Iraqi Journal of Science, 2021, Vol. 62, No. 2, pp: 604-612 DOI: 10.24996/ijs.2021.62.2.26

ISSN: 0067-2904

Some Results on m_X-N-connected Space

Ahmed A. Salih^{*1}, Haider J. Ali²

¹ Ministry of Education, Directorate General of Education, Karkh /3 Baghdad, Iraq. ²Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq

Received: 30/12/2019

Accepted: 15/3/2020

Abstract

In this essay, we utilize m - space to specify m_X -N-connected, m_X -N-hyper connected and m_X -N-locally connected spaces and some functions by exploiting the intelligible m_X -N-open set. Some instances and outcomes have been granted to boost our tasks.

Keywords: minimal structure, m_X -N-open set, m_X -N-connected space, m_X -N-hyper connected space, m_X -N-locally connected space, m-N-continuous.

بعض النتائج حول الفضاء المتصل –m_x–N احمد عاشور صالح^{*1}, حيدر جبر علي² ¹المديرية العامة لتربية بغداد، الكرخ / 3 و زارة التربية، العراق ²قسم الرياضيات، كلية العلوم، جامعة المستنصرية، العراق ²قسم الرياضيات، كلية العلوم، جامعة المستصرية، العراق في هذا البحث استعملنا الفضاء – m لتعريف الفضاءات –N–m المتصلة و–N–N المتصلة محليا وبعض الدوال باستخدام مفهوم المجموعات _N–m_x المفتوحة. بعض الحقائق والنتائج قد أعطيت معززة

Introduction

A. AL-Omari, and M.S.Md. Noorani [1] presented the idea of N - open sets which can be described as follows. A subcategory U of a space X is nominated to be N - open if for every $x \in U$ an open set U_X is found and comprising x, with the end goal that U_X / U is a finite. In 2000, Popa and Noiri [2,3] presented the idea of minimal structure space. They additionally characterized m-compactness and m-connectedness and analyzed their essential attributes. Hussain and Nasser [4] characterized the N - disconnected space in an association of two N - separated sets. They provided several depictions and relate them to some other recently known classes of space, for instance, N - locally connected and N - hyper connected spaces. In this paper, we first presented and studied the idea of m-N-connected, m-N-hyper connected, m-locally connected and m-N-locally connected spaces, by utilizing m_X -N-open set, and demonstrated some outcomes on this idea.

1: PRELIMINARIES

Definition (1.1) [5, 3]

Let X be a non-empty set and $\lambda(X)$ the power set of X. A subfamily m_X of $\lambda(X)$ is called a minimal structure (briefly m-structure) on X if $\emptyset \in m_X$ and $X \in m_X$. By (X, m_X) , we indicate a non-empty set X with an m-structure m_X on X, and it is called m-space. Every individual from m_X is nominated to be m_X -open and the complement of an m_X -open set is nominated to be m_X -closed set. **Definition (1.2) [6]**

Let X be a non-empty set and m_X be an m-structure on X. For a subcategory U of X, the m_X -closure of U and the m_X -interior of U are characterized as:

*Email: ahmadhmw67@gmail.com

 $i.m_X\text{-}cl(U) = \cap \{M: U \subseteq M, X / M \in m_X\}.$

ii. m_X -int(U) = $\bigcup \{K: K \subseteq U, K \in m_X\}.$

Lemma (1.3) [7]: Let X be a non-empty set and m_X a minimal structure on X. For a subcategory U and V of X, the accompanying properties hold:

 $i.m_X-int(X / U) = X / m_X-cl(U).$

ii. If $(X / U) \in m_X$, then m_X -cl(U) = U and if $U \in m_X$, then m_X -int(U) = U.

iii. If $U \subseteq V$, then m_X -cl(U) $\subseteq m_X$ -cl(V) and m_X -int(U) $\subseteq m_X$ -int(V).

iv. m_X -cl(m_X -cl(U)) = m_X -cl(U) and m_X -int(m_X -int(U)) = m_X -int(U).

Lemma (1.4) [8]: Let X be a non-empty set with a minimal structure m_X , and let U be a subcategory of X. Then $x \in m_X$ -cl(U) if and only if $K \cap U \neq \emptyset$ for every $K \in m_X$ containing x.

Definition (1.5) [6]

An m-structure m_X on a non-empty set X is said to have property \mathfrak{B} if the union of any family of subsets belong to m_X belongs to m_X .

Definition (1.6) [9]

A subcategory U of a an m-space (X, m_x) is nominated to be

i. m_X -dense if m_X -cl(U) = X.

ii. m_X -nowhere dense if m_X -int $(m_X$ -cl $(U)) = \emptyset$.

