On y-closed Rickart Modules

Bahar hamad Al-Bahrani , Mohammed Qader Rahman*
Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received:21/1/2020 Accepted: 29/4/2020

Abstract
In a previous work, Ali and Ghawi studied closed Rickart modules. The main purpose of this paper is to define and study the properties of y-closed Rickart modules. We prove that, Let M and N be two R-modules such that N is singular. Then M is N-y-closed Rickart module if and only if Hom(M,N) = 0. Also, we study the direct sum of y-closed Rickart modules.

Keywords: y-closed submodule, y-closed simple, y-closed Rickart modules.

1. INTRODUCTION
A module M is called closed Rickart if for any \(f \in \text{End}(M) \), \(\text{ann}_M(f) = \text{Ker}(f) \) is closed submodule of M [1]. Recall that a submodule A of an R-module M is called a y-closed submodule of M if \(M/A \) is nonsingular [2]. It is known that every y-closed submodule is closed.

In this paper, we give some results on the y-closed Rickart modules.

In §2, we give the definition of the y-closed Rickart modules with some examples and basic properties. For example, we prove that for two R-modules M and N such that N is nonsingular module, then M is N-y-closed Rickart module, see proposition (2.3).

In section 3, we study the direct sum of y-closed Rickart module. For example, we prove that for two R-modules M and N such that \(M = A \oplus B \), where A and B are submodules of M. If M is N-y-closed Rickart module, then A is N-y-closed Rickart module, see Theorem (3.1).

Throughout this article, R is a ring with identity and M is a unitary left R-module. \(S = \text{End}_R(M) \) will denote the endomorphism ring of M.

*Email: Mohammed_qader_0@yahoo.com
§2: Y-Closed Rickart Modules

In this section, we introduce the definition of y-closed Rickart module. Also we give some basic properties of this concept.

Definition 2.1: Let M and N be two R-modules. We say that M is N-y-closed Rickart module if for each \(f \in \text{End}(M, N) \), \(\text{ann}_M(f) = \text{Ker}f \) is a y-closed submodule of M.

For a module M, if M is M-y-closed Rickart module, then we say that M is y-closed Rickart module.

Examples 2.2:
1- Consider the modules \(Z \) and \(Q \) as Z-modules. Then \(Z \) is Q-y-closed Rickart module. To show that, let \(f: Z \to Q \) be an R-homomorphism, by the first isomorphism theorem, \(\frac{Z}{\text{Ker}f} \cong \text{Im}f \). Since Q is nonsingular, then \(\text{Im}f \) is nonsingular. Therefore \(\text{Ker}f \) is a y-closed submodule of \(Z \). Thus \(Z \) is Q-y-closed Rickart module.

2- Consider the modules \(Z_4 \) and \(Z_2 \) as Z-modules and let \(f: Z_4 \to Z_2 \) be a map defined by \(f(x) = 3x, \forall x \in Z_4 \). Hence \(\text{Ker}f = \{ x \in Z_4, f(x) = 0 \} = \{ 0, 2 \} \). But \(\frac{Z_{\{0,2\}}}{(0,2)} \cong Z_2 \) and \(Z_2 \) singular as Z-module. Thus \(Z_4 \) is not Z-y-closed Rickart module.

Note: A Rickart (closed Rickart) module needs not to be a y-closed Rickart module. For example, the module \(Z_6 \) as Z-module is a Rickart (closed Rickart) module, where \(Z_6 \) is semisimple. We claim that \(Z_6 \) is not y-closed Rickart module. To verify this, let \(f: Z_6 \to Z_6 \) be a map defined by \(f(x) = 3x, \forall x \in Z_6 \). Clearly, \(f \) is an R-homomorphism and \(\text{Ker}f = \{ x \in Z_4, f(x) = 0 \} = \{ 0, 2, 4 \} \). By the first isomorphism theorem, \(\frac{Z_6}{(0,2,4)} \cong Z_2 \) and \(Z_2 \) singular as Z-module. Thus \(Z_6 \) is not y-closed Rickart module.

Proposition 2.3: Let M and N be two R-modules such that N is nonsingular module. Then M is N-y-closed Rickart module.

