

Partitions on the Projective Plane Over Galois Field of Order $11^{m}, m=1,2,3$

Sura M.A. Al-subahawi*, Najm Abdulzahra Makhrib Al-seraji
Department of Mathematics, College of Science, University of Mustansiriyah, Baghdad, Iraq

Received: 1/1/ 2020
Accepted: 15/ 3/2020

Abstract

This research is concerned with the study of the projective plane over a finite field F_{q}. The main purpose is finding partitions of the projective line $\operatorname{PG}\left(1, q^{3}\right)$ and the projective plane $\operatorname{PG}\left(2, q^{2}\right), q=11$, in addition to embedding $\operatorname{PG}(1, q)$ into $\operatorname{PG}\left(1, q^{3}\right)$ and $\operatorname{PG}(2, q)$ into $\operatorname{PG}\left(2, q^{2}\right)$. Clearly, the orbits of $\operatorname{PG}\left(1, q^{3}\right), q=11$ are found, along with the cross-ratio for each orbit. As for $\operatorname{PG}\left(2, q^{2}\right), 13$ partitions were found on $\operatorname{PG}\left(2,11^{2}\right)$, each partition being classified in terms of the degree of its arc, length, its own code, as well as its error correcting. The last main aim is to classify the group actions on $\operatorname{PG}(2,11)$.

Keywords: Stabilizer Group, Partitions, Arcs, Cross-Ratio

$$
\begin{aligned}
& \text { سرى ماجد عبد الرزاق الصبيحاوي *، نجم عبد الزهرة مخرب السراجي } \\
& \text { قسم الرياضيات ، كلية العلوم، الجامعه المستنصريه، بغداد، العراق }
\end{aligned}
$$

الخلاصه

$$
\begin{aligned}
& \text { هذا البحث معني بدراسة المستوي الاسقاطي حول الحقل المنتهي Fq, واهدافه الرئيسية في ايجاد تجزئات }
\end{aligned}
$$

$$
\begin{aligned}
& \text {, } \mathrm{P} \text {, كل تجزئة صنفت في رموز درجة القوس , وطوله و كذلك تصحيح اخطاء الرموز . اخر هدف } \\
& \text { هو تصنيف فعل الزمر على }) \text { (2,11 }(2)
\end{aligned}
$$

1. Introduction

Today, we see projective geometry as a numerical hypothesis in its own privilege, a section of geometry is "exceptionally non-Euclidean" with no thought of separation and with quite certain topological properties. In any case, the source of projective geometry is to be found inside Euclidean geometry. For a few hundreds of years, projective "techniques" were viewed as similarly as an effective method to deal with issues in Euclidean geometry. The main topic of this paper is a partition on the projective line and the projective plane by subgeometry, depending on the projective geometry, group theory and vector space over a finite field F_{q}. Therefore, we found a non-singular matrix $T_{2 \times 2}$ to construct a projective line $\operatorname{PG}(1, q)$ and a matrix $T_{3 \times 3}$ to construct a projective plane $\operatorname{PG}(2, q)$, where $q=11$. In this work, we partition the projective line $\operatorname{PG}\left(1, q^{3}\right), q=11$ and study its properties and results. In addition, we partition the projective plane $\operatorname{PG}\left(2, q^{2}\right)$. Many methods and algorithms were

[^0]used on this subject. For example, in 1998, Hirshfeld [1] partitioned PG(2,16) into three disjoint $\operatorname{PG}(2,4)$, while in 2010, Al-Seraji [2] classified the projective line and the plane of order 17. In 2011, Al-Zangana [3] showed the group effect on the conic in $\operatorname{PG}(2, q), q=19$, whereas in 2014, AlSeraji [4] studied the classification of the projective line $\operatorname{PG}(1,16)$. For more details about other cases, see [5-12].