Definition (1.7) [10]

The subsets U and V of m-space X are designated to be m_X -separated in X if and only if $(U \cap m_X - cl(V)) \bigcup (m_X - cl(U) \cap V) = \emptyset$.

Definition (1.8) [10]

A subset U of X in (X, m_X) is nominated to be m-connected in X (or simply m-connected) if U cannot be composed as the association of two non-empty m_X -separated subcategories of X. If U is not m-connected in X, then we state that U is m-disconnected in X. A space (X, m_X) is designated to be m-connected if the underlying set X is m-connected.

Definition (1.9) [3]

A non-empty set X with a minimal structure m_X that is fulfilling \mathfrak{B} property is nominated to be m_X -connected if X cannot be composed as the association of two non-empty disjoint m_X -open sets. **Definition (1.10) [11]**

A function f: $(X, m_X) \rightarrow (Y, m_Y)$ is nominated to be m-open if f(U) is an m_Y -open set of (Y, m_Y) for every m_X -open set U of (X, m_X) .

2: m_x-N-open set

Definition (2.1) [12]

A subcategory U of an m-space X is nominated to be m_X -N-open set if every single $x \in U$, there exists an m_X -open set V containing x such that V/U is a finite set and the complement of an m_X -N-open set is called m_X -N-closed set.

Remark (2.2): each m_X -open set is an m_X -N-open set.

Proof: Let U be m_X -open set and $x \in U$, then $x \in U \subseteq U$ and $U/U = \emptyset$. In this manner, U is an m_X -N-open set.

Example (2.3): Let R be a set of all real numbers and $m_X = \{\emptyset, R\}$. We realize that $R/\{1\} \subseteq R$ is an m_X -N-open anyway and it is definitely not an m_X -open.

Definition (2.4)

Let X be an m-space and U be a subcategory of it, then $x \in X$ is designated to be m_X -N-interior point to U if an m_X -N-open set V is found such that $x \in V \subseteq U$. Then, the set of all m_X -N-interior points for U is indicated by m_X -N-int(U).

Definition (2.5)

Let X be an m-space and $U \subseteq X$, then $x \in X$ is nominated to be m_X -N-limit point to U if all m_X -N-open sets V containing x We have V /{x}) $\cap U \neq \emptyset$, and the arrangement of all m_X -N-limit points for U is indicated by m_X -N-d(U).

Definition (2.6)

Let X be an m-space and $U \subseteq X$, then $x \in X$ is nominated to be m_X -N- adherent point to U if every single m_X -N-open set V that containing x is intersected with U. i.e. $V \cap U \neq \emptyset$. The arrangement of all m_X -N-adherent points for U is indicated by m_X -N-adh(U) or m_X -N-cl(U).

Definition (2.7)

Let X be a non-empty set and m_X an m-structure on X. For a subcategory U of X, the m_X -N-closure of U and the m_X -N-interior of U are described as:

- i. m_X -N-int(U) = $\bigcup \{M: M \subseteq U, M \text{ is an } m_X$ -N-open $\}$.
- ii. m_X -N-cl(U) = \cap {K: U \subseteq K, K is an m_X -N-closed}.

Proposition (2.8): Let (X, m_X) be an m-space, then the following accompanying attributes are verified: i. The union of any family of m_X -N-open sets is an m_X -N-open set.

ii. The intersection of any family of m_X-N-closed sets is an m_X-N-closed set.

Proof:

i. Let U_{α} be an m_X -N-open set for each $\alpha \in \wedge$. To prove that $\bigcup \{U_{\alpha}, \alpha \in \wedge\}$ is m_X -N-open, let $x \in \bigcup \{U_{\alpha}, \alpha \in \wedge\}$, then $x \in U_{\alpha i}$ for some $\alpha i \in \wedge$. Since $U_{\alpha i}$ is an m_X -N-open, then there can be found V as an m_X -open set, such that $x \in V$ and $V / U_{\alpha i}$ is a finite set. Since $U_{\alpha I} \subseteq \bigcup \{U_{\alpha}, \alpha \in \wedge\}$, then $(\bigcup \{U_{\alpha}, \alpha \in \wedge\})^C \subseteq (U_{\alpha i})^C$. So, $V \cap (\bigcup \{U_{\alpha}, \alpha \in \wedge\})^C \subseteq V \cap (U_{\alpha i})^C$. Hence, $V / \bigcup \{U_{\alpha}, \alpha \in \wedge\} \subseteq V / U_{\alpha i}$. Since $V / U_{\alpha i}$ is a finite set, then $V / \bigcup \{U_{\alpha}, \alpha \in \wedge\}$ is a finite set, too. Hence $\bigcup \{U_{\alpha i}, \alpha \in \wedge\}$ is an m_X -N-open set.

ii. Clear by (i).

