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Abstract
In this paper, we obtain a complete characterization for the norm and the
minimum norm attainment sets of bounded linear operators on a real Banach spaces

at a vector in the unit sphere, using approximate e-Birkhoff-James orthogonality
techniques. As an application of the results, we obtained a useful characterization of

bounded linear operators on a real Banach spaces. Also, using approximate e-
Birkhoff -James orthogonality proved that a Banach space (X, lI-llx) is a reflexive if
and only if for any closed hyperspace H of X, there exists a rank one linear operator
0 # T € B(X) such that x € My, for some vectors x in Sy and my = HNSx such

that x J.gjc H.Mathematics subject classification (2010): 46B20, 46B04, 47L05.

Keywords: Linear operator, Norm attainment, approximate e-Birkhoff-James
orthogonality, reflexivity.
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1. Introduction
An impressive growth occurred in the applications of the Birkhoff-James orthogonality that was
first introduced in 1935 and used to solve particular problems in the study of geometry of a Banach
spaces. In
recent times, several authors explored this topic[1-5] and obtained many interesting results involving

orthogonality of a bounded linear operators. Several recent papers [6 — 9] were devoted to the
description and classification of the following types of orthogonality in a real normed space (X, II-llx).
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In this paper, we focus on a specific type of orthogonality which was submitted by Chmielinski .
in 2005 and called approximate e-B-J-orthogonality. The other types are seen as tools to enable us to
resolve some of the outstanding issues in this work. In 2017, Chmielinski et al characterized the
approximate e-B-J- orthogonality and obtained a sufficient condition for using linear functional on a
real normed space (X,II'llx). In 2018, Kallol P. et al characterized the approximate e-B-J-
orthogonality of bounded linear operators on a reflexive real Banach space (X, [I-llx) using the norm
attainment set. While, a complete characterization of approximate e-B-J- orthogonality of bounded
linear operators on an infinite dimensional real Banach spaces was obtained [10]. It will also be
interesting to conduct an analogous study for an approximate e-B-J-orthogonality in other types of
spaces such as modular spaces [11] and general fuzzy normed spaces [12]. To proceed in details, we
fix some notations and terminologies.

Throughout this paper, we will be working with real normed spaces.

Let By ={xeX:llxllx<1} and Sy ={x € X: |l x llx = 1} be the unit ball and unit sphere,
respectively, of (X, II'llx). Let B(X,Y) (X (X,Y)) denote the set of all bounded (compact) linear
operators from (X, lIllx) to (Y, lIlly) which is the normed space with the supremum norm.

In this paper, as an application of the approximate e-B-J-orthogonality, we obtain a complete
characterization of reflexive Banach spaces in terms of the norm and the minimum norm attainment
sets of rank one bounded linear operators on the space.

2. Preliminaries and set background material

In this section, we recall some concepts and results related to the B-J- orthogonality that will be
used in the sequel of approximate e-B-J-orthogonality.

The following definition is necessary to obtain the desired characteristics required in this paper.
Definition 2.1. [13 — 15]: Let (X, I'llx) , (Y, lI-lly) be two real Banach spaces and T € B(X,Y).
Then:

I. T is said to be attains norm at a vector x in Sy, if | 7(x) lly=I T llzx,y)-
ii. Let My denotes the set of all vectors x in Sk at which T attains norm, i.e.,
My ={x € Sx : 1 T(x) lly=IT llzxy}

Apart from those previously reported [16], some results on the characterization of were also
obtained in another work [16]. The set M plays an important role in characterizing B-J-orthogonal of
bounded linear operators and was obtained in an earlier work [16].

iii. Following similar procedure, the notation of the minimum norm attainment set m for T €
B(X,Y) is defined in the following way:

my ={x €ESx: I T(x) lly =m(T)}, where m(T) = inf{ll T(x) lly: Il x llx = 1}.

Also, the set my plays a very crucial role in determining the geometry of B(X,Y).

In this paper, we obtain a complete characterization of the ms by applying the concept of
approximate e-B-J-orthogonality. We further study the relative position of My and mgs within this
concept. The existence of at least one such vector is guarantee by Hahn Banach Theorem.