2. The group action on the projective line $\operatorname{PG}(1,11)$

To construct $\operatorname{PG}(1,11)$, let $G(X)=X^{2}+\omega^{2} X+\omega^{7}, \omega=2 \in F_{11}$ be a polynomial of the degree two, where ω is a primative element and G is the primitive polynomial over F_{11}, since:

$$
\begin{aligned}
& G(0)=2, \quad G(1)=4, \quad G(2)=8, \quad G(3)=5, \quad G(4)=10, \quad G(6)=9, \quad G(7)=7, \\
& G(8)=3, \quad G(9)=6, \quad G(10)=1
\end{aligned}
$$

Such that G is irreducible polynomial over field F_{11}.
The non-singular matrix of size 2×2 of $G(X)$,

$$
T=\left(\begin{array}{cc}
0 & 1 \tag{1}\\
\omega^{2} & \omega^{7}
\end{array}\right)
$$

generated 12 points on $\operatorname{PG}(1,11)$, such that $S_{i}=[1,0] T^{i}, i=0,1,2, \ldots, 11$.
3. The group action on $\operatorname{PG}\left(1,11^{3}\right)$

In regard to $\operatorname{PG}\left(1,11^{3}\right)$, the order becomes higher and the number of points are increased, so we found a matrix to find those points. This matrix is obtained from the polynomial of degree two $H(X)=X^{2}-X-\alpha^{18}, \alpha \in F_{11^{3}}$, primitive over $F_{11^{3}}$. We can define this field by the form $F_{11^{3}}=$ $\left\{0,1, \alpha, \alpha^{2}, \alpha^{3}, \ldots, \alpha^{1330} \mid \alpha^{1331}=1\right\}$. To clarify more, we have 1332 points in $\operatorname{PG}\left(1,11^{3}\right)$ generated by the non-singular matrix of H of size 2×2,

$$
A=\left(\begin{array}{cc}
0 & 1 \tag{2}\\
\alpha^{18} & 1
\end{array}\right)
$$

such that $N_{i}=[1,0] A^{i}, i=0,1,2, \ldots, 1331$.
The group actions of A^{111} on $\operatorname{PG}\left(1,11^{3}\right)$ are:

$$
\begin{aligned}
& N_{0} \xrightarrow{A^{111}} N_{111} \xrightarrow{A^{111}} N_{222} \xrightarrow{A^{111}} N_{333} \xrightarrow{A^{111}} \ldots \xrightarrow{A^{111}} \ldots \xrightarrow{A^{111}} N_{1221} \xrightarrow{A^{111}} N_{0} \\
& N_{1} \xrightarrow{A^{111}} N_{112} \xrightarrow{A^{111}} N_{223} N_{334} \xrightarrow{A^{111}} \ldots \xrightarrow{A^{111}} N_{1222} \xrightarrow{A^{111}} N_{1} \\
& N_{2} \xrightarrow{A^{111}} N_{113} \xrightarrow{A^{111}} N_{224} \xrightarrow{A^{111}} N_{335} \xrightarrow{A^{111}} \ldots \xrightarrow{A^{111}} N_{1223} \xrightarrow{A^{111}} N_{2} \\
& \vdots \\
& N_{110} \xrightarrow{A^{111}} N_{221} \xrightarrow{A^{111}} N_{332} \xrightarrow{A^{111}} N_{443} \xrightarrow{A^{111}} \ldots \xrightarrow{A^{111}} N_{1233} \xrightarrow{A^{111}} N_{110}
\end{aligned}
$$

Theorem 3.1: $\operatorname{On} \operatorname{PG}\left(1,11^{3}\right)$, we have the following properties:

1. The projective line $\operatorname{PG}\left(1,11^{3}\right)$ is partitioned into 111 orbits;
2. Any one of the pervious orbit represents $\operatorname{PG}(1,11)$ and all of them are equivalent under the effect of the matrix A;
3. All the orbits are disjoint on the effect of A as 12-transtive;
4. The action of A^{111} cycles 12 points.
5. Partitions on $\operatorname{PG}\left(1,11^{i}\right), i=1,3$

Let

$$
\begin{equation*}
\Upsilon=\frac{\left(A_{1}-A_{3}\right)}{\left(A_{1}-A_{4}\right)}\left(A_{2}-A_{4}\right) \tag{3}
\end{equation*}
$$

be a cross-ratio of any four points $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$, such that these points will be an elements of F_{q}. On the $\operatorname{PG}\left(1,11^{i}\right), i$ in $\{1,3\}$, the number of orbits were formed and founded cross ratio for each orbit. The formed orbit gave a permutation of 4 -set (tetrad), therefore this 4 -set is described as:

