Al-Bahrani and Rahman

Iraqi Journal of Science, 2020, Vol. 61, No. 10, pp: 2681-2686 DOI: 10.24996/ijs.2020.61.10.25

ISSN: 0067-2904

On y-closed Rickart Modules

Bahar hamad Al-Bahrani , Mohammed Qader Rahman*

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received:21/1/2020 A

Accepted: 29/4/2020

Abstract

In a previous work, Ali and Ghawi studied closed Rickart modules. The main purpose of this paper is to define and study the properties of y-closed Rickart modules .We prove that, Let M and N be two R-modules such that N is singular. Then M is N-y-closed Rickart module if and only if Hom(M, N) = 0. Also, we study the direct sum of y-closed Rickart modules.

Keywords: y-closed submodule, y-closed simple, y- closed Rickart modules.

حول المقاسات الريكارتية المغلقة من النمط-y

بهار حمد البحراني ، محمد قادر رحمان *

قسم الرياضيات ، كلية العلوم ، جامعه بغداد ، بغداد ، العراق

الخلاصة

درس الباحثان علي و غاوي المقاسات الريكارتية المغلقة. الهدف الرئيسي من هذا البحث هو تعريف ودراسة خواص المقاسات الريكارتية المغلقة من النمط -y . برهنا على انه اذا كان M و N اي مقاسين بحيث ان N شاذه فان المقاس الريكارتي M يكون مغلق من النمط -y بالنسبة ل N اذا وفقط اذا M . وايضا درسنا الجمع المباشر للمقاسات الريكارتية المغلقة من النمط -y.

1.INTRODUCTION

A module M is called closed Rickart if for any $f \in End(M)$, $ann_M(f) = Kerf$ is closed submodule of M [1]. Recall that a submodule A of an R-module M is called a y-closed submodule of M if $\frac{M}{\Lambda}$ is nonsingular [2]. It is known that every y-closed submodule is closed.

In this paper, we give some results on the y-closed Rickart modules .

In §2, we give the definition of the y-closed Rickart modules with some examples and basic properties. For example, we prove that for two R-modules M and N such that N is nonsingular module, then M is N-y-closed Rickart module, see proposition (2.3).

In section 3, we study the direct sum of y-closed Rickart module. For example, we prove that for two R-modules M and N such that $M = A \oplus B$, where A and B are submodules of M. If M is N-y-closed Rickart module, then A is N-y-closed Rickart module, see Theorem (3.1).

Throughout this article, R is a ring with identity and M is a unitary left R-module. $S = End_R(M)$ will denote the endomorphism ring of M.

^{*}Email: Mohammed_qader_0@yahoo.com

§2: Y-Closed Rickart Modules

In this section, we introduce the definition of y-closed Rickart module. Also we give some basic properties of this concept.

Definition 2.1: Let M and N be two R-modules. We say that M is N-y-closed Rickart module if for each $f \in End(M, N)$, $ann_M(f) = Kerf$ is a y-closed submodule of M.

For a module M, if M is M-y-closed Rickart module, then we say that M is y-closed Rickart module.

Examples 2.2:

1- Consider the modules Z and Q as Z-modules. Then Z is Q-y-closed Rickart module. To show that, let f: $Z \rightarrow Q$ be an R-homomorphism, by the first isomorphism theorem $\frac{Z}{Kerf} \simeq$ Imf. Since Q is nonsingular, then Imf is nonsingular. Therefore Kerf is a y-closed submodule of Z. Thus Z is Q-y-closed Rickart module.

2- Consider the modules Z_4 and Z_2 as Z-modules and let $f: Z_4 \to Z_2$ be a map defined by f(x) = 3x, $\forall x \in Z_4$. Hence Kerf = { $x \in Z_4$, $f(x) = \overline{0}$ } = { $\overline{0}, \overline{2}$ }. But $\frac{Z}{\{\overline{0}, \overline{2}\}} \cong Z_2$ and Z_2 singular as Z-module. Thus Z_4 is not Z_2 -y-closed Rickart module.

Note: A Rickart (closed Rickart) module needs not to be a y-closed Rickart module. For example, the module Z_6 as Z-module is a Rickart (closed Rickart) module, where Z_6 is semisimple. We claim that Z_6 is not y-closed Rickart module. To verify this, let $f: Z_6 \rightarrow Z_6$ be a map defined by $f(x) = 3x, \forall x \in Z_6$. Clearly, f is an R-homomorphism and Kerf = { $x \in Z_4$, f(x) = 0 } = { $\overline{0}, \overline{2}, \overline{4}$ }. By the first isomorphism theorem, $\frac{Z_6}{\overline{(0,\overline{2},\overline{4})}} \cong Z_2$ and Z_2 singular as Z-module. Thus Z_6 is not y-closed Rickart module.

