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Abstract 
     In this paper, we propose a new approach of regularization for the left censored 

data (Tobit).  Specifically, we propose a new Bayesian group Bridge for left-

censored regression ( BGBRLC). We developed a new Bayesian hierarchical model 

and we suggest a new Gibbs sampler for posterior sampling. The results show that 

the new approach performs very well compared to some existing approaches.  
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 طريقة بيزية جديدة لمجموعة البرج لحل نموذج التوبت
 
رحيم الحمزاوي ،*سجى الجنابي  

 .قدم الإحصاء ، كلية الإدارة والاقتصاد ، جامعة القادسية ، الديهانية ، العراق
 الخلاصه

. على وجو التحديد ، نقترح )طريقة جديدة لتنظيم البيانات الرقابة اليدار )التهبتفي ىذه الهرقة ، نقترح      
لقد طهرنا نمهذجًا ىرميًا  (BGBRLC) . للانحدار الخاضع للرقابة اليدار طريقة بيزية جديدة لمجمهعة البرج

ئج أن النيج الجديد لأخذ العينات الخلفية. أظيرت النتا Gibbs جديدًا بايزيًا ونقترح أخذ عينات جديدة من
 .يؤدي أداءً جيدًا مقارنةً ببعض النيج الحالية

1-Introduction   

     Left censored regression is a statistical method in which the observed response variable is censored 

from below. Examples of such data are various and cover many different areas, such as agriculture, 

genetics, environment and medicine, etc. Left censored regression is considered as one of the good 

methods for assessing the correlation between a set of explanatory variables and a dependent variable. 

One of the important left censored regression problem is when explanatory variables are very large. 

Therefore, it is difficult to identify important variables. Most research focuses on variable selection to 

obtain the appropriate model. Traditional methods of variable selection include Mallow’s   , 

suggested by Mallows [1]: 

   
      

  
     ٫ 

where    is the  mean square error of the model,        is a residuals sum of squares,   is a number 

of co-variates in the model, and   is the sample size of data. The small values of    mean that the 

model is relatively accurate. Woodroofe [2] showed that    selects the conservative model. Nishii [3] 

showed that    is inconsistent in selecting the right model, and often selecting a larger model when 
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 Akaike [4] proposed Akaike Information Criterion (AIC), which is defined by  

               
     where   is a  maximum likelihood function (MLE). Javed and Mantalos [5]  showed that the 

selected model using AIC is inconsistent when the sample size is large. For the sake of eliminating this 

issue, Schwarz [6] presented the Bayes information criterion (BIC)                                                      

                      
     This method overcomes the problem of (AIC) and selects a model with good properties. However, 

when      this method cannot handle the problem of variable selection.  

George and Mc-Culloch [7] presented a stochastic search variable selection (SSVS) as an attractive 

way to select a subset of covariates using a mixture of prior distributions that allows some coefficients 

equal to zero 

     One of the disadvantages of this approach is the long time to select the correct model (i.e., it is time 

consuming). In addition, in high dimensional data, the algorithm cannot visit the correct model. 

     Recently, regularization methods became more popular because they simultaneously select and 

estimate the important coefficients; see for example Hans [8],  Li et al. [9] Alhamzawi and Yu [10], 

Tibshirani [11] Liu et al. [12],  Alhamzawi [13].  Mallick and Yi [14], Xu and Ghosh [15], and 

Alhamzawi and Ali [16]. The general formula of the regularization methods is as follows 

   ̂          
                                                          

     where        is a function of the model coefficients  which controls the degree of penalty in terms 

of tuning parameter     . Hoerl and Kinnard [17] proposed the Ridge regression which has a better 

predictive performance than (OLS) estimates, with a lower variance. However, the Ridge regression 

cannot produce an optimal model, because it always retains all predictors in the model. 

     Frank and Friedman [18] suggested that the Bridge regression has attractive features such as 

Oracle, unbiasedness, as well as the variable selection and parameter estimation of the model, but the 

approximate covariance matrix and bootstrap calculated standard errors are unsteady. 

     Tibshirani [19] proposed the Lasso regression which automatically selects the important variable 

by shrinking some unimportant coefficients to zero. 

     In recent years, researchers focused on selecting influential groups of variables. Yuan and Lin [20] 

proposed a group Lasso, which was expanded by Kim et al. [21] to general loss functions. The group 

lasso regression cannot select a binary variable. 

     Huang et al. [22] proposed a group bridge regression, which is capable of selecting a bi-level 

variable with oracle property and sparsity [23,24]. 

     Aljanabi.S and Alhamzawi [25] )Accepted paper  ( proposed a new Bayesian group lasso in left-

censored regression models for the simultaneous variable selection and parameter estimation , where 

the results of data analysis and simulation showed that the proposed method performed better than the 

other approaches. 

