Iraqi Journal of Science, 2020, Special Issue, pp: 243-249 DOI: 10.24996/ijs.2020.SI.1.33

ISSN: 0067-2904

On the Construction of d-Koszul algebras

Ruaa Yousuf Jawad

Preparation of Trained Technicians Institute, Middle Technical University, Baghdad, Iraq

Received: 6/1/ 2020

Accepted: 15/ 3/2020

Abstract

An algebra **B** has been constructed from a (D, A)-stacked algebra **A**, under the conditions that D = dA, $A \ge 1$ and $d \ge 2$. It is shown that when the construction of algebra **B** is built from a (D, A)-stacked monomial algebra **A** then **B** is a d-Koszul monomial algebra.

Keywords: Koszul Algebra, d-Koszul monomial algebra, and (D, A)-stacked monomial algebra.

معهداعدادالمدربين التقنين,الجامعه التقنيه الوسطى, بغداد, العراق.

الخلاصه

 $D = dA.A \ge 1, d \ge 2$, ليكن الجبر المبني من الجبرال مرصوص (D,A) تحت الشروط التاليه: $J \le 1, d \ge 2$. ولقد برهنا ان هذا البناء يعطي لنا جبر من نوع الدي كازول اذا كان الجبر اللذي صنع منه من نوع جبرأحادي الحدودالمرصوص.

1-Introduction

In this paper, we take a (D, A)-stacked algebra $A = K\Gamma/I$, where D=dA, $A \ge 1$ and $d \ge 2$. We use that to construct an algebra B. The aim of this paper is to investigate the question whether each d-Koszul algebra has been derived from a (D, A)-stacked algebra where D = dA by using our construction. Leader [1] gives a construction of an algebra $\tilde{\Lambda}$ from a *d*-Koszul algebra Λ and she shows that if Λ is a *d*-Koszul algebra then $\tilde{\Lambda}$ is a (D, A)-stacked algebra, where D = dA. Moreover, Jawad and Snashall [2] generalized this construction where they started with a finite dimensional algebra $\Lambda = KQ/I$, for $A \ge 1$ and used it to construct a stretched algebra $\tilde{\Lambda}$. In this paper, the opposite of the above statement is investigated.

Furthermore, we show how the algebra **B** is constructed from a (D, A)-stacked algebra **A**, and we prove that if **A** is an (D, A)-stacked monomial algebra, then **B** is d-Koszul where D = dA.

The paper begins with a background, while in section 3 we provide our construction where we begin with a (D, A)-stacked algebra $A = K\Gamma/I$, we consider D = dA, $A \ge 1$ and $d \ge 2$, and we use the quiver Γ and ideal I to construct an algebra $B = KQ/\tilde{I}$.

Followed by detailed example of an algebra $A = K\Gamma/I$, we construct the algebra *B* from an algebra *A*. This algebra will be shown to be a *d*-Koszul algebra.

The main idea of section 3 is Theorem 3.3, in which we prove that the finite dimensional algebra B is a d-Koszul monomial algebra.

Throughout this paper, we use a number of notations. We let *K* be a field and let $A = K\Gamma/I$ be a finite dimensional (D, A)-stacked algebra, where Γ is a finite quiver and I is an admissible ideal [3].

^{*}Email: ruaayousuf@gmail.com

We denote the set of vertices of Γ by Γ_0 and the set of arrows of Γ by Γ_1 , while we let radA denotes the Jacobson radical of A. An arrow α begins with the vertex $o(\alpha)$ and ends with the vertex $t(\alpha)$; the way to write the arrow in the path is from left side to right side. A path is a sequence $\alpha_1 \alpha_2 \cdots \alpha_n$ of arrows $\alpha_1, \alpha_2, \ldots, \alpha_n$ in Q_1 , and the length of path $p = \alpha_1 \alpha_2 \cdots \alpha_n$ is n, which is denoted by l(p). If the generating set of I is from a set of paths in $K\Gamma$, then we say that $A = K\Gamma/I$ is a monomial algebra [4]. Section 2: Background