Proof: Let \(f: M \to N \) be an R-homomorphism. Since N is nonsingular and \(\text{Im}f \) is a submodule of N, then \(\text{Im}f \) is nonsingular module. By the first isomorphism theorem, \(\frac{M}{\text{Ker}f} \cong \text{Im}f \). Therefore \(\frac{M}{\text{Ker}f} \) is nonsingular. Hence \(\text{Ker}f \) is a y-closed of M. Thus M is N a y-closed Rickart module.

Corollary 2.4: Let R be an integral domain and let M be torsion free R-module. Then M is a y-closed Rickart module.

No, we give the following characterization.

Propositions 2.5: Let M and N be two R-modules. Then M is N-y-closed Rickart module if and only if, for every R-homomorphism \(f: M \to N \), \(\text{Im}f \) is a nonsingular module.

Proof: Let M be N-y-closed Rickart module and let \(f: M \to N \) be an R-homomorphism. Since M is N-y-closed Rickart module, then \(\text{Ker}f \) is a y-closed submodule of M and hence \(\frac{M}{\text{Ker}f} \) is nonsingular. By the first isomorphism theorem, \(\frac{M}{\text{Ker}f} \cong \text{Im}f \). Thus \(\text{Im}f \) is nonsingular.

Conversely, let \(f: M \to N \) be an R-homomorphism. Since \(\text{Im}f \) is nonsingular and \(\frac{M}{\text{Ker}f} \cong \text{Im}f \), then \(\frac{M}{\text{Ker}f} \) is nonsingular. Therefore \(\text{Ker}f \) is a y-closed submodule of M. Thus M is N-y-closed Rickart module.

Recall that a module M is said to be K-nonsigular if for every homomorphism \(f: M \to M \) such that \(\text{Ker}f \) is essential in M, implies \(f = 0 \) [1].

Proposition 2.6: Every y-closed Rickart module is K-nonsigular.

Proof: Suppose that M is a y-closed Rickart module and let \(f: M \to M \) be an R-homomorphism such that \(\text{Ker}f \) is essential in M. Then \(\frac{M}{\text{Ker}f} \) is singular, by [2]. But M is a y-closed Rickart module, therefore \(\text{Ker}f \) is a y-closed submodule of M, which implies that \(\text{Ker}f = M \) and so \(f = 0 \). Thus M is K-nonsigular.

Propositions 2.7: Let M and N be two R-modules such that N is singular. Then M is N-y-closed Rickart module if and only if \(\text{Hom}(M, N) = 0 \).
Proof: Assume that \(M \) is \(N \)-y-closed Rickart module and let \(f: M \to N \) be an R-homomorphism. Then \(\ker f \) is a \(y \)-closed submodule of \(M \) and hence \(\frac{M}{\ker f} \) is nonsingular. So \(\text{Im } f \) is nonsingular. But \(N \) is singular, therefore \(\text{Im } f = 0 \). Thus \(\text{Hom}(M, N) = 0 \).

The converse is clear.

Corollary 2.8: Let \(A \) be a proper essential submodule of a module \(M \). Then \(M \) is not \(\frac{M}{A} \)-y-closed Rickart module.

Proof. Since \(A \) is an essential submodule of \(M \), then by [2], \(\frac{M}{A} \) is a singular module. Let \(\pi: M \to \frac{M}{A} \) be the natural epimorphism. It is clear that \(0 \neq \pi \in \text{Hom} \left(M, \frac{M}{A} \right) \). Thus by Proposition (2.7) \(M \) is not \(\frac{M}{A} \)-y-closed Rickart module.

§3 DIRECT SUM OF Y-CLOSED RICKART MODULES

In this section, we study the direct sum of the \(y \)-closed Rickart modules. We begin with the following theorem.

Theorem 3.1: Let \(M \) and \(N \) be two R-modules such that \(M = A \oplus B \), where \(A \) and \(B \) are submodules of \(M \). If \(M \) is \(N \)-y-closed Rickart module, then \(A \) is \(N \)-y-closed Rickart module.