Proposition 2.3: Let M and N be two R-modules such that N is nonsingular module. Then M is N-y-closed Rickart module.

Proof: Let $f: M \to N$ be an R-homomorphism. Since N is nonsingular and Imf is a submodule of N, then Imf is nonsingular module. By the first isomorphism theorem, $\frac{M}{Kerf} \cong$ Imf. Therefore $\frac{M}{Kerf}$ is nonsingular. Hence Kerf is a y-closed of M. Thus M is N a y-closed Rickart module.

Corollary 2.4: Let R be an integral domain and let M be torsion free R-module. Then M is a y-closed Rickart module.

No, we give the following characterization.

Propositions 2.5: Let M and N be two R-modules. Then M is N-y-closed Rickart module if and only if, for every R-homomorphism f: $M \rightarrow N$, Imf is a nonsingular module.

Proof: Let M be N-y-closed Rickart module and let $f: M \to N$ be an R-homomorphism. Since M is N-y-closed Rickart module, then Kerf is a y-closed submodule of M and hence $\frac{M}{\text{kerf}}$ is nonsingular. By the first isomorphism theorem, $\frac{M}{\text{kerf}} \cong$ Imf. Thus Imf is nonsingular.

Conversely, let $f: M \to N$ be an R-homomorphism. Since Imf is nonsingular and $\frac{M}{\text{kerf}} \cong \text{Imf}$, then $\frac{M}{\text{kerf}}$ is nonsingular. Therefore Kerf is a y-closed submodule of M. Thus M is N-y-closed Rickart module.

Recall that a module M is said to be K-nonsigular if for every homomorphism $f: M \to M$ such that kerf is essential in M, implies f = 0 [1].

Proposition 2.6: Every y-closed Rickart module is K-nonsigular.

Proof: Suppose that M is a y-closed Rickart module and let $f: M \to M$ be an R-homomorphism such that kerf is essential in M. Then $\frac{M}{\text{kerf}}$ is singular, by [2]. But M is a y-closed Rickart module, therefore kerf is a y-closed submodule of M, which implies that kerf = M and so f = 0. Thus M is K-nonsigular.

Propositions 2.7: Let M and N be two R-modules such that N is singular. Then M is N-y-closed Rickart module if and only if Hom(M, N) = 0.

Proof: Assume that M is N-y-closed Rickart module and let $f: M \to N$ be an R-homomorphism. Then Kerf is a y-closed submodule of M and hence $\frac{M}{\text{kerf}}$ is nonsingular. So Imf is nonsingular. But N is singular, therefore Imf = 0. Thus Hom(M, N) = 0.

The converse is clear.

Corollary 2.8: Let A be a proper essential submodule of a module M. Then M is not $\frac{M}{A}$ –y-closed Rickart module.

Proof. Since A is an essential submodule of M, then by [2], $\frac{M}{A}$ is a singular module. Let $\pi: M \to \frac{M}{A}$ be the natural epimorphism. It is clear that $0 \neq \pi \in \text{Hom}\left(M, \frac{M}{A}\right)$. Thus by Proposition (2.7) M is not $\frac{M}{A}$ -y-closed Rickart module.

§3 DIRECT SUM OF Y-CLOSED RICKART MODULES

In this section, we study the direct sum of the y-closed Rickart modules. We begin with the following theorem .

Theorem 3.1: Let M and N be two R-modules such that $M = A \oplus B$, where A and B are submodules of M. If M is N-y-closed Rickart module, then A is N-y-closed Rickart module.

Proof. Let $\psi: A \to N$ be an R-homomorphism and let $p: M \to A$ be the projection map. Consider the map $\psi \circ p: M \to N$. Since M is N-y-closed Rickart module, then Ker($\psi \circ p$) is a y-closed submodule of M. But

$$\ker(\psi \circ p) = \{x \in M, \ \psi \circ p(x) = 0\}$$
$$= \{a + b \in A \oplus B, \ (\psi(p(a + b)) = 0, \ a \in A, b \in B\}$$
$$= \{a + b \in A \oplus B, \ \psi(a) = 0, \ a \in A, b \in B\}$$
$$= \ker\psi \oplus B$$

Therefore $\frac{M}{\ker\psi\oplus B} = \frac{A\oplus B}{\ker\psi\oplus B} \cong \frac{A}{\ker\psi}$ is nonsingular. So Ker ψ is a y-closed submodule of A. Thus A is N-y-closed Rickart module.