1. Harmonic (H) if $\Upsilon=\frac{1}{r}, \Upsilon=1-\Upsilon$ or $\Upsilon=\frac{r}{\gamma-1}$;
2. Equianharmonic (E) if $\gamma=\frac{1}{1-\Upsilon}$ or $\Upsilon=\frac{\gamma-1}{\gamma}$;
3. Superharmonic if it is both $(1 \& 2)$;
4. Neither harmonic nor equianharmonic (N) if the cross-ratio is of another value.

Evaluate the tetrads $\{\infty, 0,1, t\}$ with $t \in F_{11^{i}}, i \in\{0,1\}$, hence there are four classes of tetrads:
$Y_{1}=\{$ class of H tetrads $\}$
$Y_{2}=\{$ class of E tetrads $\}$
$Y_{3}=\{$ class of S tetrads $\}$

$Y_{4}=$ \{class of N tetrads $\}$

The three orbits formed by (1) on $\mathrm{PG}(1,11)$ are:

$$
\begin{aligned}
& P_{0} \xrightarrow{T^{3}} P_{3} \xrightarrow{T^{3}} P_{6} \xrightarrow{T^{3}} P_{9} \xrightarrow{T^{3}} P_{0} \\
& P_{1} \xrightarrow{T^{3}} P_{4} \xrightarrow{T^{3}} P_{7} \xrightarrow{T^{3}} P_{10} \xrightarrow[\rightarrow]{T^{3}} P_{1} \\
& P_{2} \xrightarrow{T^{3}} P_{5} \xrightarrow{T^{3}} P_{8} \xrightarrow{T^{3}} P_{11} \xrightarrow{T^{3}} P_{2}
\end{aligned}
$$

The next table shows the properties for cross-ratio on $\operatorname{PG}(1,11)$.
Table 1-Some 4-set on PG(1,11).

No.	The 4- set (tetrads)	The cross-ratio	Class of tetrads	Stabilizer
1	$\left\{\omega^{2}, \omega^{5}, \omega^{8}, \omega^{9}\right\}$	$\Upsilon=\omega^{9}$	S	$Z_{2} \times Z_{2}$
2	$\left\{\omega^{2}, \omega^{5}, \omega^{9}, \omega^{8}\right\}$	$\Upsilon=\omega$	N	$Z_{2} \times Z_{2}$
3	$\left\{\omega^{2}, \omega^{8}, \omega^{5}, \omega^{9}\right\}$	$\Upsilon=\omega^{9}$	S	$Z_{2} \times Z_{2}$
4	$\left\{\omega^{2}, \omega^{8}, \omega^{9}, \omega^{5}\right\}$	$\Upsilon=\omega$	N	$Z_{2} \times Z_{2}$
5	$\left\{\omega^{2}, \omega^{9}, \omega^{5}, \omega^{8}\right\}$	$r=\omega^{5}$	H	$Z_{2} \times Z_{2}$

From Table-1, the following theorem is established.
Theorem 4.1: Partitions on $\operatorname{PG}(1,11)$ satisfy the following properties :

1. We divide the projective line $\operatorname{PG}(1,11)$ into three orbits, each one of them containing four points called tetrads;
2. For each orbit, the values of a cross-ratio are $\left(\Upsilon_{1}=\omega, \Upsilon_{2}=\omega^{5}, \Upsilon_{3}=\omega^{9}\right)$;
3. The cross-ratio of $\{\infty, 0,1, \omega\}$ belongs to the class $N,\left\{\infty, 0,1, \omega^{5}\right\}$ belongs to the class H, and $\left\{\infty, 0,1, \omega^{9}\right\}$ belongs to the class S;
4. Each of $\Upsilon_{1}, \Upsilon_{2}$ and Υ_{3} gave eight permutations from the same class to which they belong.

