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Abstract  
     In this paper, we obtain a complete characterization for the norm and the 

minimum norm attainment sets of bounded linear operators on a real Banach spaces 

at a vector in the unit sphere, using approximate 𝜖-Birkhoff-James orthogonality 

techniques. As an application of the results, we obtained a useful characterization of 

bounded linear operators on a real Banach spaces. Also, using approximate 𝜖-

Birkhoff -James orthogonality proved that a Banach space           is a reflexive if 

and only if for any closed hyperspace   of  , there exists a rank one linear operator 

          such that     , for some vectors   in     and         such 

that      
𝜖
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التقريبي   𝝐   -جيمس  -دراسة تحليلية حهل تعامد بيركهف   
 

د، بثينة عبد الحدن أحم*سعيد عبد الكاظم جهني  

، بغداد، العراقالرياضيات, كلية العلهم, جامعة بغدادقدم   

 الخلاصه
في ىذا البحث حصلظا على تطثيل كامل لطجطهعة تحقيق الطعيار والحد الأدنى لطجطهعة تحقيق الطعيار        

كهف في فضاء بظاخ لطتجيات من الكرة الهاحدية باستخدام مفيهم تعامد بير 𝜖 .التقريبيللطؤثرات الخظية الطقيدة 
وكتظبيق ليذه الظتائج حصلظا على تطثيل للطؤثرات الخظية الطقيدة على فضاء بظاخ الحقيقي.    𝝐 -جيطس  –

التقريبي, برىظا  أن  فضاء  بظاخ  الحقيقي ىه فضاء انعكاسي أذا وفقط –جيطس  –وباستخدام  تعامد بيركهف 
على فضاء بظاخ بحيث أن مجطهعة أذا كان لكل فضاء زائدي مغلق يهجد مؤثر خظي مقيد غير صفري 

تحقيق الطعيار تكافئ مجطهعة الطتجية وسالب الطتجو لبعض متجيات الكرة الهاحدية بالإضافة الى أن تقاطع 
 الكرة الهاحدية مع الفضاء الزائدي يكافئ الحد الأدنى لطجطهعة تحقيق الطعيار.                                    

1. Introduction 

     An impressive growth occurred in the applications of the Birkhoff-James orthogonality that was 

first introduced in 1935 and used to solve particular problems in the study of geometry of a Banach 

spaces. In  

recent times, several authors explored this topic  -   and obtained many interesting results involving 

orthogonality of a bounded linear operators. Several recent papers       were devoted to the 

description and classification of the following types of orthogonality in a real normed space          .                                                                 
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        In this paper, we focus on a specific type of orthogonality which was submitted by Chmielinski . 

in 2005 and called approximate 𝜖- - -orthogonality. The other types are seen as tools to enable us to 

resolve some of the outstanding issues in this work. In 2017, Chmielinski  et al characterized the 

approximate 𝜖- - - orthogonality and obtained a sufficient condition for using linear functional on a 

real normed space          . In 2018, Kallol P. et al characterized the approximate 𝜖- - - 

orthogonality of bounded linear operators on a reflexive real Banach space           using the norm 

attainment set. While, a complete characterization of approximate 𝜖- - - orthogonality of bounded 

linear operators on an infinite dimensional real Banach spaces was obtained     . It will also be 

interesting to conduct an analogous study for an approximate 𝜖- - -orthogonality in other types of 

spaces such as modular spaces      and general fuzzy normed spaces     .  To proceed in details, we 

fix some notations and terminologies.                                                                                  

Throughout this paper, we will be working with  real normed spaces.                               

Let                   and                   be the unit ball and unit sphere, 

respectively, of          . Let         (       ) denote the set of all bounded (compact) linear 

operators from           to          which is the normed space with the supremum norm.  

       In this paper, as an application of the approximate 𝜖- - -orthogonality, we obtain a complete 

characterization of reflexive Banach spaces in terms of the norm and the minimum norm attainment 

sets of rank one bounded linear operators on the space.    

2. Preliminaries and set background material  

        In this section, we recall some concepts  and results related to the  - - orthogonality that will be 

used in the sequel of approximate 𝜖- - -orthogonality. 