We recall briefly the definition of Koszul algebra and we refer the reader to an earlier publication [5]. A graded algebra $\Lambda = \Lambda_0 \bigoplus \Lambda_1 \bigoplus ...$ is a Koszul algebra if $\Lambda_0 = \Lambda/rad\Lambda$ has a linear resolution; in other words, every projective module P^n in the minimal graded projective resolution (P^n, d^n) of Λ_0 can be generated in degree *n*. It was shown that if $\Lambda = KQ/I$ is Koszul, then I is quadratic [5]. In another study [6], Berger introduced *d*-Koszul algebras. He was interested in this class of algebras to study Artin-Schelter regular algebras.

Definition 2.1 [6]. Let $\Lambda = \Lambda_0 \oplus \Lambda_1 \oplus ...$ be a graded K-algebra generated in degrees 0 and 1. Assume that $\Lambda_0 = \Lambda/rad\Lambda$ is a finitely generated semisimple K-algebra, Λ_1 is a finitely generated K-module and that (P^n, d^n) is a minimal graded

A – module projective resolution of A/radA. Let $d \ge 2$. We call Λ a d-Koszul algebra if, for all $n \ge 0$, P^n is generated in single degree, $\delta(n)$, and

$$\delta(\mathbf{n}) = \begin{cases} \frac{n}{2}d & \text{if } n \text{ even} \\ \frac{n-1}{2}d + 1 & \text{if } n \text{ odd.} \end{cases}$$

It can be seen that each Koszul algebra is a 2-Koszul algebra.

Green and Snashall [7] introduced the (D, A)-stacked monomial algebra. The case of non monomial (D, A)-stacked algebras was extended by Leader and Snashall [8].

Definition 2.2 [8, Definition 1.1]. Let $\Lambda = KQ/I$ be a finite dimensional algebra.

Then Λ is a (D, A)-stacked algebra if there are natural numbers $D \ge 2, A \ge 1$ such that, for all $0 \le n \le gldim \Lambda$, the projective module P^n in a minimal projective resolution of $\Lambda/rad\Lambda$ is generated in degree $\delta(n)$, where

$$\delta(n) = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ \frac{n}{2}D & \text{if } n \text{ even} \\ \frac{n-1}{2}D + A & \text{if } n \text{ odd.} \end{cases}$$

It can be seen that, if A = 1, then the finite dimensional (D, A)-stacked algebras are D-Koszul algebras, as defined by Berger.

Green and Marcos [9] introduced the δ -resolution determined algebras. Let $\Lambda = KQ/I$ be a finite dimensional algebra, then Λ is δ -resolution determined, if there is a map $\delta: N \to N$ such that, for all n > 0 with $n \leq gldim \Lambda$, the projective module P^n in a minimal projective resolution $\Lambda/rad\Lambda$ can be generated in one degree $\delta(n)$.

Section 3: Constructing d-Koszul algebras

Now we take a (D, A)-stacked algebra $A = K\Gamma/I$ and we consider D = dA and $d \ge 2$,

where the set $\tilde{\rho}$ is a minimal generating set of homogeneous uniform relations of I and each element of $\tilde{\rho}$ has a length D. The elements of $\tilde{\rho}$ are labelled as $\tilde{\rho}_1, \dots, \tilde{\rho}_m$. We are now ready to describe our construction using the quiver Γ and ideal I, and we show that the algebra **B** is related to the algebra **A**.

Definition 3.1:

1- We keep the notation above, and let $x \in K\Gamma$ where $x = \sum_k c_k \alpha_{k,1} \cdots \alpha_{k,D}$ is a linear combination of paths of length *D* with D = dA, $0 \neq c_k \in K$ and the $\alpha_{k,j} \in \Gamma_1$. We define the paths $\alpha_{k,rA+1} \cdots \alpha_{k,(r+1)A}$ to be the A-subpaths of x for some k, and $0 \leq r \leq d-1$.

