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Abstract

In this paper, we offer and study a novel type of generalized soft-open sets in
soft topological spaces, named soft be-open sets. Relationships of this set with other
types of generalized soft-open sets are discussed, definitions of soft bc —
neighborhood, soft bc- closure and soft bc- interior are introduced, and its
properties are investigated. Also, we introduce and explore several characterizations
and properties of this type of sets.
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1. Introduction and Preliminaries

The concept of soft set theory was instigated and applied by Molodtsov [1,2] as a mathematical
device for dealing with uncertainties. In a previous work [3], Shaber and Naz defined soft
topological spaces and soft open sets. Soft - open sets were introduced and studied by several
authors, including the soft a- open [4], soft preopen [5], soft semi open [4], and soft regular
open sets [6]. . In another study [7], Akdag and Ozkan realized the soft b- open sets and soft
continuity. The concept of bc- open sets was introduced by Ibrahim [8].

Let (Z,1,A) be a soft topological space, where A is any set of parameters. The soft closure
(resp. soft interior) [9] of a soft set (P,A) is denoted by (cl(P,A) (resp. int(P,A)). A subset
(P,A) is said to be a g-open [4]( resp. soft a-open[5], soft preopen[4], soft semi-open[6] and soft
regular) set, if: (P,A) c cl(int(cl((P,A)))(resp.(P,A) c int(cl(int((P,A)))), (P,A) c
int(cl((P,4))), (P, A) < cl(int((P,A))) and (P, A) = int (cz((P,A))).

We denote the family of all soft sets over X by SS(Z, A).
Definition 1.1[3]. Let t be a collection of soft open sets over Z, then 7 is said to be
soft topological space if (1) @and X belong to 7, (2) The union of any subcollection
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of soft sets of 7 belongs to 7, and (3) the intersection of any two soft sets in ©
belongs to . We named the triple (Z,7,A) by STS.
Definition 1.2 [9]. The soft set (P,A) € SS(Z,A) is called a soft point in Z, denoted by e;, if
for the elemente € A, F(e) = @and F(e') = ¢ for all e" € A\{e}. The set of all soft points of
Z is denoted by SP(Z).
Definition 1.3 [7]. If (P,A) € SS(Z , A) then it is called
(1) Softb — open set (briefly sb — open set), iff (P, A) c int(cl((P,A))) U cl(int((P, A))).
(2) Sof tb — closed (briefly, sb — closed)set, iff (P,A) 2 int(cl((P,A))) N cl(int((P, A))).
Definition 1.4 [6,7]. Let (P, A) be a soft set of a STS (Z, t,A), then
(1) Soft semi — interiorof a soft set(P, A) in Z is denoted by

sSint((P,A))= U{(W, A4) : (W, A) is a soft semi—open set and (W, 4)c(P,A)}.
(2)Soft semi — closure of a soft set (P, A) in Z is denoted by

sScl((P,A))= N{(L, 4) : (L, 4) is a soft semi—closed set and (P, A)c(L, 4)}.
(3)Soft b — interior of a soft set(P, A) in Z is denoted by

sbint((P,A))= U{(W, 4) : (W, A4) is a soft b—open set and (W, 4) c (P, A4)}.
(4)Soft b — closure of a soft set (P, A) in Z is denoted by