Proof. Let \(\psi: A \to N \) be an R-homomorphism and let \(p: M \to A \) be the projection map. Consider the map \(\psi \circ p: M \to N \). Since \(M \) is \(N \)-y-closed Rickart module, then \(\ker (\psi \circ p) \) is a \(y \)-closed submodule of \(M \). But

\[
\ker (\psi \circ p) = \{ x \in M \mid \psi \circ p(x) = 0 \} = \{ a + b \in A \oplus B \mid (\psi(p(a + b))) = 0, \ a \in A, b \in B \}
\]

\[
= \{ a + b \in A \oplus B \mid \psi(a) = 0, \ a \in A, b \in B \} = \ker \psi \oplus B
\]

Therefore \(\frac{M}{\ker \psi \oplus B} = \frac{A \oplus B}{\ker \psi \oplus B} \cong \frac{A}{\ker \psi} \) is nonsingular. So \(\ker \psi \) is a \(y \)-closed submodule of \(A \). Thus \(A \) is \(N \)-y-closed Rickart module.

Propositions 3.2: Let \(M = \bigoplus_{i \in I} M_i \) and \(N = \bigoplus_{i \in I} N_i \) be two R-modules, such that for every \(f \in \text{Hom}(M, N), f(M_i) \subseteq N_i, \forall i \in I \). If \(M_i \) is \(N_i \)-y-closed Rickart module, \(\forall i \in I \), then \(M \) is \(N \)-y-closed Rickart module.

Proof. Assume that \(M_i \) is \(N_i \)-y-closed Rickart module, \(\forall i \in I \), and let \(f: M \to N \) be an R-homomorphism. We want to show that \(\ker f \) is a \(y \)-closed submodule of \(M \). By our assumption,

\[
f |_{M_i}: M_i \to N_i, \forall i \in I.
\]

It is clear that \(\ker f |_{M_i} = \ker f \cap M_i \), for each \(i \in I \). We claim that

\[
\ker f = \bigoplus_{i \in I} (\ker f |_{M_i}).
\]

To show that, let \(x \in \ker f \). Then \(x = \sum_{i \in I} x_i \), where \(x_i \in M_i \), for each \(i \in I \) and \(x_i \neq 0 \) for at most a finite number of \(i \in I \) and \(f(x) = 0 \). Then \(f(x) = f(\sum_{i \in I} x_i) = \sum_{i \in I} f(x_i) = 0 \), where \(f(x_i) \in N_i \). But \(N = \bigoplus_{i \in I} N_i \). Therefore \(f(x_i) = 0, \forall i \in I \). So \(x_i \in (\ker f \cap M_i), \forall i \in I \) and hence \(x = \sum_{i \in I} x_i \in \bigoplus_{i \in I} \ker (f |_{M_i}) \). Thus \(\ker f = \bigoplus_{i \in I} \ker (f |_{M_i}) \). Since \(M_i \) is \(N_i \)-y-closed Rickart module for each \(i \in I \), then \(\ker (f |_{M_i}) \) is a \(y \)-closed submodule of \(M_i \). Therefore \(\ker f = \bigoplus_{i \in I} \ker (f |_{M_i}) \) is a \(y \)-closed submodule of \(M \), by [3]. Thus \(M \) is \(N \)-y-closed Rickart module.

Let \(M \) be an R-module, then \(M \) is called a \(y \)-closed simple if \(M \) and \(0 \) are the only \(y \)-closed submodules of \(M \).

Example 3.3:

1. The module \(Z \) as \(Z \)-module is a \(y \)-closed simple module, where \(\frac{Z}{nZ} \cong Z_n, \forall n \geq 2 \) and \(Z_n \) is singular as \(Z \)-module. Thus \(nZ \) is not \(y \)-closed submodule of \(Z, \forall n \geq 2 \).

2. The module \(Z_6 \) as \(Z \)-module is not \(y \)-closed simple module, where \(\frac{Z_6}{\{0\}} \cong Z_6 \) and \(Z_6 \) as \(Z \)-module is singular. Hence the submodule \(\{0\} \) of \(Z_6 \) is not \(y \)-closed submodule.
Propositions 3.4: Let M be a y-closed simple R-module and let N be an R-module. If M is N-y-closed Rickart, then either

1. $\text{Hom}(M,N)=0$ or
2. Every nonzero R-homomorphism from M to N is a monomorphism.

Proof. Assume that $\text{Hom}(M,N) \neq 0$ and let $f : M \to N$ be a non-zero R-homomorphism. Since M is N-y-closed Rickart, then $\ker f$ is y-closed submodule of M. But M is y-closed simple, therefore $\ker f = \{0\}$ and f is a monomorphism.

