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Abstract
In this article, we define and study a family of modified Baskakov type operators

1 . . . . . .
based on a parameter s > — This family is a generalization of the classical

Baskakov sequence. First, we prove that it converges to the function being
approximated. Then, we find a Voronovsky-type formula and obtain that the order
of approximation of this family is 0(n=2s*D). This order is better than the order of
the classical Baskakov sequence 0(n~1) whenever s > 0. Finally, we apply our
sequence to approximate two test functions and analyze the numerical results
obtained.

Keywords: Baskakov operators, VVoronovsky-type asymptotic formula, Order of
approximation
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1. Introduction
The well-known classical Baskakov sequence is defined as [1]

Ma(Fi) = ) pueGOf (5), (11)
k=0

where p,, . (x) = (;:;::))'!x"(l + x)™"7%, x € [0, ).

Many modifications to the above sequence were applied by several researchers, all reaching the
same order of approximation 0(n™1) [2, 3, 4]. Indeed, there are some techniques, such as the linear
combination and Micchelli combination, that were defined and studied for many sequences of positive

and linear operators to modify the approximation order by these sequences. But these techniques
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increase the arithmetic operations in the computer programs, which decreases the advantage of these
techniques [5- 8].

Pallini [9] presented a modification of the sequence of classical Bernstein polynomials with a
different order of approximation. His sequence depends on a parameter s > —1/2 and is defined as

follows
n

! 1
Bus(fi) = ) s x (1= )" f (x +=(z- x)>, (12)
k=0

where x € [0,1] and f € C[0,1]. The parameter s is called the convenient approximation
coefficient.
The sequence (1.2) has a better approximation order of O(n‘(25+1)) when s > 0. [9]
In this study, we define a family of modified Baskakov type operators, such as the family (1.2),

as follows
Lns(f3 %) —zpnx(x)f<x+l(f— )), (13)

where f € C,[0,0) = {f € C[0, ): f(t) = 0((1 +t)%),for some a > 0} and x € [0, ).

The space C, [0 ) is normed by the norm |||, = supeejo,e0)f (O)[(1 + )7
Note that L,, o(.; x) = M, (., x).

Here, we prove some theorems for the family L, ;(.;x) in simultaneous approximation, i.e. the
convergence theorem and Voronovsky-type asymptotic formula. It turns out that the order of
approximation by this family is modified to the order O(n‘(25+1)) when s > 0. Also, we support this
study by applying the sequence L, s(.; x) on two test functions to approximate them. The numerical
results show that the sequence L, (f;x),s >0 is more accurate and faster than the classical
Baskakov sequence.

2. Auxiliary Results

This section gives some Lemmas that are needed in the proof of the main theorems in this study.

Lemma 2.1 [2] For x € [0,),n € N:={1,2,..}and e,,, = t™, m € N°: = N U {0}, we have

(i) Ln(eo; ¥) = 1, Ly(ey;x) = x and Ly (e ) = (1+3)x2 + %

(+ ! (m-1) (n+m-2)! - -
(i) Ly (em; x) = — ;’;,nm ™ (n’il’)';nm_lxm L+ om™?).
Lemma 2.2 [2] For m € N°, the definition of the moment of order m for the sequence L, (f;x) is
given as
K m
Un,m(x) = z pnx(x) - x) .
1
Then Un,o(x) =1, Un,l(x) =0, nz( ) = ( +x)x, n nm+1(x) =x(1+ x){ nm- 1(x) +
U'nm(x)} holds form € N.
Consequently
Q) Up,m (x) are polynomials and degree Uy, ,,, (x) < m.
(i) Upm(x) =0 (W) where [(m + 1)/2] means the integer part of (m + 1)/2.
Lemma 2.3 For x € [0,), e,, = t™and m € N°, we get
1
(i) Lns(eosx) = 1, Lnscel. x) = %, Lns(ez;x) = x% + 2522,
s_q)ym-j 1 _
(i) Ly s (em; %) = = 2L, (] )%{(")J m U= )1 (1) ;1™ + 0(n 2)}
(n+1 1)'
where (n); = D)

Proof: The property (i) follows immediately by the direct evaluation and Lemma 2.1,
hence, the steps are omitted.
To prove (2), using Lemma 2.1
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Lm@mm>=§ﬁ§}%aw<§+MM—1ﬁ
K=0
nsmz ) (x(m* = )" Ly (e x)

nJ(n—1)! n/~1(n—1)! 2
Hence, the consequence (ii) is held.
Note that, from Korovkin’s theorem [3] and the value of L, ;(e,; x) in Lemma 2.3 (i), we have that
the sequence L,, ;(f; x) = f(x) asn — oo whenever s > —1/2.
For m € N°, the moment of order m for the sequence (1.3) is denoted and defined as:

1
Tn,m(x) = Ln,s((t - x)m;x) = WUn,m(x)-

Lemma 2.4 For the function T,, ,,, (x), we have
x(x+1)

(I) TlO(x)_l Tnl(x)_oand TTLZ( )_ n2s+1 "
(i) Wehavens*iT, g () = (1 + 0x {5 T 1 (1) + T ()}, mE N
(iii) ~ The function T, ,,, (x) is a polynomial of degree < m.

_[(2s+1)m+1]

(V)  Tpm() = O(n 2 ) v x € [0, 00).

Proof Using Lemma 2.2 and the direct computation, the consequences (i), (ii) and (iii) can hold
immediately.

For x € [0, ) and applying Lemma 2.2, we get

| x)=——U X) = ()‘n[Z]
( ) m
A17l 2 ) odd

nsm

)
s Azn_(%), m even

where A; and A, are positive constants.

