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Abstract 

In this paper, we develop the Hille and Nehari Type criteria for the oscillation of all 

solutions to the Fractional Differential Equations involving Conformable fractional 

derivative. Some new oscillatory criteria are obtained by using the Riccati 

transformations and comparison technique. We show the validity and effectiveness 

of our results by providing various examples. 
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Introduction 

Fractional calculus turned out to be very attractive to Mathematicians as well as Physicists, Biologists, 

Engineers and Economists. The first application of fractional calculus was due to Abel in his solution 

of the Tautocrone problem. It likewise has applications in Biophysics, Quantum mechanics, Wave 

theory, Polymers, Continuum mechanics, Lie theory, Field theory, Spectroscopy, and group theory, 

among other applications [1, 2, 3].  

Fractional differential equations are important tools in the modeling for many physical phenomena in 

many fields of science and engineering, such as electromagnetic waves, viscoelastic system etc, and 

can be described with very high accuracy. Recently, fractional derivative and associated integral have 

been freshly defined by Khalil [4, 5]. It is a natural extension of usual derivative and it is named as 

Conformable, because this operator preserves basic properties of classical derivative (see [6- 9]). Since 

conformable fractional derivative (CFD) is a local and limit based operator, it quickly takes a place in 

application problems [10- 16].  

Comparison principles of Sturm’s type will be derived for self-adjoint differential equations. The 

construction of the main result is given in a very general and novel form in terms of eigenvalues 

associated with boundary problems for the differential operators. The proof is established as an easy 

consequence of Courant’s variational principle for the quadratic functional associated with an eigen 

value problem [17], self-adjoint problem [18], differential equations [19, 20], non-oscillation theorems 

[21], oscillation stability [22] and comparison theorems [23]. In 2016, Pospisil and Skripkova [24] 

introduced the Sturm’s comparison principles for conformable fractional differential equations 

(CFDE’s). 
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Motivated by the above papers, the objective of this paper is to establish more general nonoscillation 

criteria which will contain Nehari criteria as special cases. The essential concept used is the fact that 

there exists a direct connection between the oscillation problems for the equation  

                                                            ,   ( )-   ( ) ( )                    (1.1)                                                                                                                             

and the eigen value problem for the equation 

                                               ,   ( )-    ( ) ( )                                                                 (1.2)  

with suitable boundary conditions. Our main concern will be to obtain nonoscillation criteria for the 

equation (1.1). 

The nonoscillatory solutions of Equation (1.1)in (   )(   ) if every nontrivial solution has at most 

one zero in (   ); it is called nonoscillatory if there exists a number   such that it is nonoscillatory in 
(   )  The equation (1.1) is said to be oscillatory if it has a proper solution which has an infinite 

number of zeros in (   ). 

This work is organized as follows: Section 2 is devoted to providing essential preliminaries and 

properties of CFD. In Section 3, we present Nehari type oscillation criteria by using Courant minimum 

principle. In Section 4, we consider Hille type oscillation criteria by the method of Riccati technique. 

II. PRELIMINARIES 

In this section, we introduce some standard definitions and essential lemmas on CFD. First we shall 

start with the definition. 

Definition 2.1    

Define a function   ,   )   .  Then the CFD of   of order   is defined by  

  ( )( )     
   

 (       )   ( )

 
 

for all       (   -  If   is  -differentiable in some (   )    , and          ( ) ( ) exists, 

then define  

                                                             ( )( )          ( ) ( ). 

We will sometimes write  ( )( ) for   ( )( )to denote the CFD of   of order   . 

Definition 2.2 

  
 ( )( )    

 (     )  ∫
 ( )

    

 

 
    where   is the improper Riemann integral, and     (   )  

So,   
 

 (√      )  ∫              
 

 
 and     

 

 (    √ )      √ . 

Theorem 2.1 

      
 ( )( )   ( )  for      where   is any continuous function in the domain of    . 

