x, i.e.  <t,x>,  is conjugated to 

the subgroup generated by t and y. This is obvious because if we conjugate one of them by t, we get 

the other. For each CG(t)-sub orbit of XC, the next algorithm provides the algebraic structure of the 

subgroup generated by t and random elements of CG(t)-sub orbits. 

We give the algebraic structure of each subgroup generated by < t, x > for a random element x in a 

CG(t)-suborbits of XC, with their numbers and sizes, for each connected graph mentioned in Tables- 5 

and 6. For more information about these subgroups, we refer to several previous works [11, 13, 15].  

    

Table 5-Subgroup Structure of < t, x > in Ϲ(HS, 3A) 

Δi(t) 
Class of t *x 

Number of 

Orbits 

Size of 

Orbits 
Subgroup< t, x> 

Δ1(t) 

1A 1 1 C3 

3A 3 60 C3 x C3 

3A 1 1 C3 

Δ2(t) 

2A 2 135 A4 

3A 3 360 C3 x A4 

3A 2 135 A4 

5B 1 60 A5 

5B 1 120 GL(2,4) 

6B 3 360 C3 x A4 

15A 3 360 GL(2,4) 

Δ3(t) 

2A 1 90 A4 

3A 1 90 A4 

4B 1 360 PSL(3,2) 

4C 5 1620 A6 

4C 4 1440 PSL(3,2) 

5A 2 36 A5 

5B 1 360 A7 

5B 1 180 A6 

5C 4 1440 (C2 x C2 x C2 x C2) : A6 

5C 4 1440 A7 

Algorithm 3 .  

Input: The Sub orbits OC in the Set XC ; 

i: For i → 1 to Size OC Do  

ii: If Subgroup (t, OC [i][1]]))) equal Subgroup (t, OC [1][1]]))) Then  

iii: Subgroup> t, OC <→ (t, OC [i][1]])));  

iv: SetC → SetC ∪ OC [i]  

v: If Size SetC equal Size XC Stop  

vi: Else XC → XC \SetC  

vii: repeat the steps i to iv until the step v is true 

Output: The group algebraic structure of the subgroup generated by t and the suborbits of the sets 

XC in the ∆i(t). 
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5C 2 720 A5 

5C 4 1440 A6 

5C 4 1440 (C2 x C2 x C2 x C2) : A5 

6B 4 1440 (C2 x C2 x C2) : (C7 : C3) 

6B 5 1800 A7 

6B 1 360 A4 x A4 

7A 4 1440 (C2 x C2 x C2) : (C7 : C3) 

7A 2 720 A7 

7A 4 1440 PSL(3,4) 

7A 1 360 PSL(3,2) 

8B 2 720 (C2 x C2 x C2) . PSL(3,2) 

8A 4 1440 (C2 x C2 x C2 x C2) : A6 

8C 2 720 (C2 x C2 x C2) . PSL(3,2) 

10A 6 2160 HS 

11A 2 720 M22 

11A 1 360 HS 

11B 1 360 HS 

11B 2 720 M22 

20A 2 720 HS 

20A 2 180  (((C2 x C2 x C2) : (C2 x C2)) : C2) : A5 

20B 2 720 HS 

20B 2 180  (((C2 x C2 x C2) : (C2 x C2)) : C2) : A5 

Δ4(t) 

2B 2 36 A4 

3A 6 1080 (C4 x C4) : C3 

3A 2 720 C7 : C3 

3A 2 36 A4 

4B 2 720 A6 

4B 4 360 (C4 x C4) : C3 

4B 1 360 PSL(3,2) 

4B 1 90 SL(2,3) 

4C 4 1440 PSL(3,2) 

4C 2 180 SL(2,3) 

4C 2 720 (C4 x C4) : C3 

5C 8 2880 (C2 x C2 x C2 x C2) : A5 

5C 2 720 A6 

5C 12 4320 PSL(3,4) 

5C 4 1440 PSL(2,11) 

5C 1 360 A5 

6B 4 1440 PSL(2,11) 
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6B 3 270 SL(2,3) 

7A 24 8640 M22 

7A 4 1440 (C2 x C2 x C2) . PSL(3,2) 

7A 20 7200 PSL(3,4) 

7A 8 2880 A7 

7A 8 2880 (C4 x C4 x C4) : (C7 : C3) 

7A 4 1440 PSL(3,2) 

7A 2 720 C7 : C3 

8B 6 2160 PSU(3,5) 

8B 4 1440 M11 

8B 2 720 (C2 x C2 x C2) . PSL(3,2) 