Definition 2.2 [6, 16, 17]: For any two vectors x and y in a normed linear space (X, II*llx) :

i. x is said to be orthogonal to y in the sense of Birkhoff-James (for brief, B-J-orthogonality) and
written as x Lg; y, if the following is true:

Il x+uyllx =1l x llx forall u € R.

ii. x is said to be orthogonal to y in the sense of Robert (for brief, R- orthogonality) and written as
x lp y, if the following is true:

lx+uyllx=Ix—puylxforall ueR.

iii. x is said to be approximate e-Birkhoff-James orthogonal to y in the sense of Chmielinski, (for

brief, approximate e-B-J-orthogonality) and written as x LZIC y, if the following is true:

I + py 1% > 1l x 1Z— 2€ Il x lixll pwy Il forall u € R.
Otherwise, x is not approximate e-B-J-orthogonality to y and has the symbol x £+, y. The relation
between these concepts and several of their properties can be found in the literature [6,7,8,9,18].

Obviously, the relationship between notations is given as follows 1z =1g, =>L§IC. Later on,

Chmielinski J. [3], introduced another notion x*BIC:
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Definition 2.3 [9]: For any vector x in a normed linear space (X, |Illx), a set x1BIC = {yeX:
x L1g jc ¥ }is said to be an approximate e-B-J-orthogonal complement of x.

Before going ahead with x™/c, we are getting some results which appear to show some sufficient and

necessary conditions about reaching the desired result, which states that 7 (x2/c) € (Tx)“&sc for
every x € my.

Let us also note that the following concepts are important in this paper:

Definition 2.4 [19]: A subspace H of linear space X is said to be a hyperspace, if H is a maximal
subspace with co-dimension 1.

Theorem 2.5 [19]:

i. For any linear functional ® # 1y on a normed linear space (X, lI-llx), the null space of 1 denoted as
kery is a hyperspace.

ii. A hyperspace H of X is closed if and only if it is a kernel of a linear functional ® # 1 on X.

iii. A subspace H of X is hyperspace if and only if X = Lin{x, + H } for some vectors x, in X.
Definition 2.6. [20] : Let (X, lI'llx) , (Y, lIlly) be two Banach spaces and T € B(X,Y). Then:

i. T is said to be a finite rank operator, if it is a linear operator whose range is finite dimensional
(i.e. T (X) has a finite dimension).

ii. T is said to be a compact linear operator, if the image under 7 for any bounded subset K of X s
relatively compact (has compact closure) of Y.

Remark 2.7. [20]:

Any bounded linear operator of a finite-rank is compact.

Among others, there are constructions of a rank one linear operator (77 € B(X,Y) that have one
rank, if dimension of 7(X) = 1). We connect this concept with several notions to study some
properties of a reflexive Banach space (X, ll-llx). We discuss many of these results and give proofs.
Let us finish the introduction with the needed definition.

Definition 2.8 [21]: A normed linear space (X, II-llx) is a strictly convex, if for any two vectors x and
yinSgwithx # y,thenll x +y llx < 2.

Theorem 2.9 [22]: A normed linear space (X, II-llx) is a strictly convex if and only if for any vector x
in Sk there exists T € B(X,Y), which attains norm only at vectors of the form nx with || = 1.

As an application of this definition, we obtain a complete characterization of reflexive Banach
spaces in terms of the sets My and m4 of the rank one linear operators and the concept of approximate
€-B-J- orthogonality.

In order to prove the desired results, we make use of the following easy proposition, stated
previously [6].

Proposition 2.10 [6]: For any two vectors x and y in a normed linear space (X, II-llx), some properties
of approximate e-B-J- orthogonality are:

i x 15, ©and® 1, x forall xinXand x Ly, x,ifand only if x = ©.
ii. Note that the relation LEJC is homogenous, but neither symmetric nor additive.
iii. For any non-zero vectors x and y in , if x L;C y , then x and y are linearly independent.