III. MAIN RESULTS 
In this section, we prove the Comparison theorems for CFDE’s. 

3.1 Comparison Theorems For Eigenfunctions : 
In 1957, Nehari  [20] discovered a connection between the oscillatory behavior of the solution of 

     ( )    

and  the eigenvalue problem  

                                                       ( )        ( )    ( )   . 

Now, consider the solution  of  CFDE’s of the form  

                                                ,   ( )-   ( ) ( )                                                             (3.1) 

and the eigenvalue problem 

   ,   ( )-    ( ) ( )          ( )    ( ( ))     
Actually, this is the same as the problem  

         , -    , -     
where the homogeneous  boundary conditions  

                                        , -    ( )   ( )  , ( )-   , 

                                       , -     ( )   ( )  , ( )-   ,    (3.2) 

for some number    and  .Consider the differential operator    defined by  

   
 

 ( )
{   [ ( )  ( ( ))]   ( ) ( )}  

where       and   are real-valued continuous functions on,   -    and    are positive on ,   -  and 

    (    )  
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The differential equation          satisfies the boundary conditions (3.2). 

 ( )  ( )     [ ( )  ( ( ))]   ( ) ( )   

           , ( )  ( ( ))-  , ( )   ( )- ( )       , -    , -                        (3.3) 

In the special case that  ( )  ( )  ( )   ( )and   ( ) in (3.3) are replaced by    ( )    ( )  
and   , ( )-respectively, we get 

                     ,   ( )-    ( ) ( )          ( )    ( ( ))                                              (3.4) 

Let   , -  be the quadratic function defined by  

 , -  ∫ 0  |  ( ( ))|
 
  | ( )| 1     | ( )|   | ( )|  

 

 

 

with domain     ,   -  The analog of above equation in the case      and    is finite,  

                          , -  ∫ 0  |  ( ( ))|
 
  | ( )| 1     | ( )| 

 

 
                                               (3.5) 

and the associated quadratic functional of (3.5) becomes  

                     , -    .∫ ,  | ( )|
 -

 

 
  /  ∫      

 
(  (   ),  ( )- )       (by Definition 2.2) 

   , -  ∫      

 
,  ( )-                       (3.6) 

where     *    ,   -  ( )   +   
Theorem 3.1 

If    is the smallest eigenvalue of (3.1), then                                                                                                                                                                                                                                                                                                         

              , - for all real      .                                                                            (3.7) 

In fact, this is even true for all real     ,   -satisfying the weaker condition        
  (  )

   
    

Proof :  

Consider   (   , ( )-  
  , ( )-     ( )

 ( )
) . The proof follows from the identity  

            (   , ( )-  
  , ( )-     ( )

 ( )
)   . 

  ∫     (    ( )  
  , ( )-     ( )

 ( )
)   

 

   
 . 

 ∫     (  , ( )-)
 

 

   

    ∫       , ( )
 

   

- 
  ( ( ))  ( )

 ( )
   ∫     

[  ( ( ))]
 
  ( )

  ( )
  

 

   

 

          ∫     (    ,  ( )-) 
 

   

    ∫         ,  ( )
 

   

- 
    (  ( ))   ( )

 ( )
  

 ∫       (   )
 

   

,  ( )- 

  ( )
  ( )    

          ∫  (   ) 

   
,  ( )-     ∫

    .  ( )/  ( )  ( )

 ( )
  

 

   
 ∫      

   

[  ( )]
 

  ( )
  ( )               (3.8) 

Consider  

  *
  , ( )-  

 ( )

 ( )
+  

 ( )  , 
     ( )  ( )-        ( )  ( )  , ( )-

, ( )- 
 

        
  (   ) ( )   ( )  ( )

, ( )- 
 

(   )      ( )  ( )  ( )

, ( )- 
 

   (   ) ( ) ( )  ( )  ( )

, ( )- 

  
     (   ),  ( )-   ( )

, ( )- 
 

   
  (   )   ( )  ( )