8A 16 5760 M22 

8A 8 720 (C4 . (C4 x C4)) : C3 

8C 6 2160 PSU(3,5) 

8C 4 1440 M11 

8C 2 720 (C2 x C2 x C2) . PSL(3,2) 

10A 12 4320 PSU(3,5) 

10A 6 2160 HS 

10A 2 180 ((C2 x ((C4 x C2) : C2)) : C2) : A5 

10A 2 180  (((C2 x C2 x C2) : (C2 x C2)) : C2) : A5 

10A 2 180 SL(2,5) 

10B 2 720 HS 

11A 16 5760 M22 

11A 8 2880 HS 

11A 1 360 PSL(2,11) 

11B 8 2880 HS 

11B 16 5760 M22 

11B 1 360 PSL(2,11) 

12A 8 2880 HS 

12A 8 2880 (C4 x C4 x C4) : (C7 : C3) 

12A 8 720 (C4 . (C4 x C4)) : C3 

15A 6 2160 HS 

15A 2 720 A8 

20A 2 720 HS 

20A 2 180 ((C2 x ((C4 x C2) : C2)) : C2) : A5 

20B 2 720 HS 

20B 2 180 ((C2 x ((C4 x C2) : C2)) : C2) : A5 
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Table-6 illustrates the subgroup structure of < t, x > in  the graph Ϲ(J2, 3B). 

Δi(t) 

Class of         

t *x 

 

Number of 

Orbits 

Size of 

Orbits 
Subgroup < t, x> 

Δ1(t) 

1A 1 1 C3 

3A 2 8 C3 x C3 

3B 2 8 C3 x C3 

3B 1 1 C3 

Δ2(t) 

2B 2 24 A4 

3A 2 24 C3 x A4 

3B 2 24 A4 

6B 2 24 C3 x A4 

Δ3(t) 

3B 2 24 C3 x A4 

3B 2 72 (C4 x C4) : C3 

4A 2 72 (C4 x C4) : C3 

6A 4 144 A4 x A4 

6A 2 24 C3 x A4 

6B 4 144 A4 x A4 

Δ4(t) 

2A 2 6 A4 

2B 2 72 A4 

3B 4 78 A4 

3B 2 72 (C4 x C4) : C3 

3B 4 48 C3 x A4 

4A 2 72 (C4 x C4) : C3 

4A 1 36 PSL(3,2) 

5C 2 72 HJ 

5D 2 72 HJ 

6A 4 48 C3 x A4 

7A 1 36 PSL(3,2) 

7A 2 72 HJ 

8A 4 144 PSU(3,3) 

10C 10 360 HJ 

10D 10 360 HJ 

12A 4 144 PSU(3,3) 

12A 2 72 HJ 

15A 4 144 HJ 

15B 4 144 HJ 

Δ5(t) 

2A 1 12 A4 

3B 2 72 (C5 x C5) : C3 

3B 1 12 A4 
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5A 2 24 GL(2,4) 

5B 2 24 GL(2,4) 

5C 1 36 (C5 x C5) : C3 

5D 1 36 (C5 x C5) : C3 

6B 4 144 HJ 

7A 28 1008 HJ 

7A 8 288 PSU(3,3) 

8A 20 720 HJ 

8A 8 288 PSU(3,3) 

10A 2 72 A5 x A4 

10A 4 144 HJ 

10B 4 144 HJ 

10B 2 72 A5 x A4 

10C 12 432 HJ 

10D 12 432 HJ 

12A 16 576 HJ 

15A 8 288 HJ 

15A 2 72 A5 x A4 

15A 2 24 GL(2,4) 

15B 2 72 A5 x A4 

15B 8 288 HJ 

15B 2 24 GL(2,4) 

Δ6(t) 

3B 2 72 (C5 x C5) : C3 

3B 2 72 C7 : C3 

4A 4 48 C3 . A6 

5A 1 36 (C5 x C5) : C3 

5B 1 36 (C5 x C5) : C3 

5C 4 144 HJ 

5D 4 144 HJ 

6A 8 288 PSU(3,3) 

6A 4 144 HJ 

6B 20 720 HJ 

7A 22 792 HJ 

7A 2 72 C7 : C3 

8A 28 1008 HJ 

8A 4 144 PSU(3,3) 

10A 12 432 HJ 

10B 12 432 HJ 

10C 26 936 HJ 

10D 26 936 HJ 

12A 4 144 PSU(3,3) 