Proof 4 : The eight permutations for the cross-ratio Υ_{1} are:

$$
\begin{aligned}
& \left\{\omega^{2}, \omega^{5}, \omega^{9}, \omega^{8}\right\} \\
& \left\{\omega^{2}, \omega^{8}, \omega^{9}, \omega^{5}\right\} \\
& \left\{\omega^{5}, \omega^{2}, \omega^{8}, \omega^{9}\right\} \\
& \left\{\omega^{5}, \omega^{9}, \omega^{8}, \omega^{2}\right\} \\
& \left\{\omega^{8}, \omega^{2}, \omega^{5}, \omega^{9}\right\} \\
& \left\{\omega^{8}, \omega^{9}, \omega^{5}, \omega^{2}\right\} \\
& \left\{\omega^{9}, \omega^{5}, \omega^{2}, \omega^{8}\right\} \\
& \left\{\omega^{9}, \omega^{8}, \omega^{2}, \omega^{5}\right\}
\end{aligned}
$$

Also, the eight permutations for Υ_{2} are:

$$
\begin{aligned}
& \left\{\omega^{2}, \omega^{9}, \omega^{5}, \omega^{8}\right\} \\
& \left\{\omega^{2}, \omega^{9}, \omega^{8}, \omega^{5}\right\} \\
& \left\{\omega^{5}, \omega^{8}, \omega^{2}, \omega^{9}\right\} \\
& \left\{\omega^{5}, \omega^{8}, \omega^{9}, \omega^{2}\right\} \\
& \left\{\omega^{8}, \omega^{5}, \omega^{2}, \omega^{9}\right\} \\
& \left\{\omega^{8}, \omega^{5}, \omega^{9}, \omega^{2}\right\} \\
& \left\{\omega^{9}, \omega^{2}, \omega^{5}, \omega^{8}\right\} \\
& \left\{\omega^{9}, \omega^{2}, \omega^{8}, \omega^{5}\right\}
\end{aligned}
$$

The eight permutations for Υ_{3} are:

$$
\begin{aligned}
& \left\{\omega^{2}, \omega^{5}, \omega^{8}, \omega^{9}\right\} \\
& \left\{\omega^{2}, \omega^{8}, \omega^{5}, \omega^{9}\right\} \\
& \left\{\omega^{5}, \omega^{2}, \omega^{9}, \omega^{8}\right\} \\
& \left\{\omega^{5}, \omega^{9}, \omega^{2}, \omega^{8}\right\} \\
& \left\{\omega^{8}, \omega^{2}, \omega^{9}, \omega^{5}\right\} \\
& \left\{\omega^{8}, \omega^{9}, \omega^{2}, \omega^{5}\right\} \\
& \left\{\omega^{9}, \omega^{5}, \omega^{8}, \omega^{2}\right\} \\
& \left\{\omega^{9}, \omega^{8}, \omega^{5}, \omega^{2}\right\} .
\end{aligned}
$$

In regard to the partition on $\operatorname{PG}\left(1,11^{3}\right)$, there are 333 orbits formed by (2), some of these orbits are:

$$
\begin{gathered}
P_{0} \xrightarrow{A^{333}} P_{333} \xrightarrow{A^{333}} P_{666} \xrightarrow{A^{333}} P_{999} \xrightarrow{A^{333}} P_{0} \\
P_{1} \xrightarrow{A^{333}} P_{334} \xrightarrow{A^{333}} P_{667} \xrightarrow{A^{333}} P_{1000} \xrightarrow{A^{333}} P_{1} \\
P_{2} \xrightarrow{A^{333}} P_{335} \xrightarrow{A^{333}} P_{668} \xrightarrow{A^{333}} P_{1001} \xrightarrow{A^{333}} P_{2} \\
\vdots \\
P_{332} \xrightarrow{A^{333}} P_{665} \xrightarrow{A^{333}} P_{998} \xrightarrow{A^{333}} P_{1331} \xrightarrow{A^{333}} P_{332}
\end{gathered}
$$

The second table shows the properties of these partitions.
Table 2-Some 4-set on PG(1, 11 ${ }^{3}$).