Recall that an R-module M is called a Quasi-Dedekind R-module if every nonzero endomorphism of M is a monomorphism [4, Th(1.5), CH2].

Corollary 3.5: Let M be a y-closed simple R-module and let N be any R-module such that $\text{Hom}(M,N) \neq 0$. If M is N-y-closed Rickart module, then M is Quasi-Dedekind. In particular, if M is y-closed Rickart, then M is Quasi-Dedekind.

Proof. By Proposition (3.4), there is a monomorphism $f : M \to N$. Assume that M is not Quasi-Dedekind R-module. So there exists a homomorphism $g : M \to N$ such that $\ker g \neq 0$. Since f is a monomorphism, then $\ker (f \circ g) = \ker g \neq 0$. But M is N-y-closed Rickart module, therefore $\ker f \circ g = \ker g$ is a y-closed submodule of M. So $\ker g = M$, where M is a y-closed simple. Thus $g = 0$, which is a contradiction. Thus M is a Quasi-Dedekind R-module.

Proposition 3.6: Let M be an R-module. If R is M-y-closed Rickart module, then every cyclic submodule of M is projective. In particular, if R is y-closed Rickart ring, then every principal ideal is projective, i.e., R is a principal projective ring.

Proof. Let M be an R-module such that R is M-y-closed Rickart module and let $m \in M$. Now consider the following short exact sequence

$$0 \longrightarrow \ker f \xrightarrow{i} R \xrightarrow{f} Rm \longrightarrow 0$$

where i is the inclusion homomorphism and f is a map defined by $f(r) = rm, \forall r \in R$. It is clear that f is an epimorphism. Let $i_2 : Rm \to M$ be the inclusion map. Since R is M-y-closed Rickart module and $i_2 \circ i : R \to M$, then $\ker (i_2 \circ i)$ is a y-closed ideal of R. But i_2 is a monomorphism, therefore $\ker (i_2 \circ f) = \ker f$ is a y-closed ideal of R. Hence $R_{\ker f}$ is nonsingular. By the first isomorphism theorem, $R_{\ker f} \cong Rm$. So Rm is nonsingular, by [2, corollary(1.25), p35]. Thus Rm is projective.

Recall that an R-module M is called dualizable if $\text{Hom}(M,R) \neq 0$ [5].

Corollary 3.7: Let M be a y-closed simple dualizable R-module. If M is R-y-closed Rickart module, then M is isomorphic to an ideal of R. Hence, if R has nonzero nilpotent elements, then $\text{End}(M)$ is commutative.

Proof. Since $\text{Hom}(M,R) \neq 0$, then by Proposition (3.4), M is isomorphic to an ideal I of R and hence $\text{End}(M) \cong \text{End}(I)$. For the second part, since R has no nonzero elements and I is an ideal in R, then $\text{End}(I)$ is commutative [6, proposition(2.1), CH1]. Thus $\text{End}(M)$ is commutative.

Recall that an R-module M is called a multiplication module if for each submodule N of M there exists an ideal I of R such that $N = IM$, [6].

Corollary 3.8: Let M be a y-closed simple projective R-module and R has no nonzero nilpotent element. If M is R-y-closed Rickart module and $\text{Hom}(M,R) \neq 0$, then M is a multiplication module.

Proof. By the same argument of the proof of Corollary (3.7), $\text{End}(M)$ is a commutative and hence M is a multiplication module [7].

Proposition 3.9: Let M be an R-module with the property that the intersection of any two y-closed submodules of M is a y-closed submodule of M. Then the following statements are equivalent.

(a) M is a y-closed Rickart module,
(b) The left annihilator in M of every left finitely generated ideal $I = (f_1, ..., f_n)$ of $\text{End}_R(M)$ is a y-closed submodule of M.

Proof. (a) \Rightarrow (b) Let $I = (f_1, ..., f_n)$ be a left finitely generated ideal of the $\text{End}_R(M)$. Since M is a y-closed Rickart module, then $\text{ann}_M(f_i)$ is a y-closed submodule of M, $\forall \ 1 \leq j \leq n$. Hence
\(\cap_{i=1}^{n} \text{ann}_M(f_i) \) is a y-closed submodule of \(M \), by [3]. But \(\text{ann}_M(I) = \text{ann}_M(Sf_1 + \cdots + Sf_n) = \cap_{i=1}^{n} \text{ann}_M(Sf_i) \). Therefore \(\text{ann}_M(I) \) is y-closed submodule of \(M \).