Propositions 3.2: Let $M = \bigoplus_{i \in I} M_i$ and $N = \bigoplus_{i \in I} N_i$ be two R-modules, such that for every $f \in Hom(M, N)$, $f(M_i) \subseteq N_i$, $\forall i \in I$. If M_i is N_i -y-closed Rickart module, $\forall i \in I$, then M is N-y-closed Rickart module.

Proof. Assume that M_i is N_i -y-closed Rickart module, $\forall i \in I$, and let $f: M \to N$ be an R-homomorphism. We want to show that kerf is a y-closed submodule of M. By our assumption,

 $f|_{\underset{i}{M_{i}}}:M_{i}\rightarrow N_{i},\;\forall i\in I.\;\;It\;\;is\;\;clear\;\;that\;\;kerf|_{\underset{i}{M_{i}}}=kerf\cap M_{i},\;\;for\;\;each\;\;i\in I.\;\;We\;\;claim\;\;that\;\;$

$$\begin{split} & \ker f = \bigoplus_{i \in I} \left(\ker f \right|_{M_i} \right). \text{ To show that, let } x \in \operatorname{Kerf. Then } x = \sum_{i \in I} x_i \text{ , where } x_i \in \operatorname{Mi, for each } i \in I \\ & \operatorname{I} \text{ and } x_i \neq 0 \quad \text{for at most a finite number of } i \in I \quad \text{and } f(x) = 0. \\ & \operatorname{f}(x) = f(\sum_{i \in I} x_i) = \sum_{i \in I} f(x_i) = 0, \text{ where } f(x_i) \in \operatorname{N}_i. \text{ But } \operatorname{N} = \bigoplus_{i \in I} \operatorname{N}_i. \text{ Therefore } f(x_i) = 0, \forall i \in I \\ & \operatorname{I. So } x_i \in (\operatorname{Kerf} \cap \operatorname{M}_i), \forall i \in I \quad \text{and hence } x = \sum_{i \in I} x_i \in \bigoplus_{i \in I} \operatorname{Ker}(f|_{\operatorname{M}_i}). \\ & \text{Thus } \end{split}$$

 $\operatorname{Kerf} = \bigoplus_{i \in I} \operatorname{Ker}(f|_{M_i}). \text{ Since } M_i \text{ is } N_i \text{-y-closed Rickart module for each } i \in I, \text{ then Ker } (f|_{M_i}) \text{ is a } M_i \text{ or } M_i$

y-closed submodule of M_i . Therefore Kerf = $\bigoplus_{i \in I} \text{Ker}(f|_{M_i})$ is a y-closed submodule of M, by [3]. Thus M is N y closed Diskert module

Thus M is N-y-closed Rickart module.

Let M be an R-module, then M is called a y-closed simple if M and 0 are the only y-closed submodules of M.

Example 3.3:

1- The module Z as Z-module is a y-closed simple module, where $\frac{Z}{nZ} \simeq Z_n$, $\forall n \ge 2$ and Z_n is singular as Z-module. Thus nZ is not y-closed submodule of Z, $\forall n \ge 2$.

2- The module Z_6 as Z-module is not y-closed simple module, where $\frac{Z_6}{\{0\}} \simeq Z_6$ and Z_6 as Z-module is singular. Hence the submodule $\{\overline{0}\}$ of Z_6 is not y-closed submodule.

Propositions 3.4: Let M be a y-closed simple R-module and let N be an R-module. If M is N-y-closed Rickart, then either

(1) Hom(M, N)=0 or

(2) Every nonzero R-homomorphism from M to N is a monomorphism.

Proof. Assume that $Hom(M, N) \neq 0$ and let $f: M \rightarrow N$ be a non-zero R-homomorphism. Since M is N-y-closed Rickart, then kerf is y-closed submodule of M. But M is y-closed simple, therefore kerf = {0} and f is a monomorphism.

Recall that an R-module M is called a Quasi-Dedekind R-module if every nonzero endomorphism of M is a monomorphism [4, Th(1.5), CH2].