No.	The 4-set(tetrads)	The cross-ratio	Class of tetrad	Stabilizer
1	$\left\{\alpha^{18}, \alpha^{136}, \alpha^{561}, \alpha^{952}\right\}$	$r=\alpha^{9}$	E	$Z_{2} \times Z_{2}$
2	$\left\{\alpha^{18}, \alpha^{561}, \alpha^{136}, \alpha^{952}\right\}$	$r=\alpha^{9}$	E	$Z_{2} \times Z_{2}$
3	$\left\{\alpha^{18}, \alpha^{952}, \alpha^{136}, \alpha^{561}\right\}$	$r=\alpha^{5}$	H	$Z_{2} \times Z_{2}$
4	$\left\{\alpha^{18}, \alpha^{952}, \alpha^{561}, \alpha^{136}\right\}$	$r=\alpha^{5}$	H	$Z_{2} \times Z_{2}$

Theorem 4.2: On $\mathrm{PG}\left(1,11^{3}\right)$ the partition satisfies the following properties:

1. We divide $\operatorname{PG}\left(1,11^{3}\right)$ into 333 orbits, each one of them containing four points called tetrads;
2. From the 333 orbits, we obtain two cross-ratio $\left(\Upsilon_{1}=\alpha^{5}\right.$ and $\left.\Upsilon_{2}=\alpha^{9}\right)$
3. The cross-ratio of $\left\{\infty, 0,1, \alpha^{5}\right\}$ belongs to the class H and that of $\left\{\infty, 0,1, \alpha^{9}\right\}$ belongs to the class E;
4. Each of Υ_{1} and Υ_{2} gave 16 permutations from the same class to which they belong.
5. Partitions on $\operatorname{PG}\left(2,11^{i}\right), i=1,2$

After the projective line has been partitioned, we now partition the projective plane on the two fields $F_{11} \& F_{11^{2}}$. The used symbols are:

- n : The size of orbit.
- k : The degree of arc.
- d : The minimum distance of projective code.
- $e=[d-1 / 2]$ error correcting .
5.1_ Partition on the projective plane $\operatorname{PG}(2,11)$

At $\mathrm{PG}(2,11)$ there are 133 points and 133 lines, with 12 points on lines, and 12 lines passing through points. To construct $\operatorname{PG}(2,11)$, let $W(X)=X^{3}+\tau^{8} X^{2}+X+\tau, \tau \in F_{11}$, where $\tau=2$ is a primitive element and W is a primitive polynomial over F_{11}. The non- singular matrix

$$
M=\left(\begin{array}{ccc}
0 & 1 & 0 \tag{4}\\
0 & 0 & 1 \\
\tau^{6} & \tau^{5} & \tau^{3}
\end{array}\right)
$$

generated 133 points and lines on $\operatorname{PG}(2,11)$, such that $P_{i}=[1,0,0] M^{i}, i=0,1,2, \cdots, 132$.
The actions of M^{7} and M^{19} are given in Tables-(3 and 4).
Table 3-The first partition on $\operatorname{PG}(2,11)$

NO.	The orbits	n	\boldsymbol{k}	d	\boldsymbol{e}	Description
M^{7}		19	3	16	7	$C_{0} \neq 0$ incomplete

From the third table we obtained the following results:

- $\operatorname{PG}(2,11)$ is partitioned into 7 orbits;
- Any one of the pervious orbits represents an arc and all of them are equivalent under the effect of the matrix M;
- The values of the parameters of the projective code are $n=19, k=3, d=16, e=7$;
- The matrix M^{7} cycles 19 points.
- Any orbit in Table- 3 represents an incomplete arc since $c_{0} \neq 0$;

Table 4-The second partition on $\operatorname{PG}(2,11)$.

NO.	The orbits	n	k	d	\boldsymbol{e}	Description
M^{19}		7	2	5	2	$C_{0}=0$ complete

From the forth table, we obtain the following:

- PG(2,11) is partitioned into 19 orbits;
- Any one of the pervious orbits represents an arc and all of them are equivalent under the effect of the matrix M;
- The values of the parameters of the projective code are $n=7, k=2, d=5, e=2$;
- The matrix M^{19} cycles 7 points.
- Any orbit in Table- 4 represents a complete arc since $c_{0}=0$;

5.2_The group action on the projective plane $\operatorname{PG}\left(2,11^{2}\right)$