     The following definition is necessary to obtain the desired characteristics required in this paper. 

Definition 2.1.         : Let           ,           be two real Banach spaces and           . 

Then: 

i.    is said to be attains norm at a vector   in   , if                  . 

ii. Let    denotes the set of all vectors   in    at which   attains norm, i.e.,                                                                                                                                 

                            . 

       Apart from those previously reported     , some results on the characterization of were also 

obtained in another work     . The set    plays an important role in characterizing  - -orthogonal of 

bounded linear operators and was obtained in an earlier work     .  
iii. Following similar procedure, the notation of the minimum norm attainment set    for   
        is defined in the following way:                      

                        ,  where                            . 
Also, the set    plays a very crucial role in determining the geometry of        .                                                                                                      

        In this paper, we obtain a complete characterization of the    by applying the concept of 

approximate 𝜖- - -orthogonality. We further study the relative position of    and    within this 

concept. The existence of at least one such vector is guarantee by Hahn Banach Theorem.   

Definition 2.2          : For any two vectors   and   in a normed linear space           :    

i.    is said to be orthogonal to   in the sense of Birkhoff-James (for brief,  - -orthogonality) and 

written as      , if the following is true: 

               for all    . 

ii.    is said to be orthogonal to   in the sense of Robert (for brief,  - orthogonality) and written as 

    , if the following is true: 

                  for all    . 

iii.   is said to be approximate 𝜖-Birkhoff-James orthogonal to   in the sense of Chmielinski, (for 

brief, approximate 𝜖- - -orthogonality) and written as      
𝜖

 , if the following is true:                                  

       
        

   𝜖           for all    . 

Otherwise,   is not approximate 𝜖- - -orthogonality to   and has the symbol       
𝜖   .  The relation 

between these concepts and several of their properties can be found in the literature                 . 

Obviously, the relationship between notations is given as follows              
𝜖

.  Later on, 

Chmielinski J.    , introduced another notion      
𝜖

: 
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Definition 2.3    : For any vector   in a normed linear space          , a set      
𝜖

       

     
𝜖

    is said to be an approximate 𝜖- - -orthogonal complement of  .  

Before going ahead with      
𝜖

, we are getting some results which appear to show some sufficient and 

necessary conditions about reaching the desired result, which states that        
𝜖

          
𝜖

 for 

every     .  

     Let us also note that the following concepts are important in this paper:  

Definition 2.4     : A subspace   of linear space   is said to be a hyperspace, if   is a maximal 

subspace with co-dimension 1. 

Theorem 2.5     :  
i.   For any linear functional     on a normed linear space          , the null space of   denoted as 

     is a hyperspace. 

ii.  A hyperspace   of   is closed if and only if it is a kernel of a linear functional     on   . 

iii. A subspace   of   is hyperspace if and only if              for some vectors    in  . 

Definition 2.6.      : Let           ,          be two Banach spaces and          . Then: 

i.    is said to be a finite rank operator, if it is a linear operator whose range is finite dimensional 

(i.e.       has a finite dimension). 

ii.   is said to be a compact linear operator, if the image under   for any bounded subset   of   is 

relatively compact (has compact closure) of  .   

Remark 2.7.     :  
Any bounded linear operator of a finite-rank is compact. 

      Among others, there are constructions of a rank one linear operator (          that have one 

rank, if dimension of       ). We connect this concept with several notions to study some 

properties of a reflexive Banach space          . We discuss many of these results and give proofs. 

Let us finish the introduction with the needed definition.  

Definition 2.8     : A normed linear space           is a strictly convex, if for any two vectors   and 

  in    with    , then          . 

Theorem 2.9     : A normed linear space           is a strictly convex if and only if for any vector   

in    there exists            which attains norm only at vectors of the form    with | |   . 