 ( )
 

(   )       ( )  ( )

 ( )
 

    (   ) ( )  ( )  ( )

 ( )
    

   
     (   ),  ( )-   ( )

, ( )- 
 

    0
  ( ) ( )

 ( )
1
 

  
      ( ) ( )  ( )

 ( )
   

        ( )  ( )

 ( )
 

(   )     ( )  ( )

 ( )
 0

      ( )  ( )

 ( )
1
 

  (3.9) 

By substituting (3.9) in (3.8), we have 
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    ∫  (   ),  ( )-  
 

   

   ∫  (   )   ( )  
 ( )

 ( )
   (   )∫

     ( )  ( )

 ( )

 

   

 

   

   

 ∫  (   )
 

   

*
  ( )  ( )

 ( )
+

 

    

Integratinglast term of the above inequality by parts valid for all     (   ) which do not vanish in 

the interval (   )and            If    is an eigenfunction of  (3.4) corresponding to the smallest 

eigenvalue      and hence free of zeros in (   )  then the            

  ∫  (   ),  ( )-  
 

 

   ∫  (   )   ( )  
 ( )

 ( )
   (   )∫

     ( )  ( )

 ( )

 

 

 

 

   

 ∫  (   ) 

 
0
  ( )  ( )

 ( )
1
 

   (3.10) 

If    is an eigenfunction of  (3.4) corresponding to the smallest eigen value      , then 

  [  ( ( ))]       ( ) ( )             ( )    ( ( ))     
From this, we have 

                                                                   , 
     ( )-        ( ) ( ), 

                     , 
 ( )-    ( )  , 

   -        ( ) ( )  

                                    (   )   ( )    ( )(   )            ( ) ( )                                       (3.11)   

We get       

    
   ( )

 ( )
       ( ) 

    (   )   
  ( )

 ( )
  

Now, (3.10) can be written as, 

  ∫  (   ),  ( )-  
 

 

   ∫ *    ( ) 
    (   )   

  ( )

 ( )
+

 

 

  ( )    

(   )∫    
 

 

  ( )  ( )

 ( )
   

which implies that 

  ∫      ( )  ( )  
 

 

 ∫  (   ),  ( )-  
 

 

    

which implies that 

                                            ‖ ‖
    , -  for  all        

where ‖ ‖    0∫ | |  ( )   ∫      ( )  ( )   
 

 

 

 
1. 

Theorem 3.2 

Let     denote the smallest eigenvalue of (3.4). Then equation (3.1) is nonoscillatory in (   ) if and 

only if          for all   satisfying       
Proof 

If (3.1) is nonoscillatory in (   ) and  ( ) is a solution of (3.1) such that   ( )    and      ( )  
 . 

Claim:    ( )    for all        
                 ,  ( ( ))-   ( ) ( )   ,  ( )    ( ( ))                                                            (3.12)                                          

By taking     of both sides from   to    , we get  

  
   ,  ( ( ))-   ∫  ( ) ( )   

  

  

 

  ( (  ))    ( (  ))   ∫  ( ) ( )   

  

  

   

                                       ( (  ))    ( (  ))    for             

Then   ( ( )) is never increasing for     and the graph of    ( ) is concave downwards, it 

follows that     ( ( ))          . 
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Let   be a positive eigenfunction of (3.4) in ,   - corresponding to   .Then by multiplying ( ) by 

(3.11), we have 

                                                   (   )   ( ) ( )  (   )  ( )      ( )      ( ) ( ) ( ),  
which implies that 

           ( ),  ( ) ( )-    (   )   ( ) ( )  (   )  ( )      ( )    . 
By using (3.11),       we get  

        ( )  (   )   ( )    (   )   ( ) ( )  (   )     ,  ( ) ( )    ( ) ( )-   , 

                   (   ), ( )   ( )     ( ) ( )-  (   )     ,  ( ) ( )    ( ) ( )-     . 
By integrating  the above inequality from       , and using (3.11),we get  