Let $Y(X)=X^{3}-\rho^{22} X^{2}-\rho^{61}, \rho \in F_{11^{2}}$ be a polynomial, to construct $\operatorname{PG}\left(2,11^{2}\right)$, since Y is primitive over a field $F_{11^{2}}$. We have 14763 points and lines on $\operatorname{PG}\left(2,11^{2}\right)$, The non-singular matrix that generated these points is

$$
B=\left(\begin{array}{ccc}
0 & 1 & 0 \tag{4}\\
0 & 0 & 1 \\
\rho^{61} & 0 & \rho^{22}
\end{array}\right)
$$

Such that $V_{i}=[1,0,0] B^{i}, i=0, \ldots, 14762$.
We have 13 partitions on $\operatorname{PG}\left(2,11^{2}\right)$ as illustrated by the table below.
Table 5-The first partition on $\operatorname{PG}\left(2,11^{2}\right)$.

No.	Orbits	n	k	d	e
	$\mathrm{P}_{0} \xrightarrow{B^{3}} \mathrm{P}_{3} \xrightarrow{B^{3}} \mathrm{P}_{6} \xrightarrow{B^{3}} \mathrm{P}_{9} \xrightarrow{B^{3}} \mathrm{P}_{12} \xrightarrow[B^{3}]{\rightarrow} \ldots \xrightarrow[B^{3}]{\rightarrow} \mathrm{P}_{14760} \xrightarrow{B^{3}} \mathrm{P}_{0}$				
	$\mathrm{P}_{1} \xrightarrow{B^{3}} \mathrm{P}_{4} \xrightarrow{B^{3}} \mathrm{P}_{7} \xrightarrow{B^{3}} \mathrm{P}_{10} \xrightarrow{B^{3}} \mathrm{P}_{13} \xrightarrow{B^{3}} \ldots \xrightarrow{B^{3}} \mathrm{P}_{14761} \xrightarrow{\rightarrow} \mathrm{P}_{1}$				
B^{3}	$\mathrm{P}_{2} \xrightarrow{B^{3}} \mathrm{P}_{5} \xrightarrow{B^{3}} \mathrm{P}_{8} \xrightarrow{B^{3}} \mathrm{P}_{11} \xrightarrow{B^{3}} \mathrm{P}_{14} \xrightarrow{B^{3}} \ldots \xrightarrow{B^{3}} \mathrm{P}_{14762} \xrightarrow{B^{3}} \mathrm{P}_{2}$	4921	48		

From Table-5, we obtain the following:

- $\operatorname{PG}\left(2,11^{2}\right)$ is partitioned into 3 orbits;
- Any one of the pervious orbits represents an arc and all of them are equivalent under the effect of the matrix B;
- The values of the parameters of the projective code are $n=4921, k=48, d=4873$,
$e=2436$;
- The matrix B^{3} cycles 4921 points.

Table 6-The second partition on $\operatorname{PG}\left(2,11^{2}\right)$.

No.	Orbits	n	k	d	e
B^{7}		2109	20	2089	1004

From Table-6, we obtain the following:

- $\operatorname{PG}\left(2,11^{2}\right)$ is partitioned into 7 orbits;
- Any one of the pervious orbits represents an arc and all of them are equivalent under the effect of the matrix B;
- The values of the parameters of the projective code are $n=2109, k=20, d=2009$, $e=1004$;
- The matrix B^{7} cycles 2109 points.

Table 7-The third partition on $\operatorname{PG}\left(2,11^{2}\right)$.

No.	Orbits	n	k	d	e
B^{19}		777	9	768	383

From Table-7, we obtain the following:

- $\operatorname{PG}\left(2,11^{2}\right)$ is partitioned into 19 orbits;
- Any one of the pervious orbits represents an arc and all of them are equivalent under the effect of the matrix B;
- The values of the parameters of the projective code are $n=777, k=9, d=768$,
$e=383$;
- The matrix B^{19} cycles 777 points.

Table 8-The forth partition on $\operatorname{PG}\left(2,11^{2}\right)$.