sbcl((P,A))= N{(L, 4) : (L, 4) is a soft b—closed set and (P, A) (L, 4)}.
Clearly, sbcl (P, A) (resp. sScl (P, A) is the smallest soft b-closed (resp. soft semi-closed) set over
Z which contains (P, A), and sbint ((P, A)) (resp. sSint ((P, A))) is the largest soft b-open (resp. semi-
open) set over Zwhich is contained in(P, A).
We will denote the family of all soft 5-open (resp., soft semi-open) sets and soft b-closed ((resp., soft
semi-closed) sets of a soft topological space by 5O(Z) (resp., SSO(Z) S6C(Z) (resp., SSC(2)).
Definition 1.5 [10]. Let(Z,t,A) be aSTS. and x,y € Z, such that x # y. If there exist soft open
sets (P,A) and (S, 4), such that x € (P,A),y & (S5,A4), y € (§,A), and x ¢ (P,A), then (Z,t,A) is
called a soft T;-space.
Theorem 1.6 [10]. Let (Z, T, E) be STS. Then each soft point is a soft closed if and only if (Z,t, A) is
a soft T,-space.
Definition 1.7 [11]. An STS (Z, 7, A) is called a soft locally indiscrete, if every soft open set over Z is
a soft closed set over Z.
2. Soft bc — open sets
Now, we give a new family of soft b — open sets named soft bc — open sets in an STS and study
some of its basic properties.
Definition 2.1 A subset (P,A) of STS (Z,t,E) is named soft bc — open (sbc — open) if, for
any x € (P,A) € ShO(Z), there is asoft closedset(S,A), suchthatx € (S,4A) c (P,A). The
complement of (P, A) is named soft bc — closed (sbc — closed).
The collection of all soft bc — open sets in Z is denoted by SbcO(Z ) and the collection of all soft
bc — closed sets in Z is named SbcC(Z).
Theorem 2.2 A soft subset (P, A) of STS (Z,t, A) is soft bc — open iff (P,A) is sb — open and it is
a union of soft closed sets.
Proof. (=) Let (P, A) be a soft bc — open set. Then (P,A) is sb — open set and for each x € (P, A)
there is a soft closed set (L, A), such that x € (L,A) < (P,A). Then we get U{x},ecpa) = (P,A) S
(L,A)<c (P,A).Thus, (P,A) = U(L,A), where (P, A) is a soft closed set for each x € (P,A).
(<) Direct form the definition of soft bc — open.
Corollary 2.3 For a STS (Z,t1,A),if(L,A) is sb—open set overX, then (L,A) is an sbc —
open if (L, A) is a soft closed set.
Proposition 2.4 A soft subset (H, A) of an STS (Z, 1, A) is sbc — closed if and only if (H, A) is a soft
b — closed set and it is an intersection of soft open sets.
Proof. It is obvious.
Remark 2.5 Every shc — open set of a space Z is soft b — open, but the converse is not true in
general, as shown by the following example.
Example 2.6 Let Z = {v,,v,,v3},A = {e,,e,,e3} and
T= {Q), 7: (PllA): (PZIA)r (P3,A), (P4-:A)}
where (P, A), (P, A), (P53, A), (Py, A) are soft sets over Z , defined as follows:
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(P, A) = {(31' :Z')' (e2,{v2,v3}), (e3, {vy, vz})},

(Pz, A) = {(31, @): (eZI {Ul})! (63; {US})}:

(P3,A) = {(eq,{v;}), (ez, {v1,v3}), (33;{773})}.

(P4, A) = {(61, {UZ})' (82, {U3}), (63, Q))}

Then, T defines a soft topology on Z .

The soft closed sets are Z, @, (P, A)S, (P,, A)¢, (P3, A)S, (P, A€,
Where (PllA)C = {(ell 6)' (62, {vl})' (63' {U3})} = (PZ'A)

(P2, A) = {(91:7): (e2,{vz,v3}), (33»{171;772})} = (P1,4)

(P35, A)¢ = {(e1, {v1,v3}), (2, {v2}), (33;&11; v, D},
(P4,A)C{(e1,{v1,v3}), (e2,{vz,v3}), (33» Z )}

The family of Sb0S(Z ) = {(P;,A), (P2, A), (P3,A), (Py, A)}.

The family of S6c0S(Z ) = {(P1,A), (P,,A), (P3,A)}.

Then (P,, A) € SbOS(Z ), but (P, A) & SbcOS(Z).

By Remark (2) [8] and the above Remark (2.5), we have the following implications:

Soft reaular set = Soft -ooen set= Soft @ —open set= Soft semi —oben set
U U
Soft nre —open set = Soft b —open set =Soft B —open set

)
Soft bc —open set

Proposition 2.7An arbitrary union of sbc — open sets is sbhc — open set.

Proof. Suppose that {(P,A); : A € A} is a family of soft bc — open sets in(Z ,t, A). Then (P, A);, is
soft b —open set for each A € A. So,U(P,A); is soft b —open. Letx € U{(P,A), : 1 € A},
sox € (L,A), for some A € A. Since (P,A), is soft b — open for each A, then there is a soft closed
set (L, A) such that

x € (L,A) c (P,A), c U{(P,A): 1 € A}, s0x € (L,A) c U{(P,A);: A € A}. Therefore, U{(P,A); :
A € A} is soft bc — open set.

Now we show that the intersection of two shc- open sets is not necessarily shc- open.

Example 2.8. Let the STS (Z, 7, A) as in Example 2.6, then (P;,A) € ShcO(Z ) and (P5,A) €
SbcO(Z ), but (Py,A)N(P3,A) = (P, A) & SbcO(Z).