     As an application of this definition, we obtain a complete characterization of reflexive Banach 

spaces in terms of the sets    and    of the rank one linear operators and the concept of approximate 

𝜖- - - orthogonality.                                                                                                                                       

     In order to prove the desired results, we make use of the following easy proposition, stated 

previously    . 
Proposition 2.10    : For any two vectors   and   in a normed linear space            some properties 

of approximate 𝜖- - - orthogonality are:  

i.       
𝜖

  and      
𝜖

   for all   in   and      
𝜖

  , if and only if    . 

ii. Note that the relation     
𝜖

 is homogenous, but neither symmetric nor additive.   

iii. For any non-zero vectors   and   in  , if      
𝜖

  , then   and   are linearly independent. 

Theorem 2.11     : For any two vectors   and   in a normed linear space          ,      
𝜖

  if and 

only if there exists               such that        and         𝜖     .                                         

Theorem 2.12.     : Let           be a normed linear space. For any two non-zero linear functional  

     on  ,       if and only if either of the conditions in     or in      holds:                                                                                                         

i. There exists         in    such that        𝔽         and        . 

ii. There exist sequences         and         in    such that: 

    |     |        and |     |        as    . 

                  and               for all    . 

Theorem 2.13.     : For any linear functional     on a Banach space          , |    |  
           if and only if      , where   is any closed hyperspace of   with        for all 

   . 
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         The following theorem          gives necessary and sufficient conditions of a Banach space 

          to be reflexive. 

Theorem 2.14.        : A Banach space           is reflexive if and only if one of the following 

conditions is satisfied:                                                                                                                                    

i.   For any linear functional   on   attains norm on   . 

ii.  For any            attains norm, where          is any Banach space.  
iii. For any closed hyperspace   of  , there exists a unit vector   in   such that      . 

3. Main Results  

        In this section, we first obtain a complete characterization of    and    within approximate 𝜖-

 - -orthogonality. We need the terminology in the following remark to be relevant in this paper. 

Remark 3.1: For any two vectors   and   in           with 𝜖       , and        
𝜖

 , two subsets of 

     
𝜖

 will be defined, that is:                                                                                                                                       

      𝜖 , if         
        

   𝜖           for all    . 

and                                                                                  

      𝜖  , if        
        

   𝜖           for all    . 

          We will state some obvious but useful properties of this notion which would be used later on in 

this work, without giving an explicit proof.                                                                                                                                            

Proposition 3.2: For any two vectors   and   in a normed linear space          , the following 

statements are satisfying:                                                                                                                                                         

i.  Either       𝜖   or       𝜖 . 

ii.  If       𝜖  (      𝜖 ), implies that           𝜖  (         (𝜖)) for all       . 

iii. If       𝜖  (      𝜖 ), implies that        𝜖  (       𝜖 ) and          𝜖  (  

      𝜖 ). 

Notation 3.3: Let          ,          be two normed linear spaces and             . For any 

vector   in   with        
𝜖

. Then        
𝜖

                 
𝜖

   .                                                                                          

Remark 3.4: The notation     signals to the following cases      
𝜖

  and      for any two 

vectors   and   in          , which we will use in the following theorem that plays an important role 

in this work.        

     We strive to obtain a necessary condition for              to attain norm at   in    as the 

first case.  

Theorem 3.5: Let           ,           be two Banach spaces and            , be such that 

there exists      with      . Then for any vector   in  , implies that      
𝜖

 .                                      

Proof:  

If possible, suppose that       
𝜖    (clearly    ), then there exists        such that: 

           
        

   𝜖            ; 

and assume that     . It is easy to show that for any         , we note that        
     for 

any two different values of  .                                                                                                                                               

Let   
     

        
. Then        and   can be written as the form        , with   

 

        
 

  and   
  

        
  . Also,         , since     and     . Now, we have: 

         
       

               
  | |      

 

 
    

   | |      
        

   

          
 ; 

Which is a contradiction, since        .  

Remark 3.6:  

i.  In this work,             , where           and           are Banach spaces, if     . 

i.e. there exists      and        
𝜖

  , then it needs not to be      
𝜖

  for any vector   in  . Here, 

  -orthogonality needs to be used to overcome this obstacle.  
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ii. Certainly, Theorem       sends a clear message; if  we omit the condition  "  " in the theorem 

mentioned, with       
ϵ

   remaining, then it needs not to be      
𝜖

 . We will also give some 

results of procedure used to construct the counterexample using the real normed space: 

                 𝔽              . 
Example 3.7: Let       

  and      , defined by           , for all     
  and we 

consider                     , with   in the  -th position and   in anywhere else .                                                                                              

Let        ,   ∑
  

 
 
    and        ,   ∑       

       for all     . 