     In this research, we propose a new Bayes group bridge for left-censored data. Then, a new Gibbs 

sampler algorithm for variable selection is implemented. Simulation researches and real data analysis 

show that the new approach’s performance is very well in comparison to the existing methods.  

    In Section 2, we provide an overview of the left-censored model. In section 3, we describe the 

Bayesian group bridge regression for left-censored data and present a new Bayesian hierarchical 

model, In Section 4, we carry out Monte Carlo simulations to demonstrate the performance of the 

proposed method. In section 5, we analyze the Real data and in section 6 we draw the conclusions. 

2. Methods       

Consider the left-censored model 

   {
  

                    
    

                      
     

 

                                                                           (2) 
where   is a left censored point, 

      
      

               
                          

           
              

                  . 
3. Bayesian Group Bridge For Left-censored model 

     Huang et al. [22] suggested that the bridge group is able to select the important groups and select 

within each group,   
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    ̂                      ∑    ‖  ‖ 

 
 

   

        

where           
 and   denote the parameter concavity. 

     Entering multiple parameters will aggregate the information between variables within the group 

and accommodate the shrinkage through specific parameters. Despite the good and desirable 

characteristics of this technique, it does not provide correct or reliable standard errors [22]. The 

Bayesian approach overcomes these disadvantages and can provide standard errors. Following Huang 

et al. [22], the Bayesian group bridge for censored data can be written as: 

    ̂                         ∑    ‖  ‖ 

 
 

   

       

where            
 ,   is the number of the groups and ‖ ‖ is the         of   .We will use scale 

mixture of uniforms (SMU) for representing the generalized Gaussian (GG) prior, making the Markov 

Chain Monte Carlo (MCMC) algorithm work with good computational efficiency. The conditional GG 

prior distribution of   is given by Mallick and Yi [26], as follows 

 (             )  ∏   (   ‖  ‖ 

 
) 

 

   

  

The most important step in the Bayesian approach is to determine the prior distribution of parameters. 

It is also of great importance that the selection must be accurate because the opposite will lead to many 

problems, as previously shown by Kenny and Donson [27], Alhamzawi and Yu [28], and Alhamzawi 

and Ali [29]. Following Mallick and Yi [26], to perform the Bayesian analysis, we set the next prior 

distribution of   as follows; 

              (  ‖ ‖ 
 
)   

where        
 
 
       

    
 

 
   

 is the normalizing constant. 

                                      

                                       
 
 
       

   (
 

 
  )

   (  ‖  ‖ 

 
)                                                  

 
 
 
 
  
      

   (
 
   )

∫    {   }  

‖ ‖   
 
 

 

Let       
   

 
 

      
      

  ∫
 
 
 
  

 (
 
   )

  
 
     {   }  

‖ ‖   
 
 

 

 

In the present study, we convert the above formula in the following manner: 

Let                      then 
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3.1 Hierarchical Representation 
     We construct our Bayesian hierarchical model following the hierarchical model of Mallick and Y, 

[26], as follows: 

           {  
   }                 

                          
                                          

              ∏      
 

 

 

   

     

   
  

    
      

   ( 
 

  
)                        

          
     

where               
3.2 Full Conditional Distributions  

1- The full conditional distribution of   
 is 

  
       {

                                             

 (  
      )                            

              

where    is a degenerated distribution. 

2- The full conditional distribution of ( ) is 

                                

                            ̂   (   )
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here  ̂               
3- The full conditional distribution of ( ) is 
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4- The full conditional posterior distribution of       is 

                               

                         (
 

 
   

 

 
                 )                         

5- The full conditional posterior distribution of      is 

                     

    

  

       
       ∏

{
 

 
  

  

 
 

‖  ‖
}
 

  

   

 

       

  

 
  

          ∏

{
 

 
  

  

 
 

‖  ‖
}
 

  

   

 

                                                   ((
  

 
  )   )                                                    

where I(.) is an indicator function. 

3.3 Posterior Computation  

     In the section, following Mallick and Yi [26], we develop a Gibbs sampling algorithm  to  update 

the latent variables and the other parameters, according to the following steps: 
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i. Generate    
  

  
       {

                                             

 (  
      )                            

   

 

ii. Generate   from the full conditional distribution,  

           
                     

     
  ‖    ‖ 

 
               

iii. Generate   from the multivariate normal distribution with mean (            and the variance 

is (  (   )
  

)   

iv. Generate    from the Inverse Gamma distribution with the shape parameter  
 

 
    and the rate 

parameter  
               

 
  . 

v. Generate     from Gamma distribution, with the shape (
  

 
  ) and rate ( ). 