∫   (   ), ( )   ( )     ( ) ( )-   (   )
 

 

∫      ,  ( ) ( )    
 

 

( ) ( )-       

By taking    from   to             

  *∫   (   ), ( )   ( )     ( ) ( )-   (   )∫      ,  ( ) ( )    ( ) ( )-  
 

 

 

 

+    

∫     
 

 

, ( )   ( )     ( ) ( )-   (   )∫    ,  ( ) ( )    ( ) ( )-    
 

 

  

which gives 

∫     ,  

 

  

 ( ) ( ) ( )   ( ) ( ) ( )-   (   )∫   ( )   
 

 

 ( )  

 (   )∫    
 

  

 ( )  ( )   (   )∫      
 

 

( ) ( )    

(   )∫    
 

 

 ( )  ( )     

∫     ,   ( ) ( ) ( )   ( ) ( ) ( )-
 

 

      

Finally, we have  

∫     (  
 

 
  ) ( ) ( ) ( )                                                              (3.13) 

since     and   are positive in (   )       
Conversely, if     , then (3.13) shows that    cannot  have  a zero to the right of    if   is the first 

zero,then (3.13) implies that   ( )    an impossibility. 

Theorem 3.3 

If  (3.1)  is non-oscillatory in (   )  then 

(   )   ∫ (   )  ( )   (   )    

 ∫ (   )  ( )    
 

 

   

 
0  

,    (   )

(      )(      )
1 (3.14) 

where     are arbitrary numbersand satisfying                       
Proof  

Since (3.1) is nonoscillatory             by theCourant’s minimum principle (3.7), which yields  

∫  ( )  ( )    ∫ ,  ( ( ))-
  

 

 

 
                                                                   (3.15) 

for  all     ,   - such that     (   )    ( )           (    ) with     

 ( )  ,
(   )

 
 ⁄ (    )

  
 ⁄                              

(   )
 

 ⁄ (    )
  

   ⁄           
               (3.16) 

         ( ( ))  {

 

 
(   )

 

 
  (    )

  
 ⁄            

 

 
(   )

 

 
  (    )

  
    ⁄         

                                                          (3.17) 

where          (3.14)  becomes 

∫  ( )  ( )    ∫ ,   ( )-
 

 

 

 

 

                      

which  gives  
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∫  ( )  ( )   ∫  ( )  
 

  

( )    ∫ ,   ( )-
 

  

 

  

 

    ∫ ,   ( )-
 

 

  

      

From  (3.16) and (3.17), we get  

∫  ( ) [(   )
 

 (    )
  

 ]
   

 

   ∫  ( )
 

  

0(   )
 

 (    )
  

 1
 

   

 ∫ [
 

 
(   )

 

 
  (    )

  

 ]
 

   
  
 ∫ 0

 

 
(   )

 

 
  (    )

  

 1
 

   
 

  
             (3.18) 

Consider 

∫ [
 

 
(   )

 

 
  (    )

  

 ]
 

    
  

 

   ∫
  

 
(   ) (

 

 
  )(    )

   

   
  

 

 

                                                            
  

 (    ) 
∫ (   )    

  

 

    

∫ [
 

 
(   )

 

 
  (    )

  

 ]
 

  
  
 

 
  

 (      )(    )                      (3.19) 

and 

∫ 0
 

 
(   )

 

 
  (    )

  

 1
 

  
 

  
 ∫

  

 
(   )    (    )    

 

  
. 