No.	Orbits	n	k	d	e
B^{37}		399	14	385	192

From Table-8, we obtain the following:

- $\operatorname{PG}\left(2,11^{2}\right)$ is partitioned into 37 orbits;
- Any one of the pervious orbits represents an arc and all of them are equivalent under the effect of the matrix B;
- The values of the parameters of the projective code are $n=399, k=14, d=385$, $e=192$;
- The matrix B^{37} cycles 399 points

Table 9-The fifth partition on $\operatorname{PG}\left(2,11^{2}\right)$.

No.	Orbits	n	k	d	e
B^{21}		703	11	692	345

From Table-9, we obtain the following:

- $\operatorname{PG}\left(2,11^{2}\right)$ is partitioned into 21 orbits;
- Any one of the pervious orbits represents an arc and all of them are equivalent under the effect of the matrix B;
- The values of the parameters of the projective code are $n=703, k=11, d=692$, $e=345$;
- The matrix B^{21} cycles 703 points.

Table 10-The 6th partition on $\operatorname{PG}\left(2,11^{2}\right)$.

No.	Orbits	n	k	d	e
B^{57}		259	4	255	127

From Table-10, we have the following:

- $\quad \mathrm{PG}\left(2,11^{2}\right)$ is partitioned into 57 orbits;
- Any one of the pervious orbits represents $\operatorname{PG}\left(2,11^{2}\right)$ and all of them are equivalent under the effect of the matrix B;
- The values of the parameters of the projective code are $n=4, k=259, d=255$,
$e=127$;
- All the orbits are disjoint on the effect of B as 14763-transtive;
- The set B^{57} is cyclic on 259 points.

Table 11- The 7th partition on $\mathrm{PG}\left(2,11^{2}\right)$.

| No. | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

From Table-11, we obtain the following:

- $\operatorname{PG}\left(2,11^{2}\right)$ is partitioned into 111 orbits;
- Any one of the pervious orbits represents an arc and all of them are equivalent under the effect of the matrix B;
- The values of the parameters of the projective code are $n=133, k=12, d=121$,
$e=60$;
- The matrix B^{111} cycles 133 points.

Table 12-The 8th partition on $\operatorname{PG}\left(2,11^{2}\right)$.

No.	Orbits	n	k	d	e
B^{133}		111	2	109	54

From Table-12, we have the following:

- $\operatorname{PG}\left(2,11^{2}\right)$ is partitioned into 133 orbits;
- Any one of the pervious orbits represents an arc and all of them are equivalent under the effect of the matrix B;
- The values of the parameters of the projective code are $n=111, k=2, d=109$,
$e=54$;
- The matrix B^{133} cycles 111 points.

Table 13-The 9th partition on $\operatorname{PG}\left(2,11^{2}\right)$.

No.	Orbits	n	k	d	e
B^{259}		57	4	54	26

From Table-13, we have the following:

- $\operatorname{PG}\left(2,11^{2}\right)$ is partitioned into 259 orbits;
- Any one of the pervious orbits represents an arc and all of them are equivalent under the effect of the matrix B;
- The values of the parameters of the projective code are $n=57, k=4, d=54$,
$e=26$;
- The matrix B^{259} cycles 57 points.

Table 14-The 10th partition on $\operatorname{PG}\left(2,11^{2}\right)$.

No.	Orbits	n	k	d	e
B^{703}		21	2	19	9

From Table-14, we obtain the following:

- $\operatorname{PG}\left(2,11^{2}\right)$ is partitioned into 703 orbits;
- Any one of the pervious orbits represents an arc and all of them are equivalent under the effect of the matrix B;
- The values of the parameters of the projective code are $n=21, k=2, d=19$, $e=9$;
- The matrix B^{703} cycles 21 points.

Table 15-The 11th partition on $\operatorname{PG}\left(2,11^{2}\right)$.

No.	Orbits	n	k	d	e
B^{399}		37	3	34	16

From Table-15, we have the following:

- $\operatorname{PG}\left(2,11^{2}\right)$ is partitioned into 399 orbits;
- Any one of the pervious orbits represents an arc and all of them are equivalent under the effect of the matrix B;
- The values of the parameters of the projective code are $n=37, k=3, d=34$,
$e=16$;
- The matrix B^{399} cycles 27 points.

Table 16-The 12th partition on $\operatorname{PG}\left(2,11^{2}\right)$.