2- We fix a minimal generating set $\tilde{\rho}$ for I. We define the *A*-subpaths of *A* to be the set of A-subpaths of *x*, for all $x \in \tilde{\rho}$, denoted as S_A , considering that a set S_A is a set with no repeats. We define now a quiver *Q* and an ideal \hat{l} of *KQ* and we let $B = KQ/\hat{l}$.

Definition 3.2: Let $A = K\Gamma/I$ be a (D, A)-stacked algebra and consider that D = dA

for some $d \ge 2$, where the set $\tilde{\rho} = \{\tilde{\rho}_1, \dots, \tilde{\rho}_m\}$ is a minimal generating set of uniform relations of a length *D* of *I*. So for each $i = \{1, \dots, m\}$, we write $\tilde{\rho} = \sum_k c_k \alpha_{i,k,1} \cdots \alpha_{i,k,D}$ where $0 \ne c_k \in K$ and $\alpha_{i,k,j} \in \Gamma_1$, for all $1 \le j \le D$. Then

1- We define the vertex set of Q to be the set $\{o(\tilde{\rho}_i), t(y) \text{ for all } y \in S_A \text{ and all } i = \{1, ..., m\}$. We remark that $t(\alpha_{i,k,dA}) = t(\alpha_{i,k,D}) = t(\tilde{\rho}_i)$. In this set we do not have any repeated vertices, so if $t(\alpha_{i,k,rA}) = t(\alpha_{j,i,sA})$ as vertices of Γ or some i, j, k, l, r, s, then we classify $t(\alpha_{i,k,rA})$ and $t(\alpha_{i,l,sA})$ as the same vertex in Q.

2- The arrows of *Q* are constructed in the following way. Each $y \in S_A$ corresponds to an arrow β_y in *Q*. The diagram below illustrates this process.

Consider the path $\alpha_{i,k,1} \cdots \alpha_{i,k,D}$. Then $e_0 = o(\tilde{\rho}_i), e_1 = t(\alpha_{i,k,A}), \dots, e_d = t(\alpha_{i,k,dA})$ are vertices in Q and β_1, \dots, β_d are arrows in Q corresponding to the A-subpaths

$$\alpha_{i,k,1} \dots \alpha_{i,k,A}, \dots, \alpha_{i,k,(d-1)A+1} \dots \alpha_{i,k,dA}$$

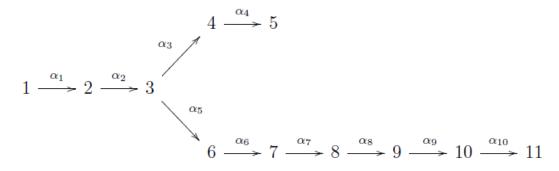
respectively. Then the $\alpha_{i,k,1} \cdots \alpha_{i,k,D}$ may be considered as the path of the length D in KT

 $e_0 \xrightarrow{\alpha_{i,k,1} \dots \alpha_{i,k,A}} e_1 \xrightarrow{\alpha_{i,k,A+1} \dots \alpha_{i,k,2A}} \dots \xrightarrow{\alpha_{i,k,(d-1)A+1} \dots \alpha_{i,k,dA}} e_d$

which corresponds to the path $\beta_1 \dots \beta_d$ of the length *d* in *KQ*.

$$e_0 \xrightarrow{\beta_1} e_1 \xrightarrow{\beta_2} \dots \xrightarrow{\beta_d} e_d$$