Remark 2.9. From the above example we notice that the family of all shc — open subset of a
space Z is a supra topology and thus it is not a topology in general.

The following result gives a condition under which the family of all sbc — open sets became a
topology on Z.

Proposition 2.10. If the collection SbO(Z ) is a topology on Z, then SbcO(Z) is also a
topology on Z.

Proof. It is clear that @, Z € SbcO(Z) and, by Proposition 2.7, the union of any subset
of SbcO(Z ) is sbc — open. Now, let (P,A) and (S,A) be two sbc — open sets, then (P,A)
and (P, A) are soft b — open sets. Since SbO(Z ) is a topology on Z, so (P,A)N(S, A) is soft
b —open. If x € (§,A)N(P,A),then x € (P,A) and x € (S,A). So there exist two soft closed
sets (L,A) and (K, A), such that x € (L,A) c (S5,4) and x € (K,A) c (P,A). This implies that
x € (L,A)N(K,A) c (S,A)N(P,A). Since any intersection of soft closed sets is soft closed,
then (L,E)N(K,A) is a closed set. Thus, (P,A)N(S, A) is sbc — open set.

Theorem 2.11 A soft set (P,A) of a STS (Z,1,A) is a soft bc — open set iff, for each x € (P, A),
there is a soft sbc — open set (S, A) such that x € (S,4) < (P, A).

Proof. Suppose that (P, A) is soft bc — open in the space Z , then for each x € (P, A), put (P, A) =
(S,A) is sbc — open set containing x such that x € (P,A) < (S, A).

Conversely, assume that for any x € (P, A), there is a shc — open set (S, A) such that x € (S,4) <
(P,A). Thus, (P,A) = U(S,A), where (S,A), € SbcO(Z) for each x. Hence, (P, A) is sbc — open
set.
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Theorem 2.12 Let (Z,t,A) be soft T, — space, then (P, A) is sb — open set iff (P,A) is a soft
bc — open.
Proof Suppose that (Z,t,A) is soft T, — space and (P,A) is sb — open set. If (P,A) = @, then
(P,A) € sbc(Z).1f (P,A) # @, let x € (P,A). Since (Z,t,4) is soft T, — space, then by Theorem
1.6, each soft point is a closed set and, hence, x € {x} c (P, A). Therefore, (P, A) is an sbc — open,
thus S0 (Z) < SbcO(Z ). But SbcO(Z) < SbO(Z ). Hence, SbO(Z ) = SbcO(Z).
Proposition 2.13 If (Z, 1, A) is soft locally indiscrete, then SSO(Z ) € SbcO(Z ).
Proof. Let (P,A) be any soft subset of STS(Z,t,A)and (P,A) € SS0(Z), if (P,A) = @, then
(P,A) € SbcO(Z). If (P,A) # @, then (P,A) c cl(int((P,A))). Since (Z,t,A) is soft
locally indiscrete, then int(P, A) is soft closed, so int(P,A) c (P,A). This implies that for each
x € (P,A), x € (int(P, A)) c (P,A). Therefore, (P,A) is sbc —open set. Hence SSO(Z) c
SbcO(Z).
Theorem 2.14 Let {(P,A), : a € A} be a collection of sbc — closed sets in a soft topological space
(Z,t,A). Then N{(P,A), : a € A}is soft bc — closed.
Proof. The proof follows from Proposition 2.7.
3. Some Properties of Soft bc — Open Sets
In this section, we provide some soft topological operations on oft sets and discuss its