4. Simulation Study 

     Here, we carry out Monte Carlo simulations to demonstrate the performance of the proposed 

method for Bayesian group bridge  regression for left censored  data (BGBRLC) . The BGBRLC is 

compared with the frequentist left-censored regression (FLCR), Bayesian regression for the left 

censored data (BRLC),  Bayesian Lasso  regression for the left censored data (BLRLCR) and Bayesian 

group Lasso  regression for left censored  data (BGLRLC) . These  methods are evaluated  based on  

the median of mean absolute deviations (MMAD) over 1000 simulations. The convergence of the  

BGBRLC algorithm  is checked by trace plots  and the histograms of the posterior samples  for the 

regression parameters. The data in the simulations are simulated  by 

        {  
   }             , 

     where   
    

       and            We generate  50 observations from the above mode, where  

   represents the i
th
  row vector of 8 predictors in the matrix X. The rows of  X are simulated  

independently from N(0,   where the (i, j)th element of   is 0.95. The  true regression coefficients, 

including the intercept term, are   (                         ) which are  divided into three 

groups;                                .  The results of MMAD and SD are summarized in 

Table- 1, which shows  that the proposed method out-performed the other approaches.   We also notice 

from Table-2 that the proposed approach produces results that are much closer to the true regression 

coefficients as compared to those produced by the other methods. 

Table 1-MMADs for Simulation 1 

Method MMAD SD 

BGBRLC 0.6838 0.1256 

BGLRLC 0.6906 0.1302 

FLCR 0.6981 0.1408 

BRLC 0.7002 0.1448 

BLRLCR 1.1034 0.7502 

The bold numbers correspond to the smallest MMAD. 

Table 2-Parameter estimations for simulation 1 

Method                                                                                                                      

  (True) 5 -5 0 0 0 0 0 0 0 

BGBRL

C 
4.828 -5.117 0.359 0.244 -0.748 1.176 -0.661 0.552 -0.811 

BGLRL

C 
4.827 -5.742 0.545 0.817 -0.781 1.162 -0.621 0.596 -0.783 

FLCR 4.868 -5.627 0.546 0.861 -0.725 1.18 -0.689 0.49 -0.759 

BRLC 4.814 -5.763 0.527 0.886 -0.753 1.24 -0.755 0.528 -0.739 

BLRLC

R 
4.788 -4.465 0 0 0 0 0 0 0 
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     We summarize The trace plots for the simulation study in Figure-1, which shows that the samples 

of the BGBRLC method very readily traverse the posterior space very. 

 

Figure 1-Trace plots for the variables in Simulation study. 

 

     In Figure-2, the posterior histograms of our proposed approach show that  the conditional posterior 

for each parameter is the desired stationary truncated univariate normal distributions. 

 
Figure 2-Posterior histograms for the simulation study. 
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5. Real Data 

     Here, the proposed approach is illustrated with the data of active sperms. This dataset has 200 

observations on 8 variables.  The response variable is  the count of active sperms, while the other 

seven  variables are covariates, as shown below. 

          is the count of active sperm, the normal sperm count is  60-150 *1000000.     
         (Testosterone) the normal level of testosterone in blood 8.2-34 n.mol/l.     

         (Prolactin) the normal level of prolactin it is less than 1.5-19 ng/ml.     

         (Semen pH) the normal value of semen pH is 7.1-8.       

         (Semen viscosity) the normal value of semen viscosity  in 20-30 minutes of gonorrhea.          

         (Sperm antibodies) if a person's blood contains sperm antibodies, then a value of 0 is given and, 

if doesn’t, then the value is 1.                     

         (varicocele) if a person suffers from varicocele, then a value of 0 is given and, if doesn’t, the 

value is 1.  

         (Smoking) if a person smokes, then a value of 0 is given and, if doesn’t, the value is 1. 

 

 Table 3-Posterior mean for parameter estimates of real data example. 

BGBRLC BGLRLC FLCR FRLCR BLRLCR Variables 

22.3513 22.0685 20.9419 2.9034 3.385 Interceptس 

1.3594 1.3663 1.3333 3.4665 1.0344 X1 

-1.4624 -1.4472 -1.405 0.0731 -0.9896 X2 

-2.1561 -2.1363 -1.9077 -0.0642 1.244 X3 

1.2516 1.2593 1.2577 0.5876 1.4815 X4 

-9.5894 -9.5889 -9.6294 -4.6287 -0.1198 X5 

20.4669 20.1301 20.1326 0.2231 5.954 X6 

6.2577 6.1189 5.9632 -0.8898 1.9526 X7 

 

     In Table-3, we listed the results of the real data example. To evaluate the methods,  the DIC was 

computed for the five approaches (BGBRLC, BGLRLC, FLCR, FRLCR, BLRLCR ) and the values 

were 1710.291, 1713.448,  1822.805 , 1817.453 and 1836.229, respectively. The  DIC results show 

that the BGBRLC performs better than the other approaches. 

6. Conclusions 
     In this paper. We have analyzed the real data using the R software and applied the simulation 

examples. We compared our proposed method with other methods. The results showed that the new 

method performs better than some existing methods. The new method can be easily extended to other 

approaches such as Bayesian group bridge for binary data and Bayesian group bridge for right and 

interval censored data. 
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