Then          
 

 
   , implies that      

   .  

i.e.      and        ∑       
      

 

        as    . It is clear that       
𝜖

   and 

by applying Theorem         , this implies that       
𝜖   .                                                                                             

       Now, we are ready to prove the following necessary condition for the set   .  

Theorem 3.8: Let           and           be two Banach spaces. Let             be such that 

there exists      with       for any vector   in  . Then:                                                                                         

i.      𝜖       
𝜖

        𝜖          
𝜖

. 

ii.      𝜖       
𝜖

        𝜖          
𝜖

.  

Proof:  Let us first prove    . Let        𝜖       
𝜖

, implies that       
𝜖   , there exists      

  such that:                                                                                                                                                                           

        
        

   𝜖            . 

Clearly,      𝜖 , then we must have     .  Also, by the contradiction to our hypothesis in the 

proof of the Theorem      , this implies that:            . 

Following the same motivation, as in the proof of Theorem (3.5), consider that   
     

        
    

  , where   
 

        
   and   

  

        
  . Also        , since     and     . We 

assume that           . Now, we have:                                                                                                   

          
         

                
   | |      

 

 
    

         
 

 
    

 . Since | |    

and 

     
 

 
    

     

| | 
           

     

| |         
            

    . Claim that     

      𝜖 . 

Suppose that          𝜖 . Since 
 

 
  , it follows from Proposition          , implies that 

 

 
   

      𝜖 . Therefore, we have      
        

 

 
    

          
             . This is a 

contradiction; we must have           𝜖 . It now follows from Proposition         that     

      𝜖        
𝜖

.                         

Corollary 3.9: Let           be a Banach space and          be such that there exists      

and        for any vector   in  .  Then             
𝜖

    
.                                                                

Proof:  

Let us assume that     . Let         and for any     , we have,            
𝜖

. Allaying 

Theorem       implies that      𝜖       
𝜖

 and      𝜖       
𝜖

. Since for any vector   in  , we 

have:     (𝜖)      
𝜖

     (𝜖)      
𝜖

        
𝜖

. 

It follows that        
𝜖

. As this is true for every         and for every     , we must have: 

           
𝜖

    
. 

Let us now prove the useful necessary condition for the set   .                 

Theorem 3.10: Let           ,           be two Banach spaces and            ,     .  

Then:                                                                                                                                                                                  
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i.        𝜖         𝜖 .  

ii.       𝜖         𝜖 .  

iii.        
𝜖

          
𝜖

.  

Proof: 

     Let      𝜖 . Then        
        

   𝜖           for all    . Since     , it 

follows that            and for any    , we must have             
    

       
   . Now, 

                    
       (

    

       
)   

    
 

       
           

               
    

         
 .  

It follows from this description                
          

          
   𝜖             . 

This implies that            𝜖 , but           𝜖  .  

The last parts,      and        can be proved similarly. 

Remark 3.11: The other direction in Theorem        is generally not achieved, as the following 
example shows: 
 We denote by        the space    endowed with the      norm.  
Let        whose         is given by the regular hexagon with vertices at 

          
 

 
 √ 

 
     

 

 
 √ 

 
 . Let 

  *
  
  

+ . 

It follows immediately that                  and       . It is also easy to check that 

     (  √ 

 
) . 

We indeed have           
𝜖

   √ 

 
  and                  

𝜖
    √ 

 
      

 
  , while         . 

 
Remark 3.12: It is interesting to observe that, in the Proposition           , if we assume that 
     instead of assuming     , then we don't necessarily reach the desired result, as the 
following example shows:  
Let               , which is defined by: 

               and                  . 
Then                                     . Hence, we have          with 

          
𝜖

      , but                    
𝜖           

 

 
 
 

 
 . 