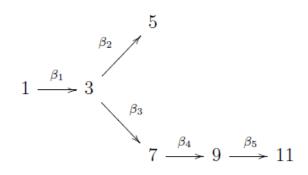
3- The ideal \hat{I} of KQ can be constructed as follows. For each $i = \{1, ..., m\}$, we define $\rho_i = \sum_k c_k \beta_{k1} \cdots \beta_{kd}$ in KQ where β_j is the arrow in KQ which corresponds to a path $\alpha_{j,k,rA+1} \dots \alpha_{j,k(r+1)A}$ for all j = 1, ..., d and r = 0, ..., d - 1. Now we define \hat{I} to be the ideal of KQ that is generated by the set $\rho = \{\rho_1, ..., \rho_m\}$. We remark that ρ is certainly a minimal generating set for \hat{I} , since $\tilde{\rho}$ is a minimal generating set for \hat{I} . Let $\boldsymbol{B} = KQ/\hat{I}$. We illustrate this construction in the following example. Example 3.3: Let $\boldsymbol{A} = K\Gamma/I$ be the (4, 2)-stacked algebra that is illustrated in the following quiver



and with $I = \langle \alpha_1 \alpha_2 \alpha_3 \alpha_4, \alpha_1 \alpha_2 \alpha_5 \alpha_6, \alpha_5 \alpha_6 \alpha_7 \alpha_8, \alpha_7 \alpha_8 \alpha_9 \alpha_{10} \rangle$. We can see that the sets g^n are given as follows: $g^0 = \{e_1 \dots e_{11}\}, g^2 = \{\alpha_1 \alpha_2 \alpha_3 \alpha_4, \alpha_1 \alpha_2 \alpha_5 \alpha_6, \alpha_5 \alpha_6\}$

 $\alpha_7\alpha_8, \alpha_7\alpha_8\alpha_9\alpha_{10}\}, g^3 = \{\alpha_1\alpha_2\alpha_5\alpha_6\alpha_7\alpha_8, \alpha_5\alpha_6\alpha_7\alpha_8\alpha_9\alpha_{10}\}, \text{ and } g^4 = \{\alpha_1\alpha_2, \alpha_3\alpha_9\alpha_{10}\}, and g^4 = \{\alpha_1\alpha_2, \alpha_3\alpha_{10}\}, and g^4 = \{\alpha_1\alpha_2, \alpha_1\alpha_2, \alpha_2\alpha_{10}\}, and g^4 = \{\alpha_1\alpha_2, \alpha_2\alpha_{10}\}, and g^4 = \{\alpha_1\alpha_2, \alpha_1\alpha_2, \alpha_2\alpha_{10}\}, and g^4 = \{\alpha_1\alpha_2, \alpha_2\alpha_$

 $\alpha_5 \alpha_6 \alpha_7 \alpha_8 \alpha_9 \alpha_{10}$ }. We see that the length of the elements $g_i^n \in g^n$ is $\delta(n)$ where D = 4 and A = 2. So every projective P^n is generated in one degree $\delta(n)$. Hence, A is a (D, A)-stacked monomial algebra with D = 4, A = 2 and d = 2. So $S_A = \{\alpha_1 \alpha_2, \alpha_3 \alpha_4, \alpha_5 \alpha_6, \alpha_7 \alpha_8, \alpha_9 \alpha_{10}\}$. Then, by using the construction above, Q has six vertices $o(\alpha_1 \alpha_2), t(\alpha_3 \alpha_4), t(\alpha_5 \alpha_6), t(\alpha_7 \alpha_8), t(\alpha_9 \alpha_{10})$ and five arrows $\{\beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6\}$, where β_1 corresponds to $\alpha_1 \alpha_2$, β_2 corresponds to $\alpha_3 \alpha_4, \beta_3$ corresponds to $\alpha_5 \alpha_6, \beta_4$ corresponds to $\alpha_7 \alpha_8$, and β_5 corresponds to $\alpha_9 \alpha_{10}$. Therefore, $B = KQ/\hat{I}$ is given by the quiver



and $\hat{I} = \langle \beta_1 \beta_2, \beta_1 \beta_3, \beta_3 \beta_4, \beta_4 \beta_5 \rangle$. So *B* is a Koszul algebra (see [10]). More examples can be found in a previous article [11].

