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Abstract

In a previous work, Ali and Ghawi studied closed Rickart modules. The main
purpose of this paper is to define and study the properties of y-closed Rickart
modules .We prove that, Let M and N be two R-modules such that N is singular.
Then M is N-y-closed Rickart module if and only if Hom(M,N) = 0. Also, we
study the direct sum of y-closed Rickart modules.
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1.INTRODUCTION
A module M is called closed Rickart if for any fe€ End(M), anny(f) = Kerf is closed
submodule of M [1]. Recall that a submodule A of an R-module M is called a y-closed submodule

of Mif % is nonsingular [2]. It is known that every y-closed submodule is closed.

In this paper, we give some results on the y-closed Rickart modules .

In §2, we give the definition of the y-closed Rickart modules with some examples and basic
properties. For example, we prove that for two R-modules M and N such that N is nonsingular
module, then M is N-y-closed Rickart module, see proposition (2.3).

In section 3, we study the direct sum of y-closed Rickart module. For example, we prove
that for two R-modules M and N such that M = A@B, where A and B are submodules of M. If M is
N-y-closed Rickart module, then A is N-y-closed Rickart module, see Theorem (3.1).

Throughout this article, R is a ring with identity and M is a unitary left R-module.
S = Endg (M) will denote the endomorphism ring of M.
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§2: Y-Closed Rickart Modules

In this section, we introduce the definition of y-closed Rickart module. Also we give some
basic properties of this concept.
Definition 2.1: Let M and N be two R-modules. We say that M is N-y-closed Rickart module if for
each f € End(M, N), anny(f) = Kerfis a y-closed submodule of M.
For a module M, if Mis M-y-closed Rickart module, then we say that M is y-closed Rickart
module.
Examples 2.2:
1- Consider the modules Z and Q as Z-modules. Then Z is Q-y-closed Rickart module.To show

that, let f: Z — Q be an R-homomorphism, by the first isomorphism theorem %rf =~ Imf. Since Q is

nonsingular, then Imfis nonsingular. Therefore Kerf is a y-closed submodule of Z. Thus Z is Q-y-
closed Rickart module.
2- Consider the modules Z, and Z, asZ-modules and let f:Z, - Z, be a map defined by

f(x) = 3x, Vx € Z,. Hence Kerf = {x € Z,, f(x) =0} = {0,2}. But % =7, and Z, singular as
Z-module. Thus Z, is not Z,-y-closed Rickart module.

Note : A Rickart (closed Rickart) module needs not to be a y-closed Rickart module. For example,
the module Z4 as Z-module is a Rickart (closed Rickart) module, where Zg is semisimple. We
claim that Z¢ is not y-closed Rickart module. To verify this, let f:Z, — Z, be a map defined by
f(x) = 3x,V x € Z. Clearly, f is an R-homomorphism and Kerf = {x € Z,, f(x) = 0} = {0, 2,4}.

By the first isomorphism theorem, {62_261} = 7, and Z, singular as Z-module. Thus Zg is not y-

closed Rickart module.
Proposition 2.3: Let M and N be two R-modules such that N is nonsingular module. Then M is N-
y-closed Rickart module.
Proof: Let M — N be an R-homomorphism. Since N is nonsingular and Imf is a submodule of
N, then Imf is nonsingular module. By the first isomorphism theorem, %rf = Imf. Therefore %rf
is nonsingular. Hence Kerf is a y-closed of M. Thus M is N a y-closed Rickart module.
Corollary 2.4: Let R be an integral domain and let M be torsion free R-module. Then M is a y-
closed Rickart module.

No, we give the following characterization.
Propositions 2.5: Let M and N be two R-modules. Then M is N-y-closed Rickart module if and
only if, for every R-homomorphism f: M — N, Imf is a nonsingular module.
Proof: Let M be N-y-closed Rickart module and let f: M — N be an R-homomorphism. Since M is

N-y-closed Rickart module, then Kerf is a y-closed submodule of M and hence %rf is nonsingular.

By the first isomorphism theorem, %rf = Imf. Thus Imfis nonsingular.

Conversely, let f:M — N be an R-homomorphism. Since Imf is nonsingular and M~ Imf,

kerf
then % is nonsingular. Therefore Kerfis a y-closed submodule of M. Thus M is N-y-closed
Rickart module.