Corollary 3.5: Let M be a y-closed simple R-module and let N be any R-module such that $Hom(M, N) \neq 0$. If M is N-y-closed Rickart module, then M is Quasi-Dedekind. In particular, if M is y-closed Rickart, then M is Quasi-Dedekind.

Proof. By Proposition (3.4), there is a monomorphism $f: M \to N$. Assume that M is not Quasi-Dedekind R-module. So there exists a homomorphism $g: M \to M$ such that Kerg $\neq 0$. Since f is a monomorphism, then Ker($f \circ g$) = Kerg $\neq 0$. But M is N-y-closed Rickart module, therefore Kerf $\circ g$ = Kerg is a y-closed submodule of M. So Kerg = M, where M is a y-closed simple. Thus g = 0, which is a contradiction. Thus M is a Quasi-Dedekind R-module.

Proposition 3.6: Let M be an R-module. If R is M-y-closed Rickart module, then every cyclic submodule of M is projective. In particular, if R is y-closed Rickart ring, then every principal ideal is projective, i.e., R is a principal projective ring.

Proof. Let M be an R-module such that R is M-y-closed Rickart module and let $m \in M$. Now consider the following short exact sequence

$$0 \longrightarrow \ker f \xrightarrow{i} R \xrightarrow{f} Rm \longrightarrow 0$$

where i is the inclusion homomorphism and f is a map defined by $f(r) = rm, \forall r \in R$. It is clear that f is an epimorphism. Let $i_2: Rm \to M$ be the inclusion map. Since R is M-y-closed Rickart module and $i_2 \circ f: R \to M$, then Ker $(i_2 \circ f)$ is a y-closed ideal of R. But i_2 is a monomorphism, therefore Ker $(i_2 \circ f) = kerf$ is a y-closed ideal of R. Hence $\frac{R}{Kerf}$ is nonsingular. By the first isomorphism theorem, $\frac{R}{Kerf} \simeq Rm$. So Rm is nonsingular, by [2,corollary(1.25),p35]. Thus Rm is projective.

Recall that an R-module M is called dualizable if Hom $(M, R) \neq 0$ [5].

Corollary 3.7: Let M be a y-closed simple dualizable R-module. If M is R-y-closed Rickart module, then M is isomorphic to an ideal of R. Hence, if R has nonzero nilpotent elements, then End(M) is commutative.

Proof. Since $\text{Hom}(M, R) \neq 0$, then by Proposition (3.4), M is isomorphic to an ideal I of R and hence $\text{End}(M) \cong \text{End}(I)$. For the second part, since R has no nonzero elements and I is an ideal in R, then End(I) is commutative [6, propositon(2.1),CH1]. Thus End(M) is commutative.

Recall that an R-module M is called a multiplication module if for each submodule N of M there exists an ideal I of R such that N = IM, [6].

Corollary 3.8: Let M be a y-closed simple projective R-module and R has no nonzero nilpotent element. If M is R-y-closed Rickart module and $Hom(M, R) \neq 0$, then M is a multiplication module.

Proof. By the same argument of the proof of Corollary (3.7), End(M) is a commutative and hence M is a multiplication [7].

Proposition 3.9: Let M be an R-module with the property that the intersection of any two yclosed submodules of M is a y-closed submodule of M. Then the following statements are equivalent.

(a) M is a y-closed Rickart module,

(b) The left annihilator in M of every left finitely generated ideal $I = (f_1, ..., f_n)$ of $End_R(M)$ is a y-closed submodule of M.

Proof. (a) \Rightarrow (b) Let I = (f₁, ..., f_n) be a left finitely generated ideal of the End_R(M). Since M is a y-closed Rickart module, then ann_M(f_i) is a y-closed submodule of M, $\forall 1 \le j \le n$. Hence

 $\bigcap_{j=1}^{n} \operatorname{ann}_{M}(f_{j}) \text{ is a y-closed submodule of } M, \text{ by } [3]. \text{ But } \operatorname{ann}_{M}(I) = \operatorname{ann}_{M}(Sf_{1} + \dots + Sf_{n}) = \bigcap_{j=1}^{n} \operatorname{ann}_{M}(Sf_{j}). \text{ Therefore } \operatorname{ann}_{M}(I) \text{ is y-closed submodule of } M.$

 $(\mathbf{b}) \Rightarrow (\mathbf{a})$ Clear.

Now, we give the following characterization.