_[(2s+1)m+1]
Hence, T,y (x) = 0 (n 2 )

3. Theoretical Results

Here, we give some theorems in simultaneous approximation for the sequence L, ;(f; x). First, one
shows that the r-th derivative of L, ¢(f; x) is an approximate process of the f ™, r € N.
Theorem 3.1 Suppose that f € C,[0, ) and f ™ exists at x € (0, o), the following limit holds

lim LT3(f2) = F O (0. (3.1)
Also, the limit (3.1) holds uniformly on [a, b] if £ is continuous on the interval (a — u, b + y) €

(0,00),u > 0.
Proof We can expand the function f (t) by Taylor series, as follows

h
f@—ZﬂW@( 2

h=0
where £(t, x) — 0 ast — x. Then,

+ (t —x)"e(t, x),

LD (f;x) = 1 ( ) LO((t = 0" x) + Lt — x)Te(t, x); x) = E; + Ey.
Then, "o
(h)
=YL m(%( Zf(”Z(yxwu@w@
h=0
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From Lemma 2.3, when j < r, we get LY (t/; x) = 0.

Hence,
()]
E, = f 7‘(X)L(r)(tr x)
11 R (O ek VL (s SIC R Rl _
= F;nf( )( -1 f{—( Y x" + > D! x" 1+ 0(n 2)},

we get E; = o(1),j > 0 and, when j = 0, we have
) -1 1
E, = ) |(n® — — ) { I+ 0 (_)}] N f(r)(x) asn — oo.

rl
(t —x)
ns

= L(T) (e(t,x)t—x)";x) = z pr(lr,)((x)s <x + ,x) t—2)"=0

Since ¢ (x + :—sxx) =¢e(x,x) = 0ast — x. Hence, (3.1) is held.

The uniformity property of the limit (3.1) can be followed because & in the proof above is
depending only on ¢, i.e. § is independent of x.

The next theorem is a Voronovsky-type asymptotic formula for L(r) f;x).
Theorem 3.2 Let f € C,[0, ) for some @ > 0 and x € (0, ). If f(r+2)(x) exists, then

lim n25+ (L0 - FO@)

n—
1 1 1
=3 (r—Drf™ ) + Zr(l +2x) D (%) + Ex(l + ) f T2 (x). (3.2)
Also, the limit (3.2) holds uniformly on [a, b] if £ is continuous on the interval (a — u, b + y)

(0,0),u > 0.

Proof: By Taylor's expansion of f(t), we get
r+2

L (f;x) = Z LO((t = )" x) + LUt — 0) ™ 2e(t, x);x) =1, + 1y,

where (¢, x) - 0 ast - x.
By Lemma 2.3, We get

. Zf(l)(x) ( ) " 1O x).

f(rj(x) L") + f((r+1>1()') (( F1)(=0) L5 + 1) (t”l;x)).
+ f((:)z(;) <(r * 2)2(r *D L) + (r + 2) (=) L5 0) + L x)>
MR
+f(<rr++1>1(;c!) (r+1)( x)z r —1)r f(n+(rn__(,1 )+| D) |
ns<r+1>§( i _1;)”1 ](n(:i_) S

r+1

R e e
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NGO =D (1)

(r+2)! 2n’s nJ (n—1)!
0
]=
(r + 2)x% O (1 + 1\ (0° — 1)1 (n+j — 1! |
e () CEEIE
j=0
© (r + 1) (=) (4 - DI +1-DG -1
ns(”l) J n/ (n—1)! (n—1)"2
T r+2) (= D2 (4 + 1)
ns(”z) Z ( ) nJ (n—-1)!
+ (r +2)! T+ 1% (r + 2) (n* =D (n+j -1 -1
" psr+2) J nJ (n—1)! 2
j=2
Using the same technique of Theorem 3.1, we get Lm((t — x)"*2¢(t, x);x) = 0asn — oo. Then,

(3.2) holds.

The uniformity property of the limit (3.2) can be followed from the fact that § in all steps in the
proof above is depending only on ¢, i.e. § is independent of x.
4. Numerical Results

In this part, we give numerical applications of the three sequences L, ;(f;x), s =0,1,1.3,2 to
approximate the two test functions of f(x) = 2cos(2x) and g(x) =|(x — 3)? — 3| for three values
of n=5,10,20. We describe the results by the graphics of each test function and its three
approximations for each value of n.

Example 4.1 Example 4.2
The test function f(x) = 2cos(2x) and x € The test function g(x) =|(x — 3)? — 3| and
[0,20]. x € [0,6]

i—Testfunction §20=5=1—s=13=3=2

§=0=—s=1— s=1.3—s=2\

|—Test function

Figure4.1-(n =5) Figure 4.4- (n = 5)
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T T T T T
0 1 2 3 4 5 6

—Test function —s=0—s=1—s=1.3—s=2 [—Test function —s=0—s=1 *s=1.3—s=zl

Figure 4.2- (n = 10) Figure 45 —(n = 10)

T

T T T T T
0 1 2 3 K 5 6

(—Test function —s=0—s=1—5=13=s=2, [—Test function —s=0—s=1 *'s=1.3—s=2]

Figure 4.3- (n = 20) Figure 4.6- (n = 20)

5. Conclusions
The numerical results showed that the sequence L, ;(f; x) becomes faster and more accurate when

s increases. Hence, this sequence is more efficient than the classical Baskakov sequence L, (f;x)
because it has O(n~(2s*V) when s >0. We recommend using this sequence in the related
applications instead of the classical one.
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