Section 4: d-Koszul monomial algebra

In this section, the algebra B, which has been constructed from a (D, A)-stacked monomial algebra, will be shown to be d-Koszul. Before that, the idea of overlaps has been used to prove the main theorem in this section. Green and Zacharia [10] have used the concept of overlaps to describe a basis of the *Ext* algebra of a monomial algebra.

We consider that A = KQ/I is a monomial algebra.

Definition 4.1 [7]. Let q and p be paths. Then we say that a path q overlaps a path p with an overlap , if there are paths u and v such that pu = vq and $1 \le l(u) \le l(q)$. The definition can be shown in the following diagram:

Thus, the two paths allow l(v) to be zero.

2- A path q properly overlaps a path p with an overlap pu if q overlaps p and $l(v) \leq 1$.

3- A path p has no overlaps with a path q if p does not properly overlap q and q does not properly overlap p.

Definition 4.2 [12]. A path p is a prefix of a path q if there is some path p such that q = pp'.

The minimal projective resolution (P^n, d^n) of A/radA has been constructed by Green, Happel and Zacharia [4], by using overlaps. Moreover, it has been further described by other authors [12,10]. The same previously demonstrated notation [12] has been used in this paper. The sets \mathcal{R}^n can be defined as follows:

 \mathcal{R}^0 = the vertices set of Q,

 \mathcal{R}^1 = the arrows set of Q

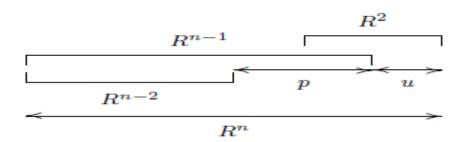
 \mathcal{R}^2 = the minimal set of monomials in the generating set of *I*.

For all $n \ge 3$, $R^2 \in \mathcal{R}^2$ maximally overlaps $R^{n-1} \in \mathcal{R}^{n-1}$ with overlap

 $R^n = R^{n-1}u$ for some $u \in KQ$, if it satisfies the following conditions:

- 1- $R^{n-1} = R^{n-2}p$, for some path p in KQ;
- 2- R^2 overlaps p with overlap pu;

3- There is no element in \mathcal{R}^2 which overlaps p, with the overlap being a proper prefix of pu. The set \mathcal{R}^n is the set of all overlaps \mathbb{R}^n . We illustrate \mathbb{R}^n with the following diagram:



Now we define the minimal projective resolution (P^n, d^n) of $\Lambda/rad \Lambda$ using the construction of Green, Happel and Zacharia [4]. For all $n \ge 0$, let $P^n = \bigoplus_{R^n \in \mathbb{R}^n} t(R^n)\Lambda$. Define, for $n \ge 1$ and $R^n \in \mathbb{R}^n$, the map $d^n: P^n \to P^{n-1}$ via $t(R^n) \to (0, ..., 0, p, 0, ...)$, where $R^n = R^{n-1}p$ and p occurs in the component of P^{n-1} corresponding to R^{n-1} .

Now we prove the main theorem in this section.

Theorem 4.3: Let $A = K\Gamma/I$ be a (D, A)-stacked monomial algebra with *gldim* $A \ge 4$, so D = dA, for some $d \ge 2$. Let **B** be the algebra constructed from **A** using Definition 3.2. Then **B** is a *d*-Koszul monomial algebra.