Theorem 3.10: Let M_1 and M_2 be two R-modules. Then the following statements are equivalent. (1) M_1 is M_2 -y-closed Rickart module;

(2) For every submodule N of M_2 , every direct summand K of M_1 is N-y-closed Rickart;

(3) For every direct summand $K \text{ of } M_1$, every y-closed submodule L of M_2 and every $f \in \text{Hom}_R(M, L)$. The kernel of the restricted map $f|_K$ is a y-closed submodule of K.

Proof. (1) \Rightarrow (2) Let N be submodule of M_2 . Let K be a direct summand of M_1 and let $f: K \to N$ be an R-homomrphism. Then $M_1 = K \bigoplus K_1$, for some submodule K_1 of M. Let $g: M_1 \to M_2$ be a map defined by

$$g(x) = \left\{ \begin{array}{ll} f(x), & \text{if } x \in K \\ 0 & \text{if } x \in K_1 \end{array} \right\}$$

It is clear that g is an R-homomrphism. Since M_1 is M_2 -y-closed Rickart module, then Kerg is a y-closed submodule of M_1 . But

 $\begin{aligned} & \text{Kerg} = \{a + b \in M_1, \ g(a + b) = 0, & a \in K, b \in K_1\} \\ & = \{a + b \in M_1, \ f(a) = 0 \quad , a \in K, b \in K_1\} \\ & = \text{kerf} \oplus K_1 \end{aligned}$

Therefore kerf $\bigoplus K_1$ is a y-closed submodule of M_1 and hence $\frac{M_1}{\ker f \oplus K_1}$ is nonsingular. But

 $\frac{M_1}{\ker f \oplus K_1} = \frac{K \oplus K_1}{\ker f \oplus K_1} \cong \frac{K}{\ker f}$, so Kerf is a y-closed submodule of K. Thus K is N-y-closed Rickart module.

 $(2) \Rightarrow (3)$ Let K be a direct summand of M_1 and L be a submodule of M_2 . Let $f: M_1 \rightarrow L$ be an R-homomrphism. Consider the map $f|_K: K \rightarrow L$. Since K is L-y-closed Rickart module, then Kerf $|_K$ is a y-closed submodule of K.

 $(3) \Rightarrow (1)$ Let f: $M_1 \rightarrow M_2$ be an R-homomrphism. Take $L = M_2$ and $K = M_1$. Since $f|_K: K \rightarrow L$ and K is L-y-closed Rickart module, therefore Kerf is a y-closed submodule of M_1 . Thus M_1 is M_2 -y-closed Rickart module.

Remark 3.11: Let M and N be two R-modules and $f: M \to N$ be an R-homomorphism. Let $A_M = M \oplus 0$, $B_N = 0 \oplus N$, $\overline{f:} A_M \to B_N$ be a map defined by $\overline{f}(m, 0) = (0, f(m))$, for every $m \in M$ and

 $T_{f} = \{x + \overline{f}(x), x \in A_{M}\}. \text{ Then }:$ 1- M \bigoplus N = A_M \bigoplus B_N 2- \overline{f} is an R-homomorphism

 $3-\ker \overline{f} = \ker f \oplus 0$

4- T_f is a submodule of $M \bigoplus N$

 $5 - A_M + T_f = A_M \bigoplus Im\overline{f}.$

In the following theorem by A_M , B_M , \overline{f} , T_f , we mean the same concepts in the previous above Remark.

Now, we give another characterization for the relative y-closed Rickart module.

Theorem 3.12: Let M and N be two R-modules. Then M is N-y-closed Rickart module if and only if for every homomorphism $f: M \to N$, $A_M \cap T_f$ is y-closed submodule of A_M .

Proof. Let $f: M \to N$ be an R-homomorphism. Since M is N-y-closed Rickart module, then Kerf is a y-closed submodule of M and hence $\frac{M}{\text{Kerf}}$ is nonsingular. Then $\frac{A_M}{\text{Kerf}} = \frac{M \oplus 0}{\text{Kerf} \oplus 0} \simeq \frac{M}{\text{kerf}}$ is nonsingular. So Kerf is a y-closed submodule of A_M . By the same argument of the proof of the [8,Theorem(2.2)], Kerf = $A_M \cap T_f$.