 
  

 (    ) 
∫ (   )    

 

  

    

∫ 0
 

 
(   )

 

 
  (    )

  

 1
 

    
 

  
  

  [(   )       (    )      ]

 (      )(    ) 
                                                  

(3.20)  

By substituting (3.19) and (3.20) in (3.18), we obtain 

∫  ( ) [(   )
 

 (    )
  

 ]
   

 

   ∫  ( )
 

  

0(   )
 

 (    )
  

 1
 

   

 
  

     (      )(    )    
 

  ,(   )       (    )      -

 (      )(    ) 
 

 
  

     (      )(    )    
 

  ,(    )       (   )      -

 (      )(    ) 
 

(    )  ∫  ( )(   ) 
  

 

   (    )  ∫  ( )(   ) 
 

  

   

 
  

     (      )(    )     
  [(    )       (   )      ]

 (      )(    ) 
. 

and  (3.14) follows in the limit    , we get 

(   )  ∫  ( )(   ) 
 

 

   (   )  ∫  ( )(   ) 
 

 

   

                                         
  

     (      )(   )    
 

  (   )      

 (      )(   ) 
 

                                            
  

     (      )(   )    
 

  

 (      )(   )    
 

            
 

  (   )    
*

  

      
 

  

      
+ 

(   )      ∫  ( )(   ) 
 

 

   (   )      ∫  ( )(   ) 
 

 

   

                                                                        
 

 
0

  

      
 

  

      
1. 

      
 

 
*
  (     )          (   )

(      )(      )
+ 
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(   )

 
*
  (   )  (   )    

(      )(      )
+ 

        
(   )

 
*  

(        )

(      )(      )
+ 

                                                         
(   )

 
0  

(    (   ))

(      )(      )
1. 

Since the left side of inequality (3.13) is nonnegative, the following inequalities are obtained when 

     and      respectively: 

(   )      ∫  ( )(   ) 
 

 

    
 

 
*  

(        )

(      )(    )
+ 

                         
 

 
*
                          

(      )(    )
+ 

(   )      ∫  ( )(   ) 
 

 
   

  

 (      )
                                                   (3.21) 

and 

(   )      ∫  ( )(   ) 
 

 

   
(    )

 
*  

        

(       )(      )
+ 

                                             
(    )

 
*  

        

(      )
+ 

(   )      ∫  ( )(   ) 
 

 
      

(    )

 
0
        

      
1                                                   (3.22) 

Hence  

                ∫  ( )   

 
   

  

 (      )
                                                                    (3.23) 

                ∫  ( )   

 
     

(    )

 
0
        

      
1                              (3.24) 

In particular, (3.21) and (3.22) show that    ( ), 0         is integrable in  (   ) if (3.1) is 

non-oscillatory in  (   ).  
IV. HILLE OSCILLATION CRITERIA FOR CONFORMABLE 

FRACTIONALDIFFERENTIAL EQUATIONS 

In this section, we consider that the CFDE’s are  

                                      ,   ( )-   ( ) ( )                                                                             (4.1) 

                               ,   ( )-   ( ) ( )                                                                                       (4.2) 

on the half-open interval ,   )  where  ( )  ( ) are positive continuous functions on this interval. 

Hille [20] stated his results in terms of the function  ( )  defined by  

 ( )   ∫  ( )   
 

 
                                                                       (4.3)   

and the numbers    and   are defined by  

       
   

     ( ) and        
   

     ( )                                            (4.4) 

If  the integral in (4.3) is not finite, then in this case we get         . 

4.1. THE HILLE-WINTER COMPARISON THEOREMS 
Hille [20] also proved a comparison theorem similar to the Sturm’s theorem. Consider the following 

two CFDE’s, 

                                ,   ( )-   ( ) ( )                                                                            (4.5) 

                                              ,   ( )-   ( ) ( )                                                                            (4.6) 

Define  ( ) and  ( ) by  

 ( )  ∫  ( )
 

 

   

      ( )  ∫  ( )  
 

 
      (4.7) 

Hille first proved the following theorem under the additional hypothesis that  ( ) and  ( ) were both 

positive. The proof presented here was provided by Winter [23, 24] and requires no such restriction on 

 ( )or  ( ). This is known as the Hille-Winter comparison theorem. 