15A 9 324 HJ 

15A 4 48 GL(2,4) 
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15A 2 24 C3 . A6 

15B 9 324 HJ 

15B 4 48 GL(2,4) 

15B 2 24 C3 . A6 

Δ7(t) 

3B 6 72 (C3 x C3) : C3 

4A 1 36 PSL(3,2) 

5A 2 24 C3 . A6 

5A 1 3 A5 

5B 2 24 C3 . A6 

5B 1 3 A5 

6A 4 144 HJ 

7A 8 288 PSU(3,3) 

10C 2 72 HJ 

10D 2 72 HJ 

12A 12 144 C3 . A6 

12A 2 72 HJ 

15A 4 48 C3 . A6 

15A 4 144 HJ 

15B 4 144 HJ 

15B 4 48 C3 . A6 

Δ8(t) 

4A 2 24 C3 . A6 

5A 1 12 C3 . A6 

5B 1 12 C3 . A6 

5C 1 36 A5 

5D 1 36 A5 

 

4.3. Collapsed Adjacency Matrix 

     ∆i(t) is a union of certain CG(t)-orbits. For any ∆i(t) of Ϲ(G, X), let Δ
1
i, Δ

2
i... Δ

r
i be the set of the 

CG(t)-orbits in ∆i(t) of size r. If n is the number of the CG(t)-orbits of Ϲ(G, X), then the collapsed 

adjacency matrix for Ϲ(G, X) is n×n with entry (s, h)
 th

. The number of vertices in the row is indexed 

by Δ
h

i, which is connected to a single vertex in the column, indexed by Δ
s
j. For this purpose, we create 

the following algorithm.  

 

Algorithm 4  

Input: The suborbits Δ
h
i and Δ

s
j;  

i: For x → Random in Δ
h
i Do  

ii: For y → in Δ
s
j Do  

iii: If x commute with y Then  

iv: entry entrys,h → entrys,h ∪ {y} 

 v: (s, h) 
th
 → size of entrys,h.  

Output: entry (s, h)
th
 the number of vertices in row, indexed by Δ

h
i, is connected to a single vertex 

in column, indexed by Δ
s
j.  
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     The collapsed adjacency matrix is an n × n matrix, such that n is the permutation rank given in the 

Table-1. The matrix is too big to fit in the paper. For this reason, we only give an example for 

applying Algorithm 4 to find the entry of the collapsed adjacency matrix. Now, we calculate some 

entries of the 399 × 399 collapsed adjacency matrix of Ϲ(HS, 3B). We provide the entries for such 

matrix since the technique we use is similar for any matrix size. Therefore, we just give 10 × 10 parts 

of 399 × 399  the collapsed adjacency matrix of Ϲ(HS, 3B), as showing below: 

 

Table 7-Part of Collapsed Adjacency Matrix Ϲ(HS, 3A) 

CG(t)-orbits t = Δ0 Δ
1
1 Δ

2
1 Δ

1
2 Δ

2
2 Δ

1
3 Δ

2
3 Δ

1
4 Δ

2
4 

t = Δ0 1 1 20 0 0 0 0 0 0 

Δ
1

1 1 1 20 0 0 0 0 0 0 

Δ
2

1 1 1 2 0 6 0 0 0 0 

Δ
1

2 0 0 0 1 0 0 0 0 0 

Δ
2

2 0 0 6 0 1 0 0 0 0 

Δ
1

3 0 0 0 0 0 1 1 0 0 

Δ
2

3 0 0 0 0 0 1 1 0 0 

Δ
1

4 0 0 0 0 0 0 0 1 0 

Δ
2

4 0 0 0 0 0 0 0 0 1 

 

5. Main Results  

     The graph Ϲ(J2, 3A)  is disconnected with 280 connected 2- components, as seen above. For a 

connected commuting involution graph Ϲ(G, X), given in Table-1, the graph structure is described in 

the following theorem. 

Corollary 5.1. For G is one of the groups of Table-2, we have the following results: 

 • Diam Ϲ(J2, 3B) = 8 and |∆1| =,18 |∆2| =96   , |∆3| = 480  , |∆4| = 2052,  |∆5| =5304    , 

 |∆6| =7392    , |∆7| =1338    ,|∆8| =120.  

• Diam Ϲ(HS, 3A) = 6 and |∆1| =62,  |∆2| = 1530, |∆3| =27216, |∆4| =94392. 

 Proof. Each of ∆i(t) of the commuting graph Ϲ(G, X) is a union of specific CG(t)-orbits. Thus, using 

the previous tables, we obtain the proof. 
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