properties.
Definition 3.1 Let (Z,7,A) be an STSand x € Z .Then, a soft set (P, A) is said to be soft bc —
neighborhood (briefly, soft bc — nbh) of x, if there exists a soft bc — open set (K, A) over Z such
thatx € (K.A) c (P, A).
Proposition 3.2 For an STS (Z,1,A), a soft set (P,A) is sbhc — open iff it is a soft bc —
neighborhood of each of its points.
Proof. Let (P,A) c Z be a soft sbc — open set, since for every x € (P,A),x € (P,A) c (P,A) and
(P, A) is sbc — open, this shows that(P, A) is a soft bc — neighborhood of each of its points.
Conversely, suppose that (P, A) is a soft bc — neighborhood of each of its points. Then for each
x € (P, A), there exists (S,A), € SbcO(Z) such that (S,A), < (P,A). Then (P,A) = U{(S,A), :
x € (P,A)}. Since each (S, A), is sbc — open. It follows that (P, A) is sbc — open.
Proposition 3.3 Every soft bc — neighborhood of a point is soft 5 — neighborhood.
Proof. It is obvious from the fact that every shc — open set is sh — open.
Definition 3.4 Let (P,A) be soft set of aSTS (Z,7,4), then a point x € Z is called soft hc —
interior point of (P, A), if there exists an sbc — open set (U, A) such that x € (U,A) < (P,A) . The
set of all sbc — interior points of (P, A) is denoted by sbcint(P, A).
Proposition 3.5 Let (P, A) be a soft set of Z , then sbcInt(P,A) < sbint(P,A).
Proof. Since sbc — open set issb — open, so the proof holds.
Definition 3.6 Let (P, A) be asoft set of a STS(Z, 1, A), then the soft b¢c — closure of (P, A), denoted
by sbcCl (P, A), is the intersection of all sbc — closed sets containing (P, A).
In the following theorem we provide some properties of shc — interior of a soft set.
Theorem 3.7 Let (Z,7,A) be STS and let (P, A) and (M, A) be soft sets over Z . Then
1) sbcint(P, A) is the union of all sbc — open sets which are contained in (P, A).
2) sbcInt(P,A) is shc — open setin Z .
3) (P,A) is sbc — open iff(P,A) = sbcint(P, A).
4) sbcint(sbeInt(P,A)) = sbelnt(P, A).
5) sbclnt(@) = @ and sbcInt(Z~) =7.
6) sbcint(P,A) c (P, A).
7) If (P,A) € (M, A), then sbcInt(P,A) c sbcint(M, A).
8) If (P,A)N(M,A) = @, then sbcInt(P,A) c sbcInt(M, A).
9) sbcInt(P,A)U sbcInt(M, A) € sbelnt((P,A)U(M, 4)).
10) sbcInt((P,A)N(M, A)) c sbeInt(P, A)N sbelnt(M, A).
Proof. The proofs of these facts are easy, so we will only prove the point number 7:

Suppose thatx € Z, x € sbcInt(P, A), then by Definition 3.4, thereisaset (U,A) such that
x € (U,A) c (P,A) c (P,A), thus x € sbcint(P, A).
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Theorem 3.8 Let (P,A) be any soft set in a STS (Z,1,A), then x € shcCL(Z) if and only if
(P,A)N(U,A) = @ for any sbc — open set (U, A) containing x.

Proof.(=) let x € sbcCIl(P,A). Suppose that (P,A)NU,A), =0, where (U, A),E€
sbcO(Z ) containing x. Hence, (P,A) c (U,A)%, where (U,A)S € sbcC(P,A) . Hence,
x & sbcCl(P,A), which is a contradiction.

(&) Let x & sbcClL(P,A), then x & N(L,A), where (L,A) € sbcC(Z) and (P,A) c (L,A) for
each (L, 4). Hence,x € (N(L,4))°, where (N(L,A))° € sbcO(Z ) containingx. Now, we have

P, NN, A))° < (N AD)N(NL, )" = 0.

Theorem 3.9 Let (P,A) be any soft subset of anSTS (Z,1,4) if (P,A)N(L,A) + @ for any soft

closed set( L, A) containing x, then x € sbcCI(P, A).

Proof. Suppose that (U, A), € shcO(Z ) containing x, then by definition (2.1), there is (L, A) soft

closed set such that x € (L,A) c (U,A). So, by the hypothesis, (P,A)N(L,A) # @. Hence,

(P,A)N(U,A) = ¢ for any sbc — open set (U, A),. Therefore, x € sbcCL(P, A).

Theorem 3.10. Let (Z,7,A) be an STS and let (P, A) and (M, A) be soft sets over Z . Then

1) sbcCI(P, A) is the intersection of all sbc — closed sets which are containing (P, A).

2) (P, A) c sbcCl(P, A).

3) sbcCl(P,A) is sbc — closed setin Z .

4) (P,A) is sbc — closed iff (P,A) = sbcCI(P, A).

5) sbcCl(sbeCl(P, A)) = sbeClL(P, A).

6) sbcICl(@) = @and sbeCl(Z) =Z.

7) If (P,A) € (M, A), then sbcCL(P, A) € sbcCL(M, A).

8) If sbcCL(P, A)N sbcCL(M, A) = @, then (P, A)N(M, 4) = B.

9) sbcCl(P, A)U sbeCl(M, A) € sbeCl((P,A)UM, A)).

10) sbeCl((P,A)N(M, A)) c sbeCl(P, A)N sbeCl(M, A).

Proof. It is obvious.
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