Proof: Assume that the algebra $\mathbf{B} = KQ/\hat{\mathbf{I}}$ is constructed from $\mathbf{A} = K\Gamma/I$. Then $\hat{\mathbf{I}}$ is monomial. We set

 $\tilde{\mathcal{R}}^0$ = the vertices set of Γ ,

 $\tilde{\mathcal{R}}^1$ = the arrows set of Γ ,

 $\tilde{\mathcal{R}}^2$ = the minimal set of monomials in the generating set of *I*, (denoted $\tilde{\rho}$ in Definition 3.2) and

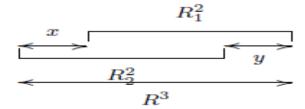
 \mathcal{R}^0 = the vertices set of Q,

 \mathcal{R}^1 = the arrows set of Q,

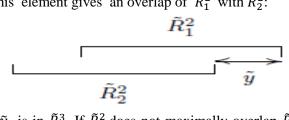
 \mathcal{R}^2 = the minimal set of monomials in the generating set of \hat{I} , (denoted as ρ in Definition 3.2).

It can be seen that $l(R^0) = 0$, $l(R^1) = 1$, and $l(R^2) = d$, for all $R^0 \in \mathbb{R}^0$, $R^1 \in \mathbb{R}^1$,

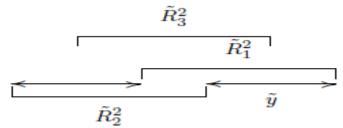
and $R^2 \in \mathbb{R}^2$. We denote by $\tilde{\mathbb{R}}^n$ (respectively \mathbb{R}^n) the set of overlaps in A (respectively B), for all $n \ge 3$. Since A is a (D, A)-stacked monomial algebra, then the $n\underline{\text{th}}$ projective module in a minimal resolution of A/rad A is $\tilde{P}^n = \bigoplus_{\mathbb{R}^n \in \tilde{\mathbb{R}}^n} t(\tilde{\mathbb{R}}^n)A$, and we can see that it is generated in single degree $\delta(n)$ (see Definition 1.3), where $n \ge 0$. We now consider \mathbb{R}^3 . An element $\mathbb{R}^3 \in \mathbb{R}^3$ is constructed from \mathbb{R}_1^2 which maximally overlaps \mathbb{R}_2^2 of the form $\mathbb{R}^3 = \mathbb{R}_2^2 y$ as follows:



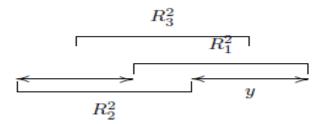
By Definition 2.2, R_1^2 (respectively R_2^2) corresponds to \tilde{R}_1^2 (respectively \tilde{R}_2^2) in the minimal generating set $\tilde{\mathcal{R}}^2$ for *I*. This element gives an overlap of \tilde{R}_1^2 with \tilde{R}_2^2 :



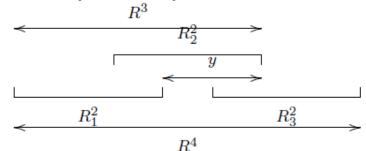
We want to show that $\tilde{R}_2^2 \tilde{y}$ is in \tilde{R}^3 . If \tilde{R}_1^2 does not maximally overlap \tilde{R}_2^2 , then we have $\tilde{R}_3^2 \in \tilde{R}^2$ which maximally overlaps \tilde{R}_2^2 :



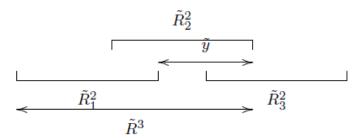
But \tilde{R}_3^2 corresponds to some $R_3^2 \in \mathcal{R}^3$ and so R_3^2 overlaps R_2^2 :