Theorem 2.11 [23]: For any two vectors x and y in a normed linear space (X, lI-llx), x ngc y if and

only if there exists z € Lin {x,y}suchthat x Lg; zandlly —z llx < e ll ¥ lx.

Theorem 2.12. [11]: Let (X, II-llx) be a normed linear space. For any two non-zero linear functional
@,ponX, ¢ Lg; P ifand only if either of the conditions in (i) or in (ii) holds:

I. There exists (x,)qen In Sx such that Il @ (x,,) Il — Il ¢ llx- and 3 (x,) — 0.

ii. There exist sequences (x,)neny aNd (V) nen IN Sx such that:

(@) o) =l @ lx- and [@ ()| =1l @ llx- asn — .

() o(x) - Y(xy) =0and () - Y(y) < 0foralln € N.
Theorem 2.13. [24]: For any linear functional ® # ¢ on a Banach space (X, II'llx), l@(x)| =

Il @ llx- Il x llx if and only if x L, H, where H is any closed hyperspace of X with ¢(h) = 0 for all
h € H.
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The following theorem [24,21] gives necessary and sufficient conditions of a Banach space
(X, lIllx) to be reflexive.
Theorem 2.14. [24,21]: A Banach space (X, IIllx) is reflexive if and only if one of the following
conditions is satisfied:
i. For any linear functional ¢ on X attains norm on B.
ii. Forany T € K (X,Y) attains norm, where (Y, |I-lly) is any Banach space.
iii. For any closed hyperspace Hl of X, there exists a unit vector x in X such that x L5, H.
3. Main Results

In this section, we first obtain a complete characterization of M; and mg within approximate e-
B-J-orthogonality. We need the terminology in the following remark to be relevant in this paper.

Remark 3.1: For any two vectors x and y in (X, ll-lx) with e € [0,1), and y € x*BIc | two subsets of

x*Bsc will be defined, that is:

y €xtOif || x + py 13 =11 x 15— 2€ Il x lixll py llx forall u > 0.
and
y €x @O ifllx+puy 1Z =1 x 15— 2¢ | x lixll wy lx forall g < 0.

We will state some obvious but useful properties of this notion which would be used later on in
this work, without giving an explicit proof.
Proposition 3.2: For any two vectors x and y in a normed linear space (X, lI-llx), the following
statements are satisfying:

i. Eithery € x*© ory e x=©,

i. Ify €xt© (y € x~©), implies that Sy € (nx)*© &y € (nx)~(©)) forall 5,1 > 0.

iii. Ify ex™@® (y €x=©), implies that —y €x~© (—y €x*®) and y € (—x)"© (y€
(—=x)*).

Notation 3.3: Let (X, lI-llx), (Y, lIlly) be two normed linear spaces and ® # T € L(X,Y ). For any

vector x in X with y € x*B/c. Then T (xBIc) = {TO)CSY: x J‘g]C y}

Remark 3.4: The notation x I y signals to the following cases x ngc y and x Lp y for any two
vectors x and y in (X, lI-llx), which we will use in the following theorem that plays an important role
in this work.

We strive to obtain a necessary condition for ® # T € B(X,Y) to attain norm at x in Sy as the
first case.
Theorem 3.5: Let (X, II'llx) , (Y, II'lly) be two Banach spaces and ® # 77 € B(X,Y), be such that

there exists x € My with T'x 1L Ty. Then for any vector y in X, implies that x ngc y.

Proof:
If possible, suppose that x £+, v (clearly y # ©), then there exists 0 # u, € R such that:

0 <l x4+ poy g <l x Ig—2€e Il x lixll proy llx ;
and assume that u, < 0. It is easy to show that for any u € [u,, 0), we note that || x + uy lI% > 0 for
any two different values of u.
= —x+#oy = i = i = 1
Letz = ETRY Then || z llix= 1 and z can be written as the form z = nx + yy, with n ETTRYP

landy = ﬁ < 0. Also, | Tx lly > 0, since I # ® and x € My. Now, we have:
oY IIX

1T 3= Tz I§ =1 T(x +yy) 1§= [n* 1| T(x + %y) 1§ > 11 1 Tx 15> 1 Tx 1§ =

1T 150x vy;

Which is a contradiction, since || z llx = 1.