  4. Reflexivity and rank one bounded linear operator 

     In this section, we study the sets    and   of a rank one bounded linear operator on a reflexive 

Banach space (strictly convex ). As we will observe, this will lead us to an interesting  
characterization of reflexivity, in terms of these two sets.                                                                 
Remark 4.1: To create a more fertile environment for the next theorems in this section, we consider 

Roberts orthogonality verification. 

Theorem 4.2: Let          ,           be two Banach spaces and            . Let      and 
      . Then there exist a closed hyperspaces    and    of   and    respectively, such that 

     
𝜖

   and      
𝜖

   with         .                                                                                                                              

Proof:  
Without loss of generality, we assume that             . Let     . By applying Hahn Banach 

Theorem and Theorem       , implies that  for any       , there exists a vector   in      such 
that:                      

                         . 
Let         (     is a closed hyperspace). Applying Theorem        again, implies that 

         
𝜖

  . 

Now,           with                           and                            

         , where             . Let               . By applying Theorem       , we have,  
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𝜖

  . Let     . Then                   , implies that        . Since   is 

arbitrary, we have         .   

Theorem 4.3: Let          ,          be two Banach spaces and           be a reflexive. If 
            be a rank one linear operator, then      for some vectors   in     and 

        , where    is a closed hyperspace of   such that      
𝜖

  .                                                                                             

Proof:  

Assume that             . Since   is a rank one linear operator on a reflexive space    and from 

Remark      , we must have          . Now, from reflexivity of   , implies that   attains norm at 

some vectors   in    and hence      . Let     . As we mentioned earlier in Theorem      , 

there exist  closed hyperspaces    and    of   and    respectively, such that      
𝜖

  ,      
𝜖

   

with         . It is clear that     . We claim that      for all      . If not, then as 

      
𝜖

  , and hence from Proposition           ,           is linearly independent in  . However, 

this implies that the rank of is more than one, which is a contradiction to our hypothesis. Thus,    

  for all      and so         . Now, let     . Then        for some     and   
  . Clearly,                 , and so that    , hence          . Thus    
     .                                                                                                      

Theorem 4.4: A Banach space           is reflexive if and only if, for any closed hyperspace   of  , 

there exists a rank one linear operator            with      for some vectors   in    and 

        such that      
𝜖

 .                                        

Proof:  

Let us first prove the sufficient part. Let   be a closed hyperspace of  . Then from the our hypothesis, 

there exists a rank one linear operator           with      for some vectors   in     and 

       . Since the rank of   is one, implies that      and       for all    . We have 

that       
𝜖

   for all    , by applying Theorem      , it now follows that     
𝜖

  for all    . 

Thus for any closed hyperspace   of    with      
𝜖

 . Therefore, It follows form Theorem            

that   is a reflexive.                                                                                                                                                         
The necessary part: Assume that   is a reflexive, deduce from Theorem           , that for any closed 

hyperspace   of   , there exists a vector   in    such that      
𝜖

 . Clearly, any vector   in   can 

be written as       , where     and    .                                                               

Now, define                       as follows: 

             , where     . 

Clearly,   is well-defined and it is a rank one linear operator. Since      
𝜖

 , so from Theorem 

     , it is deduce that       and        . This establishes the theorem in its entirety.                           
Theorem 4.5: Let           and          be two Banach spaces, where           be a strictly 

convex. Then           is reflexive if and only if for any closed hyperspace   of  , there exists a rank 

one linear operator              with          for some vector   in    and          .                                         

Proof:  

The necessary part: Assume that   is a reflexive, deduce from Theorem      , for any closed 

hyperspace   of  , there exists a rank one linear operator            with      for some 

vectors   in    and         such that      
𝜖

 .                                        

Now, to prove that         , it is clear that any vector   in    can be written as       , for 

some     ,     and      
𝜖

 . 

By applying Theorem      , (strict convexity of  ) deduce from the Proposition (2.10.ii),       
𝜖

 : 

       
          

   | |     
    𝜖            | |    𝜖          . 

It is easy to know the following | |       . 

 And from Theorem           , implies that:   
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    | |      
    𝜖                  | |      

 . 

Since             ,           we have          and | |       . 

Therefore, we must have         . 

The sufficient part is produced directly from Theorem      . 
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