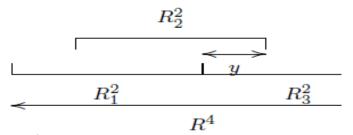
This is a contradiction, as R_1^2 maximally overlaps R_2^2 . Therefore, \tilde{R}_1^2 does maximally overlap \tilde{R}_2^2 and so $\tilde{R}_2^2 \tilde{y} \in \tilde{\mathcal{R}}^3$. Now we write $\tilde{R}_2^2 \tilde{y} = \tilde{\mathcal{R}}^3 \in \tilde{\mathcal{R}}^3$. Since $l(\tilde{\mathcal{R}}^3) = D + A$ and $l(\tilde{\mathcal{R}}_2^2) = D$, then $l(\tilde{y}) = A$. However, \tilde{y} is a suffix of \tilde{R}_1^2 and so $\tilde{y} \in S_A$. So \tilde{y} corresponds to an arrow in B. Hence, l(y) = 1 and $l(\mathcal{R}^3) = d + 1$. The same argument has been used for the elements of \mathcal{R}^4 . An element $R^4 \in \mathcal{R}^4$ is constructed from a sequence of overlaps as follows:



From Definition 3.2, R_1^2 (respectively R_2^2 , R_3^2) corresponds to \tilde{R}_1^2 (respectively \tilde{R}_2^2 , \tilde{R}_3^2) in the minimal generating set $\tilde{\mathcal{R}}^2$ for *I*. Using the above argument for $\tilde{\mathcal{R}}^3$, we get:



and $l(\tilde{y}) = A$. From our construction of R^4 , we get l(y) = 1. However, R_3^2 overlaps y and so y must be a prefix of R_3^2 . Thus $t(R_1^2) = o(R_3^2)$ and we have



Then, $R^4 = R_1^2 R_3^2$ and $l(R^4) = 2d$. By continuing in the same manner, by the induction for all $n \ge 0$ and all $R^n \in \mathcal{R}^n$, we have

$$l(R^{n}) = \begin{cases} \frac{n}{2}d & \text{if } n \text{ even} \\ \frac{n-1}{2}d + 1 & \text{if } n \text{ odd} \end{cases}$$

Thus, **B** is a *d*-Koszul.

Acknowledgement

I would like to deliver a special thank you to my supervisor, Professor Nicole Snashall, for her guidance.

References

- 1. Leader, J. 2014. Finite generation of Ext and (D,A)-stacked algebras, PhD thesis, University of Leicester.
- **2.** Jawad, R. And Snashall, N. **2010**. Hochschild cohomology, finiteness conditions and a generalisation of d-Koszul algebras, preprint.
- **3.** Assem, I. And Simson, D. **2006**. A. Skowroński, *Elements of the Representation Theory of Associative Algebras*: 1, LMS Student Texts 65, CUP.
- 4. Green, E.L., Happel, D. and Zacharia, D. 1985. Projective resolutions over Artin algebras with zero relations, *Illinois J. Math.* 29(1): 180-190.
- 5. Green, E.L. and Martínez-Villa, R. 1994. Koszul and Yoneda algebras, Representation theory of algebras (Cocoyoc, 1994), 247-297, CMS Conf. Proc. 18, Amer. Math.
- 6. Berger, R. 2001. Koszulity of nonquadratic algebras, *J. Algebra*, 239: 705-734. Soc., Providence, RI.
- 7. Green, E.L. and Snashall, N. 2006. Finite generation of Ext for a generalization of D-Koszul algebras, *J. Algebra*. 295: 458-472.
- 8. Leader, J. and Snashall, N. 2017. The Ext algebra and a new generalisation of D-Koszul algebras, *Quart. J. Math.* 68: 433-458.
- 9. Green, E.L. and Marcos, E.N. 2005. d-Koszul Algebras, Comm. Algebra, 33: 1753-1764.
- 10. Green, E.L. and Zacharia, D. 1994. The Cohomology Ring of a Monomial Algebra, *Manuscripta Math.* 85: 11-23.
- **11.** Jawad, R. **2019**. Cohomology and fniteness conditions for generalisations of Koszul algebras, PhD thesis, University of Leicester.
- 12. Green, E.L. and Snashall, N. 2006. The Hochschild cohomology ring modulo nilpotence of a stacked monomial algebra, *Colloq. Math.* 105: 233-258.