Remark 3.6:

i. Inthiswork, ® # T € B(X,Y), where (X, [Illx) and (Y, lI-lly) are Banach spaces, if My # ¢.

i.e. there exists x € My and Tx igjc Ty, then it needs not to be x Lfm y for any vector y in X. Here,
R-orthogonality needs to be used to overcome this obstacle.
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ii. Certainly, Theorem (3.5) sends a clear message; if we omit the condition "Lg" in the theorem

mentioned, with Tx Ly 'y remaining, then it needs not to be x LZ,]C y. We will also give some

results of procedure used to construct the counterexample using the real normed space:

o = {(X)nen:xn EF,x, > 0asn - x}.

Example 3.7: Let X = (cp)* and T : X — R, defined by T(¢) = ¢(ey), for all ¢ € c; and we
considere, = (0,0, ...,1,0,...), with 1 in the n-th position and 0 in anywhere else .

Letp:c, @R, x -—>Z?§:1%and1/) icp = R, x+— Y7 2781 x, forall x € c,,.
Then p(e,) = (1 — %) <1, impliesthat || ¢ Il -= 1.
i.e. p € My and Y(e,) = Yo 27 = 2(1_12n) — 2 asn — oo, Itis clear that T¢ LZ,C Ty and
by applying Theorem (2.12.1), this implies that ¢ 1-5;¢ 9.
Now, we are ready to prove the following necessary condition for the set M.

Theorem 3.8: Let (X, lIllx) and (Y, IIlly) be two Banach spaces. Let ® = T" € B(X,Y) be such that
there exists x € My with T'x 1L 7"y for any vector y in X. Then:

i, 7 (e O\xBe) € (Tx)HO\(Tx) e,
ii. T (x~©O\xLBIc) © (Tx)~©\(Tx) Brc.

Proof: Let us first prove (i). Let® # y € x+(5)\xl§ﬂ?, implies that x 15 y, there exists 0 # y, €
R such that:

2+ uoy I1E <Nl x 15— 2€ 1l x lIx I oy Ny

Clearly, y € x*(©, then we must have u, < 0. Also, by the contradiction to our hypothesis in the
proof of the Theorem (3.5), this implies that: || x + u,y llx > 0.

Following the same motivation, as in the proof of Theorem (3.5), consider that z = ";:% =nx +
oY IIX
yy, where n = ! >1andy =—52— < 0. Also || Tx lly> 0, since T # © and x € M. We

lx+poylx llx+uoyllx
assume that |l x + p,y lly> 0. Now, we have:

IT Wewy =0Tz 1% =11 T(x +yy) 1 = Inl? 11 TCx + %y) 12> 1 T (x + %y) I2. Since |a| > 1
and

I T (x + %y) 1§ =2 1 TOx +vy) I = e 1 TG+ oY) I2>0. Claim that Tye
(Tx)~©.

Suppose that Ty € (Tx)~(©. Since % < 0, it follows from Proposition (3.2.iii), implies that %Ty €

(Tx)*©. Therefore, we havell Tz 12 > | Tx +%Ty I =1 Tx I§ =17 llgx y). This is a
contradiction; we must have Ty & (Tx)~©. It now follows from Proposition (3.2.i) that Ty €

(Tx)*O\Tx Brc,
Corollary 3.9: Let (X, IIllx) be a Banach space and ® = T € B(X) be such that there exists x € M

€
and Tx L T’y for any vector y in . Thenker T S M yep, X B/°.
Proof:

Let us assume that My # ¢. Let z € ker T and for any x € My, we have, Tz € (Tx)lB/C. Allaying
Theorem (3.5) implies that z & x*©\x*2/c and z ¢ x~©\x*5/c. Since for any vector y in X, we
have: y € x*(N\atmre U x~(\atmre U xtbsc,

It follows that z € x*BJc. As this is true for every z € ker T and for every x € M, we must have:

J_E

kerT S Nyem, X BIC.