Recall that a module M is said to be K-nonsigular if for every homomorphism f:M - M such
that kerfis essential in M, implies f = 0 [1].
Proposition 2.6: Every y-closed Rickart module is K-nonsigular.
Proof: Suppose that M is a y-closed Rickart module and let f:M — M be an R-homomorphism

such that kerfis essential in M. Then %rf is singular, by [2]. But M is a y-closed Rickart module,

therefore kerf is a y-closed submodule of M, which implies that kerf = M and so f = 0. Thus M is
K-nonsigular.

Propositions 2.7: Let M and N be two R-modules such that N is singular. Then M is N-y-closed
Rickart module if and only if Hom(M, N) = 0.
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Proof: Assume that M is N-y-closed Rickart module and let f:M — N be an R-homomorphism.
Then Kerfis a y-closed submodule of M and hence %rf is nonsingular. So Imf is nonsingular. But

N is singular, therefore Imf = 0. Thus Hom(M, N) = 0.
The converse is clear.

Corollary 2.8: Let A be a proper essential submodule of a module M. Then M is not % -y-closed
Rickart module.
Proof. Since A is an essential submodule of M, then by [2], % is a singular module. Let m: M — %

be the natural epimorphism. It is clear that 0 # m € Hom (M,%) .Thus by Proposition (2.7) Mis

not % -y-closed Rickart module.

§3 DIRECT SUM OF Y-CLOSED RICKART MODULES
In this section, we study the direct sum of the y-closed Rickart modules. We begin with the

following theorem .
Theorem 3.1: Let M and N be two R-modules such that M = A@B, where A and B are
submodules of M. If M is N-y-closed Rickart module, then A is N-y-closed Rickart module.
Proof. Let §: A = N be an R-homomorphism and let p:M — A be the projection map. Consider
the map Y op:M — N. Since M is N-y-closed Rickart module, then Ker( {ro p) is a y-closed
submodule of M. But
ker(Yop) ={x €M, Yop(x) =0}

={a+beA®B, (Y(p(a+b))=0, a€AbeB}

={a+beA®B, Yy(a)=0, a€AbeB}
= kery/®B

_ _A®B _ A . , . )
ey ®B — Kery@B = kerp 5 nonsingular. So Kery is a y-closed submodule of A. Thus A

is N-y-closed Rickart module.

Propositions 3.2: Let M =@ie; Mjand N =@ N; be two R-modules, such that for every
f € Hom(M, N), f(M; ) € N;,Vvi € L. If M; is N; -y-closed Rickart module, Vi € I, then M is N-y-
closed Rickart module.

Proof. Assume that M; is N; -y-closed Rickart module,Vi €1, and let M - N be an R-
homomorphism. We want to show that kerf is a y-closed submodule of M. By our assumption,

Therefore

f|M:Mi—>Ni, Viel It is clear that kerf|M = kerf(M;, for each i€l We claim that

i i

kerf =@ (kerf|M ). To show that, let x € Kerf. Then x = )¢ X;, Where x; € Mi, foreachi €
i
landx; #0 for at most a finite number of i€l and f(x)=0. Then

f(x) = fQierxi) = Qierf(x;) = 0, where f(x;) € N;. But N =@j¢; N;. Therefore f(x;) = 0, Vi€
I. So xj € (KerfnM;), Viel and hence x=Xigxi€ Die Ker(f|M ). Thus

1

Kerf =@ Ker(f|M )- Since M; is Nj-y-closed Rickart module for each i € I, then Ker (f|M Jis a

1 1

y-closed submodule of M;. Therefore Kerf =@ Ker (flM ) is a y-closed submodule of M, by [3].
i

Thus M is N-y-closed Rickart module.

Let M be an R-module, then M is called a y-closed simple if M and 0 are the only y-closed
submodules of M.
Example 3.3:

1- The module Z as Z-module is a y-closed simple module, where é ~7, Yn=2andZ, is
singular as Z-module. Thus nZ is not y-closed submodule of Z,¥n > 2.
2- The module Z4 as Z-module is not y-closed simple module, where {%6} =~ Z¢ and Z, as Z-module

is singular. Hence the submodule {0} of Z is not y-closed submodule.
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Propositions 3.4: Let M be a y-closed simple R-module and let N be an R-module. If M is N-y-
closed Rickart, then either
(1) Hom(M,N)=0 or
(2) Every nonzero R-homomorphism from M to N is a monomorphism.
Proof. Assume that Hom(M,N) # 0 and let f: M — N be a non-zero R-homomorphism. Since M is
N-y-closed Rickart, then kerf is y-closed submodule of M. But M is y-closed simple, therefore
kerf = {0} and f is a monomorphism.