(b) \(\Rightarrow \) (a) Clear.

Now, we give the following characterization.

Theorem 3.10: Let \(M_1 \) and \(M_2 \) be two \(R \)-modules. Then the following statements are equivalent.

1. \(M_1 \) is \(M_2 \)-y-closed Rickart module;
2. For every submodule \(N \) of \(M_2 \), every direct summand \(K \) of \(M_1 \) is \(N \)-y-closed Rickart;
3. For every direct summand \(K \) of \(M_1 \), every y-closed submodule \(L \) of \(M_2 \) and every \(f \in \text{Hom}_R(M,L) \). The kernel of the restricted map \(f|_K \) is a y-closed submodule of \(K \).

Proof. (1) \(\Rightarrow \) (2) Let \(N \) be submodule of \(M_2 \). Let \(K \) be a direct summand of \(M_1 \) and let \(f: K \to N \) be an \(R \)-homomorphism. Then \(M_1 = K \oplus K_1 \), for some submodule \(K_1 \) of \(M \). Let \(g: M_1 \to M_2 \) be a map defined by

\[
g(x) = \begin{cases} f(x), & \text{if } x \in K \\ 0, & \text{if } x \in K_1 \end{cases}
\]

It is clear that \(g \) is an \(R \)-homomorphism. Since \(M_1 \) is \(M_2 \)-y-closed Rickart module, then \(\ker g \) is a y-closed submodule of \(M_1 \). But

\[
\ker g = \{ a + b \in M_1, \ g(a + b) = 0, \ a \in K, b \in K_1 \} = \{ a + b \in M_1, \ f(a) = 0, \ a \in K, b \in K_1 \} = \ker f \oplus K_1
\]

Therefore \(\ker f \oplus K_1 \) is a y-closed submodule of \(M_1 \) and hence \(\frac{M_1}{\ker f \oplus K_1} \) is nonsingular. But \(\frac{M_1}{\ker f \oplus K_1} = \frac{K \oplus K_1}{\ker f} \cong \frac{K}{\ker f} \), so \(\ker f \) is a y-closed submodule of \(K \). Thus \(K \) is \(N \)-y-closed Rickart module.

(2) \(\Rightarrow \) (3) Let \(K \) be a direct summand of \(M_1 \) and \(L \) be a submodule of \(M_2 \). Let \(f: M_1 \to L \) be an \(R \)-homomorphism. Consider the map \(f|_K: K \to L \). Since \(K \) is \(L \)-y-closed Rickart module, then \(\ker f|_K \) is a y-closed submodule of \(K \).

(3) \(\Rightarrow \) (1) Let \(f: M_1 \to M_2 \) be an \(R \)-homomorphism. Take \(L = M_2 \) and \(K = M_1 \). Since \(f|_K: K \to L \) and \(K \) is \(L \)-y-closed Rickart module, therefore \(\ker f \) is a y-closed submodule of \(M_1 \). Thus \(M_1 \) is \(M_2 \)-y-closed Rickart module.

Remark 3.11: Let \(M \) and \(N \) be two \(R \)-modules and \(f: M \to N \) be an \(R \)-homomorphism. Let \(A_M = M \oplus 0 \), \(B_N = 0 \oplus N \), \(\tilde{f}: A_M \to B_N \) be a map defined by \(\tilde{f}(m,0) = (0,f(m)) \), for every \(m \in M \) and

\[
T_f = \{ x + f(x), x \in A_M \}. Then :
1. \(M \oplus N = A_M \oplus B_N \)
2. \(T_f \) is an \(R \)-homomorphism
3. \(\ker \tilde{f} = \ker f \oplus 0 \)
4. \(T_f \) is a submodule of \(M \oplus N \)
5. \(A_M + T_f = A_M \oplus \text{Im} f \).

In the following theorem by \(A_M, B_M, \tilde{T}_f, T_f \), we mean the same concepts in the previous above Remark.

Now, we give another characterization for the relative y-closed Rickart module.