Let us now prove the useful necessary condition for the set my.

Theorem 3.10: Let (X, II‘llx) , (Y,IlIlly) be two Banach spaces and ® =T € #(X,Y), x € my.
Then:
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i T(x*®) c (Tx)*®,

i. T(x~©) c (Tx)"©.

i, T(x51c) © (Tx)Buc,

Proof:

(i) Let y € x*©. Then | x + uy I1Z > Il x IZ— 2€ Il x lixll wy llx for all g > 0. Since x € my, it
follows that Il x + uy llx = 1 and for any x > 0, we must have [| Tx lly < | T (=22 |ly. Now,

llxx+pylix
2 XHHY \ 2 2 2 _

I Tx 1 <07 () 1 I TG+ uy) 1 <N TCe+py) 1
| Tx + uTy lI3.

It follows from this descriptionthat | Tx 4+ uTy I3 =11 Tx 1% =1 Tx 13— 2¢ | Tx llyll u Ty lly.
This implies that 7'(y) € (Tx)*(©, but T(y) € T (x*(©).

The last parts, (ii) and (iii), can be proved similarly.

Remark 3.11: The other direction in Theorem (3.10) is generally not achieved, as the following
example shows:

We denote by I, (R?) the space R? endowed with the |||l norm.

let [,(R?) whose S,z is given by the regular hexagon with vertices at

1 1
_M o
T_[O 0]'

It follows immediately that | T llgq, (r2yy=1 and m(7) = 0. It is also easy to check that
my = {i(O,g)}-
We indeed have (1,0) Lg,c (0,%) and (1,0) = (1,0) Lz, 7(0,2) = (0,2), while (1,0) & mj.

1
lx+uyli%

Remark 3.12: It is interesting to observe that, in the Proposition (3.10.iii), if we assume that
X € My instead of assuming x € my, then we don't necessarily reach the desired result, as the
following example shows:
Let ® # T € B(l,,(R?)), which is defined by:

7(1,1)=(0,1)and 7(—-1,1) = (-1,0).
Then My ={1,1),(-1,1),(-1,-1),(1,-1)}. Hence, we have (1,1)€ My with

(1,1) Lg,¢ (0,1),but T(1,1) = (0,1) £5,c7(0,1) = (=3,5).

4. Reflexivity and rank one bounded linear operator

In this section, we study the sets My and m4of a rank one bounded linear operator on a reflexive
Banach space (strictly convex ). As we will observe, this will lead us to an interesting
characterization of reflexivity, in terms of these two sets.
Remark 4.1: To create a more fertile environment for the next theorems in this section, we consider
Roberts orthogonality verification.
Theorem 4.2: Let (X, IIllx), (Y, lIlly) be two Banach spaces and ® # T € B(X,Y). Let x € M7 and

y =T (x). Then there exist a closed hyperspaces H, and H, of Xand Y, respectively, such that

X 1g,c Hyandy Ly Hy, with T(H,) € H,,.

Proof:

Without loss of generality, we assume that | T llgix y)= 1. Let x € My. By applying Hahn Banach
Theorem and Theorem (2.13), implies that for any y = 7'(x), there exists a vector ¥ in Sy+ such
that:

YT ) =1 Iyl Tx) Ny = 1.
Let kery = H,, (kery is a closed hyperspace). Applying Theorem (2.13) again, implies that
T(x) J‘;]C H,,.
Now, YoT €Sy with PpoT () =IT@) lly=1=lxlx and o7 ligx y) < I llax vl
T llgx vy, where | T llgyy = 1. Let ker( o T) = H,. By applying Theorem (2.13), we have,
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x J.;]C H,. Let w € H,. Then Yo T (w) =¢(T(w)) =0, implies that T(w) € H,,. Since w is
arbitrary, we have 7'(H,) < H,,.

Theorem 4.3: Let (X, II'llx), (Y,lI'lly) be two Banach spaces and (X, |I‘llx) be a reflexive. If
® =T € B(X,Y) be a rank one linear operator, then x € My for some vectors x in Sx and

my = H, NSk, where H, is a closed hyperspace of X such that x J-g]c H,.