Recall that an R-module M is called a Quasi-Dedekind R-module if every nonzero
endomorphism of M is a monomorphism [4, Th(1.5), CH2].
Corollary 3.5: Let M be a y-closed simple R-module and let N be any R-module such that
Hom(M, N)= 0. If M is N-y-closed Rickart module, then M is Quasi-Dedekind. In particular, if M is
y-closed Rickart, then M is Quasi-Dedekind.
Proof. By Proposition (3.4), there is a monomorphism f:M — N. Assume that M is not Quasi-
Dedekind R-module. So there exists a homomorphism g: M — M such that Kerg # 0. Since f is a
monomorphism, then Ker(fe g) = Kerg # 0. But M is N-y-closed Rickart module, therefore
Kerfo g = Kerg is a y-closed submodule of M. So Kerg = M, where M is a y-closed simple. Thus
g = 0, which is a contradiction. Thus M is a Quasi-Dedekind R-module.
Proposition 3.6: Let M be an R-module. If R is M-y-closed Rickart module, then every cyclic
submodule of M is projective. In particular, if R is y-closed Rickart ring, then every principal
ideal is projective, i.e., R is a principal projective ring.
Proof. Let M be an R-module such that R is M-y-closed Rickart module and let m € M. Now
consider the following short exact sequence

0 — kerf—— R —— Rm — 0
where i is the inclusion homomorphism and f is a map defined by f(r) = rm, Vr € R. It is clear
that f is an epimorphism. Leti,: Rm — M be the inclusion map. Since R is M-y-closed Rickart
module and i, o f:R = M, then Ker(i, o f) isa y-closed ideal of R. But i, is a monomorphism,

therefore Ker(i, o f) = kerf is a y-closed ideal of R. Hence %rf is nonsingular. By the first

isomorphism theorem, %rf =~ Rm. So Rm is nonsingular, by [2,corollary(1.25),p35]. Thus Rm is

projective.

Recall that an R-module M is called dualizable if Hom(M, R)# 0 [5].
Corollary 3.7: Let M be a y-closed simple dualizable R-module. If M is R-y-closed Rickart module,
then M is isomorphic to an ideal of R. Hence, if R has nonzero nilpotent elements, then End(M) is
commutative.
Proof. Since Hom(M, R)# 0, then by Proposition (3.4), M is isomorphic to an ideal I of R and
hence End(M) = End(]). For the second part, since R has no nonzero elements and I is an ideal in
R, then End(]) is commutative [6, propositon(2.1),CH1]. Thus End(M) is commutative.

Recall that an R-module M is called a multiplication module if for each submodule N of M
there exists an ideal I of R such that N =IM, [6].
Corollary 3.8: Let M be a y-closed simple projective R-module and R has no nonzero nilpotent
element. If M is R-y-closed Rickart module and Hom(M,R) # 0, then M is a multiplication
module.
Proof. By the same argument of the proof of Corollary (3.7), End(M) is a commutative
and hence M is a multiplication [7].
Proposition 3.9: Let M be an R-module with the property that the intersection of any two y-
closed submodules of M is a y-closed submodule of M. Then the following statements are
equivalent.
(a) M is a y-closed Rickart module,
(b) The left annihilator in M of every left finitely generated ideal [ = (fy, ..., f,,) of Endg(M) is a y-
closed submodule of M.
Proof. (a) = (b) LetI = (f;, ..., f,) be a left finitely generated ideal of the Endg (M). Since M is a
y-closed Rickart module, then anny(f;) is a y-closed submodule of M, V1 <j < n.Hence
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Nj=; anny(f;) is a y-closed submodule of M, by [3]. But anny(I) = anny(Sfy + -+ Sf;)) =
Nj=, anny (Sf;). Therefore anny(I) is y-closed submodule of M.
(b) = (a) Clear.
Now, we give the following characterization.
Theorem 3.10: Let M; and M, be two R-modules. Then the following statements are equivalent.
(1) M, is M,-y-closed Rickart module;
(2) For every submodule N of M,, every direct summand K of M; is N-y-closed Rickart;
(3) For every direct summand KofM;, every y-closed submodule L of M,and every
f € Homg(M, L). The kernel of the restricted map f|k is a y-closed submodule of K.
Proof. (1) = (2) Let N be submodule of M,. Let K be a direct summand of M; and let f:K - N
be an R-homomrphism. Then M; = K @Kj, for some submodule K;of M. Let g:M; - M, be a
map defined by
(), ifx e K
g@)‘{o HxEKl}
[t is clear that g is an R-homomrphism. Since M; is M,-y-closed Rickart module, then Kerg is a y-
closed submodule of M;. But
Kerg={a+beM,, gla+b)=0, a€eKbekK;}
={a+beM, f(a)=0 ,a€eKbekK,}

= kerf@K,
Therefore kerf®K; is a y-closed submodule of M; and hence ker?/;K is nonsingular. But
1
M, _ K&K, _ K . ] I :
TerfeK, — kerfdK, = kerf * SO Kerf is a y-closed submodule of K. Thus K is N-y-closed Rickart
module.