Theorem 4.2  
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Define  ( ) and  ( ) as in (4.7). Let  ( ) and  ( ) be continuous on (   ) such that  ( ) and  ( ) 
both converge (may be only conditionally) Further, let    ( )   ( ) for all        If (4.6) is 

nonoscillatory, then (4.5) is nonoscillatory. If  (4.5) is oscillatory, then (4.6) is oscillatory. 

Lemma 4.1  

If  (4.1) is nonoscillatory and   ( ) is a solution of  (4.1) such that  ( )    for      then  

     (   ) ( )                                     (4.8) 

where 

              ( )  
  , ( )-

 ( )
       

 ( )⁄ . 

Proof  

If   ( )    for     , then we also know that    ( )    for     . Similarly,  ( )    if   ( )  
  for     . This proves the left part of the inequality (4.8). Since  ( ) satisfies (4.1), then ( )  
satisfies the Riccati equation  

  , ( )-  
 ( )  , 

     ( )        ( ),   ( )-

  ( )
 

      ( )  
  (   )   ( )

 ( )
 

(   )  (   )  ( )

 ( )
   ( ) 

      ( )    ( )   ( )                                                   (4.9) 

Since   ( )               ( )    ( )    and hence  

  [ 
 

 ( )
  ]     

Thus  

               
 

 ( )
    

 

 ( )
               

which is equivalent to (4.8). 

Theorem 4.3  

Equation (4.1) is nonoscillatoryiff  the nonlinear integral equation  

                     ( )  (   )∫     

 
 ( )   ∫   ( )

 

 
   ∫  ( )  

 

 
                   (4.10) 

has a solution for sufficiently large    
Proof  

If (4.1) is nonoscillatory, then  ( )  
      ( )

 ( )
   satisfies (4.9) as pointed out before. Integration of 

(4.9) from   to    gives  

∫       
 

 

( )   ∫   ( )  
 

 

 ∫  ( )  
 

 

   

,      ( )- 
 
 (   )∫       

 

 

 ( )   ∫   ( )  
 

 

 ∫  ( )  
 

 

   

        ( )       ( )  (   )∫     

 
 ( )   ∫   ( )  

 

 
 ∫  ( )  

 

 
  . 

Since (4.1) is nonoscillatory, Lemma 4.1 shows that the second integral tends to a finite limit as 

    and also that  ( )    as     . 

It follows that the last integral also tends to a finite limit as     and that  ( ) satisfies the integral 

equation (4.10),which implies that 

     ( )  (   )∫     ( )   
 

 

∫   ( )  
 

 

 ∫  ( )  
 

 

  

Conversely, if there exists a finite    such that   ,   ( )-    ( )  , ( )-  ,  ( )   ( )-      

has a solution  ( ) for      it follows from the form of the equation that   ( ) is integrable in 

(   ) and   ( ) is positive, monotone decreasing, differentiable function. 

Differentiation of (4.10) with respect to    yields 

,      ( )  (   ) ( )   -  (   )
 

  
*∫     ( )  

 

 

+   
 

  
*∫   ( )  

 

 

+  
 

  
*∫  ( )  

 

 

+ 

      ( )  (   )    ( )  (   )    ( )     ( )   ( ) 

      ( )     ( )   ( ) 
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      ( )    ( )   ( )     

which shows that  ( ) satisfies  ( )     ∫   ( )  
 

 
 . Hence 

 ( )  
      ( )

 ( )
 

Taking integral from   to    

∫     
 

 

 ( )   ∫
  ( )

 ( )

 

 

   

   (∫     
 

 

 ( )  )   ( )  

satisfies (4.1) for      and since   ( )     (4.1) is nonoscillatory. 

 

V.CONCLUSION AND FUTURE WORK 
In this investigation, the aim was to present some oscillatory or nonoscillatorybehaviors of the 

conformable fractional differential equations through the instrument of the Nehari and Hille type 

theorems. Since the obtained results are general forms of earlier works, they would assist the 

investigations in future studies. 
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