Proof:

Assume that | T llgx yy= 1. Since T is a rank one linear operator on a reflexive space X, and from
Remark (2.7), we must have T € K (X, Y). Now, from reflexivity of X, implies that 7" attains norm at
some vectors x in Sy and hence x € My . Let y = Tx. As we mentioned earlier in Theorem (4.2),

there exist closed hyperspaces H, and H, of X and Y, respectively, such that x Ly, Hy, y 15, H,
with 7'(H,) < H,,. It is clear that Tx # ®. We claim that 7z = ® for all z € H,. If not, then as

Tx LZJC Tz, and hence from Proposition (2.10.iii), {Tx, Tz } is linearly independent in Y. However,
this implies that the rank of is more than one, which is a contradiction to our hypothesis. Thus, Tz =
O for all z € H,, and so H, NSy € ms. Now, let w € ms. Thenw = h + nx for somen € Rand h €
H,. Clearly, ® = Tw = Th + nTx = nTx, and so that n = 0, hence w = h € H, NSx. Thusmy <
H, NSx.

Theorem 4.4: A Banach space (X, lI-llx) is reflexive if and only if, for any closed hyperspace H of X,
there exists a rank one linear operator ® = T € B(X) with x € Ms for some vectors x in Sy and
my = HNSx such that x 13, . H.

Proof:

Let us first prove the sufficient part. Let H be a closed hyperspace of X. Then from the our hypothesis,
there exists a rank one linear operator ® = T € B(X) with x € M; for some vectors x in Sy and
ms = HNSx. Since the rank of T is one, implies that my = 0 and Th = O for all h € H. We have

that T'x lZ]c Th for all h € H, by applying Theorem (3.5), it now follows that x ng h for all h € H.

Thus for any closed hyperspace H of X with x fB jc H. Therefore, It follows form Theorem (2.14. iii)
that X is a reflexive.

The necessary part: Assume that X is a reflexive, deduce from Theorem (2.14.iii), that for any closed
hyperspace H of X, there exists a vector x in Sk such that x L,‘;]C H. Clearly, any vector w in X can

be written asw = h 4+ nx, wherenn € Rand h € H.
Now, define T: (X, II'llx) = (X, lI:llx) as follows:

Tw =T (h +nx) = ny, where y € Sx.
Clearly, T is well-defined and it is a rank one linear operator. Since x 17, H, so from Theorem
(4.3), it is deduce that x € My and my = HNSx. This establishes the theorem in its entirety.
Theorem 4.5: Let (X, |I‘llx) and (Y, II'lly) be two Banach spaces, where (X, II'llx) be a strictly
convex. Then (X, [Illx) is reflexive if and only if for any closed hyperspace H of X, there exists a rank
one linear operator ® # T € B(X,Y) with My = {£ x} for some vector x in Sy and ms = H, NSx.
Proof:
The necessary part: Assume that Xis a reflexive, deduce from Theorem (4.3), for any closed
hyperspace H of X, there exists a rank one linear operator ® = T € B(X) withx € My for some
vectors x in Sy and my = HNSx such that x J‘EB]C H.
Now, to prove that My = {£ x}, it is clear that any vector w in Sy can be written as w = h + nx, for

somen € R, h € Handx 1, h.
By applying Theorem (2.9), (strict convexity of X) deduce from the Proposition (2.10.ii), nx LZIC h:

L=lwlg=Ilh+nxlIg=Inl? Il x IF —2€ I nx lixll h llx = I71* — 2e I nx lixll k& lx.
It is easy to know the following |n| =1 < h = 0.
And from Theorem (3.10.1iii), implies that:
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NTwId =1 Th+nx) 13 = n2 1 Tx 1% = 2€ | n7(x) lIxll T(h) x = In1? 1| Tx 113

Since | T llgx y)=1, I Tx ly=1wehave | Tw lly=1and || =1 < h =0,
Therefore, we must have My = {+ x}.
The sufficient part is produced directly from Theorem (4.4).
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