For the converse, let $f: M \to N$ be an R-homomorphism. Then by our assumption, $A_M \cap T_f$ is a y-closed submodule of A_M . Since Ker $\overline{f} = A_M \cap T_f$, then Ker \overline{f} is a y-closed submodule of A_M and hence $\frac{A_M}{\text{Ker}\overline{f}}$ is nonsingular. Therefore $\frac{M \oplus 0}{\text{Ker}f \oplus 0} \cong \frac{M}{\text{Ker}f}$ is nonsingular. So kerf is a y-closed submodule of M. Thus M is N-y-closed Rickart module.

But, we have the following.

Theorem 3.13: Let M and N be two R-modules and let $f: M \to N$ be an R-homomorphism. Then M is N-y-closed Rickart module if and only if T_f is y-closed submodule of $A_M + T_f$.

Proof. Let $f: M \to N$ be an R-homomorphism. Now consider the following short exact sequences:

$$0 \longrightarrow A_{M} \cap T_{f} \xrightarrow{i_{1}} A_{M} \xrightarrow{\pi_{1}} \frac{A_{M}}{A_{M} \cap T_{f}} \longrightarrow 0$$
$$0 \longrightarrow T_{f} \xrightarrow{i_{2}} A_{M} + T_{f} \xrightarrow{\pi_{2}} \frac{A_{M} + T_{f}}{T_{f}} \longrightarrow 0$$

where i_1, i_2 are the inclusion homomorphisms and π_1, π_2 are the natural epimorphisms. Since M is N-y-closed Rickart, then kerf is y-closed submodule of M and hence $\frac{M}{Kerf}$ is nonsingular. So $\frac{A_M}{Kerf} = \frac{M \oplus 0}{Kerf \oplus 0} \simeq \frac{M}{kerf}$ is nonsingular. Thus $Ker\overline{f} = A_M \cap T_f$ is a y-closed submodule of A_M . Hence $\frac{A_M}{A_M \cap T_f}$ is nonsingular. By the second isomorphism theorem, $\frac{A_M}{A_M \cap T_f} \simeq \frac{A_M + T_f}{T_f}$ is nonsingular. Thus T_f is a y-closed submodule of $A_M + T_f$.

For the converse, let $f: M \to N$ be an R-homomorphism. Consider the following short exact sequences:

$$0 \longrightarrow A_M \cap T_f \xrightarrow{i_1} A_M \xrightarrow{\pi_1} \frac{A_M}{A_M \cap T_f} \longrightarrow 0$$
$$0 \longrightarrow T_f \xrightarrow{i_2} A_M + T_f \xrightarrow{\pi_2} \frac{A_M + T_f}{T_f} \longrightarrow 0$$

where i_1, i_2 are the inclusion homomorphisms and π_1, π_2 are the natural epimorphisms. By the second isomorphism theorem, $\frac{A_M}{A_M \cap T_f} \simeq \frac{A_M + T_f}{T_f}$. Since T_f is y-closed submodule of $A_M + T_f$, then $\frac{A_M + T_f}{T_f}$ is nonsingular, therefore $\frac{A_M}{A_M \cap T_f}$ is nonsingular. Hence $A_M \cap T_f$ is a y-closed submodule of A_M . So Ker \overline{f} = Kerf \oplus 0 is a y-closed submodule of $A_M = M \oplus 0$. Thus kerf is y-closed submodule of M.

References

- 1. Ali, M. and Th. Y. Ghawi. 2016. On Closed Rickart Modules. *Iraqi Journal of science*, 57(4B): 2746-2753.
- 2. Goodearl, K.R. 1976. Ring Theory: Nonsingular Ring and Module, Marcel Dekker, New york.
- **3.** Sahib, L.H. **2012**. Extending, Injectivity and Chain Condition On y-closed submodules, M.Sc. Thesis, University of Baghdad.
- 4. Th. Y.Ghawi. 2010. Some Generalizations of Quasi-Dedekind Modules, M.Sc.Thesis, Collage of Education Ibn AL-Haitham, University of Baghdad.
- 5. Zelmanowitz, J. 1971. Commutative Endomorphism Rings, Can. J. Math, XX111(1): 69-76.
- 6. AL-Aubaidy, W.K. 1993. The ring of endomorphism of multiplications modules ,M.Sc. Thesis, University of Baghdad.
- 7. Naoum, A.G. 1991. A note on projective module and multiplications modules , *Beitrage Zur Algebra and Geometry*, 32: 27-32.
- 8. Rahman, M.Q. and Al-Bahrani, B.H. 2019. On Rickart modules, *Iraqi Journal of science*, 60(11): 2473-2477.