No.	Orbits	n	k	d	e
B^{777}		19	3	16	7

From Table-16, we obtain the following:

- $\operatorname{PG}\left(2,11^{2}\right)$ is partitioned into 777 orbits;
- Any one of the pervious orbits represents an arc and all of them are equivalent under the effect of the matrix B;
- The values of the parameters of the projective code are $n=19, k=3, d=16, e=7$;
- The matrix B^{777} cycles 19 points.

Table 17-The 13th partition on $\operatorname{PG}\left(2,11^{2}\right)$.

No.	Orbits	n	k	d	e
B^{4921}		3	2	1	0

From Table-17, we obtain the following:

- $\operatorname{PG}\left(2,11^{2}\right)$ is partitioned into 4921 orbits;
- Any one of the pervious orbits a triangle and all of them are equivalent under the effect of the matrix B^{4921};
- The values of the parameters of the projective code are $n=3, k=2, d=1, e=0$;
- The matrix B^{4921} cycles 3 points.

Conclusions

The summary of this research is given in the following table.

Matrix	No. of orbits	n	k	d
M^{7}	7	19	3	16
M^{19}	19	7	2	5
B^{3}	3	4921	48	4873
B^{7}	7	2109	20	2089
B^{19}	19	777	9	768

B^{37}	37	399	14	385
B^{21}	21	703	11	692
B^{57}	57	259	4	255
B^{111}	111	133	12	121
B^{133}	133	111	2	109
B^{259}	259	57	4	54
B^{703}	703	21	2	19
B^{399}	399	37	3	34
B^{777}	797	19	3	16

Acknowledgements

We are thankful to all professors in the department of Mathematics, Collage of Science, Mustansiriyah University for their positive support for us.

References

1. Hirschfeld, J.W.P. 1998. Projective Geometries Over Finite Fields, Second Edition. Oxford. Oxford University Press.
2. Al-Seraji, N.A.M. 2010. The Geometry of The Plane of order Seventeen and its Application to Error-correcting Codes. Ph.D. Thesis. UK. University of Sussex.
3. Al-Zangana, E. B.A. 2011. The Geometry of The Plane of order Nineteen and its Application to Error-correcting Codes. Ph.D. Thesis. UK. University of Sussex.
4. Al-Seraji, N.A.M. 2011. Partitions by Subgeometries of Projective Plane Over Finite Field of Order Sixteen. Mustansiriyah Journal of Science, 22(4).
5. GAP Group, 2018. GAP. Reference Manual. URL http://www.gap-system.org.
6. Al-Seraji, N.A.M. and AL-Ogali, R.A.B. 2017. The group action on a projective plane over finite field of order sixteen. Iraq journal of Science.. 58(3).
7. Al-Seraji, N.A.M. and Al-Badrial, N.S.M. 2016. Partitions by Subgeometries of Projective Plane Over a Galois Field of Order $3^{n}, \mathrm{n}=1,2,3$. Journal of Science and Medical. University of Wasit. 0(3): 150-164.
8. Al-Zangana, E.B. A. 2013. Groups Effect of Types D_{5} and A_{5} on The Points of Projective Plane Over $\mathrm{F}_{\mathrm{q}}, \mathrm{q}=29,31$. Ibn Al-Haitham Journal for Pure and Application Science, 26(3).
9. Hirschfeld, J.W.P. and Al-Seraji, N.A.M. 2014. The Geometry of The line of order Seventeen and its Application to Error-correcting Codes. Mustansiriyah journal of Science. 24(5).
10. Al-Zangana, E. M. 2013. Complete and incomplete Elliptic curves over the Finite Field of order 11 and 13. Mustansiriah. J. Sci. 24(1).
11. Alabdullah, S. and Hirschfed, J.W.P. 2019. A new bound for the smallest complete (\square, \square)-arc in PG $(2, \square)$. Designs. Cods and Cryptography, 87(2-3): 679-683.
12. Hirschfed, J.W.P and Thas, J.A. 2016. Varieties General Galois Geometries.: $2^{\text {d }}$ edition, Springer Monographs in Mathematics.

[^0]: *Email: Suramajid9494@gmail.com