Theorem 3.12: Let \(M \) and \(N \) be two \(R \)-modules. Then \(M \) is \(N \)-y-closed Rickart module if and only if for every homomorphism \(f: M \to N \), \(A_M \cap T_f \) is y-closed submodule of \(A_M \).

Proof. Let \(f: M \to N \) be an \(R \)-homomorphism. Since \(M \) is \(N \)-y-closed Rickart module, then \(\ker \tilde{f} \) is a y-closed submodule of \(M \) and hence \(\frac{M}{\ker \tilde{f}} \) is nonsingular. Then \(\frac{A_M}{\ker \tilde{f}} = \frac{M \oplus 0}{\ker \tilde{f} \oplus 0} \cong \frac{M}{\ker \tilde{f}} \) is nonsingular. So \(\ker \tilde{f} \) is a y-closed submodule of \(A_M \). By the same argument of the proof of the [8,Theorem(2.2)], \(\ker \tilde{f} = A_M \cap T_f \).

For the converse, let \(f: M \to N \) be an \(R \)-homomorphism. Then by our assumption, \(A_M \cap T_f \) is a y-closed submodule of \(A_M \). Since \(\ker \tilde{f} = A_M \cap T_f \) then \(\ker \tilde{f} \) is a y-closed submodule of \(A_M \) and hence \(\frac{A_M}{\ker \tilde{f}} \) is nonsingular. Therefore \(\frac{M \oplus 0}{\ker \tilde{f} \oplus 0} \cong \frac{M}{\ker \tilde{f}} \) is nonsingular. So \(\ker \tilde{f} \) is a y-closed submodule of \(M \). Thus \(M \) is \(N \)-y-closed Rickart module.
But, we have the following.

Theorem 3.13: Let M and N be two R-modules and let \(f: M \rightarrow N \) be an R-homomorphism. Then M is N-\(y \)-closed Rickart module if and only if \(T_f \) is \(y \)-closed submodule of \(A_M + T_f \).

Proof. Let \(f: M \rightarrow N \) be an R-homomorphism. Now consider the following short exact sequences:

\[
0 \rightarrow A_M \cap T_f \xrightarrow{i_1} A_M \xrightarrow{\pi_1} A_M/ T_f \xrightarrow{\pi_2} A_M + T_f/ T_f \rightarrow 0
\]

where \(i_1, i_2 \) are the inclusion homomorphisms and \(\pi_1, \pi_2 \) are the natural epimorphisms. Since M is N-\(y \)-closed Rickart, then kerf is \(y \)-closed submodule of M and hence \(\frac{M}{\ker f} \) is nonsingular. So \(A_M/ T_f = \frac{M}{\ker f} \), \(M \oplus 0 \) is nonsingular. Thus \(\text{Ker} f = A_M \cap T_f \) is a \(y \)-closed submodule of \(A_M \). Hence \(\frac{A_M}{A_M \cap T_f} \) is nonsingular. By the second isomorphism theorem, \(\frac{A_M}{A_M \cap T_f} \approx \frac{A_M + T_f}{T_f} \) is nonsingular. Thus \(T_f \) is a \(y \)-closed submodule of \(A_M + T_f \).

For the converse, let \(f: M \rightarrow N \) be an R-homomorphism. Consider the following short exact sequences:

\[
0 \rightarrow A_M \cap T_f \xrightarrow{i_1} A_M \xrightarrow{\pi_1} A_M/ T_f \xrightarrow{\pi_2} A_M + T_f/ T_f \rightarrow 0
\]

where \(i_1, i_2 \) are the inclusion homomorphisms and \(\pi_1, \pi_2 \) are the natural epimorphisms. By the second isomorphism theorem, \(\frac{A_M}{A_M \cap T_f} \approx \frac{A_M + T_f}{T_f} \). Since \(T_f \) is \(y \)-closed submodule of \(A_M + T_f \), then \(\frac{A_M + T_f}{T_f} \) is nonsingular, therefore \(\frac{A_M}{A_M \cap T_f} \) is nonsingular. Hence \(A_M \cap T_f \) is a \(y \)-closed submodule of \(A_M \). So \(\text{Ker} f = \text{Ker} f \oplus 0 \) is a \(y \)-closed submodule of \(A_M = M \oplus 0 \). Thus kerf is \(y \)-closed submodule of M.

References