(2) = (3) Let Kbe a direct summand of M; and L be a submodule of M,. Let f:M; — L be an R-
homomrphism. Consider the map f|g: K — L. Since Kis L-y-closed Rickart module, then Kerf]| is
a y-closed submodule of K.
(3) = (1) Let f: M; » M, be an R-homomrphism. Take L = M, and K= M;. Since f|g:K - L
and K is L-y-closed Rickart module, therefore Kerf is a y-closed submodule of M;. Thus M, is M,-
y-closed Rickart module.
Remark 3.11: Let M and N be two R-modules and f:M — N be an R-homomorphism. Let
Ay=M® 0,By=0 @ N, fiAy > By be a map defined by f(m,0) = (0, f(m)), for every
m € M and
T = {x + f(x),x € Ay}. Then:
1- M@ N=Ay P By
2-fis an R-homomorphism
3- kerf = kerf @ 0
4- Tris a submodule of M @ N
5-Ay + T = Ay @ Imf.

In the following theorem by Ay, By Jf, Tr, we mean the same concepts in the previous above
Remark.

Now, we give another characterization for the relative y-closed Rickart module.
Theorem 3.12: Let M and N be two R-modules. Then M is N-y-closed Rickart module if and only
if for every homomorphism f:M — N, Ay NT¢is y-closed submodule of Ay.
Proof. Let f: M — N be an R-homomorphism. Since M is N-y-closed Rickart module, then Kerfis a
AM _ M®o0 M
Kerf = Kerf® 0 = Frf 1S
nonsingular. So Kerf is a y-closed submodule of Ay. By the same argument of the proof of the
[8,Theorem(2.2)], Kerf = AyNT.

For the converse, let f: M — N be an R-homomorphism. Then by our assumption, AyNT¢ is

a y-closed submodule of Ay. Since Kerf = AyNT;, then Kerf is a y-closed submodule of Ay and

AM . . M® 0 M
hence —= is nonsingular. Therefor
ence Kerf S nonsingula eretore Kerf® 0 Kerf

submodule of M. Thus M is N-y-closed Rickart module.

y-closed submodule of M and hence %rf is nonsingular. Then

IR

is nonsingular. So kerf is a y-closed
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But, we have the following.
Theorem 3.13: Let M and N be two R-modules and let f: M — N be an R-homomorphism.Then M
is N-y-closed Rickart module if and only if Tfis y-closed submodule of Ay + Tf.
Proof. Letf:M — N be an R-homomorphism. Now consider the following short exact sequences:

11 T AM
0 —AyNT A
m N If M Ay NT;
- Ay +T,
00— T Ay + Tp —= MT f 0
f

where iy,i, are the inclusion homomorphisms and m,, 1, are the natural epimorphisms. Since M
. : : M . :
is N-y-closed Rickart, then kerf is y-closed submodule of M and hence — is nonsingular. So

Kerf
A MO0 M g nonsingular. Thus Kerf = AyNT is a y-closed submodule of Ay. Hence
Kerf Kerf® 0  kerf
AM AM ~ AM+Tf

is nonsingular. By the second isomorphism theorem,

is nonsingular. Thus
AMNTe g

Tr is a y-closed submodule of Ay + Ty.
For the converse, let f: M — N be an R-homomorphism. Consider the following short exact
sequences:

AuNTs T

i1 T AM
0 — A, NT, A 0
S M Ay NT;
i b3 Ay + T,
0 — T ——Ay+T —— T
Ty
where iy, i, are the inclusion homomorphisms and m;, 7, are the natural epimorphisms. By the
second isomorphism theorem, v . AM+Tf. Since T is y-closed submodule of A,; + Ty, then
AyNTy Tr
AM+Tf AM

is nonsingular, therefore

T, A NTs is nonsingular. Hence AyNTt is a y-closed submodule of

Ay. So Kerf=Kerf@® 0is a y-closed submodule of Ay =M @ 0. Thus kerf is y-closed
submodule of M.
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