Proposition (2.9): Let U be a subcategory of m-space X, then:

i.U is m_X -N-open set if and only if m_X -N-int(U) = U.

ii.U is m_X -N-closed set if and only if m_X -N-cl(U) = U.

proof:

- i. As the union of each m_X -N-open set is m_X -N-open set, then m_X -N-int(U) is the largest m_X -N-open set contained in U. Since U is m_X -N-open set, then m_X -N-int(U) = U. Conversely, whenever m_X -N-int(U) = U, then U is m_X -N-open set, since m_X -N-int(U) is an m_X -N-open set.
- ii. As the intersection of each m_X -N-close set is m_X -N-close set, then m_X -N-cl(U) is the smallest m_X -N-close set that containing U. Since U is an m_X -N-closed set, then m_X -N-cl(U) = U. Conversely, whenever m_X -N-cl(U) = U, then U is an m_X -N-closed set, since m_X -N-cl(U) is an m_X -N-closed set.

Proposition (2.10): Let U, V be a subcategory of m-space X and $U \subseteq V$, then :	
$i.m_X - int(U) \subseteq m_X - N - int(U).$	ii. m_X -N-cl(U) $\subseteq m_X$ -cl(U).
iii. m_X -N-cl(U) $\subseteq m_X$ -N-cl(V).	$iv.m_X$ -N- $int(U) \subseteq m_X$ -N- $int(V)$
$v.m_X-N-int(X) = X$ and $m_X-N-int(\emptyset) = \emptyset$.	vi.m _X -N-cl(X) = X and m_X -N-cl(Ø) = Ø.
vii.m _X -N-int(U) \subseteq U and U \subseteq m _X -N-cl(U)	viii. m_X -N-int(m-N-int(U))= m_X -N-int(U)
$x.m_X-N-cl(m-N-cl(U)) = m_X-N-cl(U)$	$ix.m_X-N-cl(U^C) = (m_X-N-int(U))^C$.
$x.m_X$ -N-int(U ^C) = $(m_X$ -N-cl(U)) ^C .	

Proof:

- i. Let $x \in m_X$ -int(U), then there can be found m_X -open set U_X such that $x \in U_X \subseteq U$. For the reason that every m_X -open set is an m_X -N-open set, therefore $x \in m_X$ -N-int(U).
- ii. Let $x \notin m_X$ -cl(U), then there can be found M as an m_X -open set, such that $x \in M$ and $M \cap U = \emptyset$. For the reason that every m_X -open set is an m_X -N-open set, then $x \notin m_X$ -N-cl(U) and consequently m_X -N-cl(U) $\subseteq m_X$ -cl(U).
- iii. Postulate that $x \in m_X$ -N-cl(U), then each m_X -N-open set K containing x intersect U, Since $U \subseteq V$, then the set K intersect V. Consequently, $x \in m_X$ -N-cl(V) and, in this way, m_X -N-cl(U) $\subseteq m_X$ -N-cl(V).
- iv. Let $x \in m_X$ -N-int(U), then there can be found an m_X -N-open set U_X such that $x \in U_X \subseteq U$. For the reason that $U \subseteq V$, then $x \in U_X \subseteq V$. Consequently, $x \in m_X$ -N-int(V). Therefore, m_X -N-int(U) $\subseteq m_X$ -N-int(V).
- v. For the reason that X and Ø are m_X -N-open sets, then by definition 2.7, m_X -N-int (X) = $\bigcup \{U: U \text{ is an } m_X$ -N-open, $U \subseteq X\} = X \bigcup$ all m_X -N-open sets = X. In this manner, m_X -N-int (X) = X. Since Ø is the only m_X -N-open set contained in Ø, henceforth, m_X -N-int (Ø) = Ø.
- vi. By definition 2.7, then m_X -N-cl(X)= \cap {V: X \subseteq V, V} is m_X -N-closed set. But X is the only m_X -
- vii. N-closed set comprising X. In this way m_X -N-cl(X) = X. Thus, m_X -N-cl(X) = X. By the definition of m_X -N-cl(Ø), m_X -N-cl(Ø) = $\cap \{V: \emptyset \subseteq V, V \text{ is an } m_X$ -N-closed} = $\emptyset \cap$ any m_X -N-closed sets comprising $\emptyset = \emptyset$. In this way m_X -N-cl(Ø) = \emptyset .

viii. Clear.

- ix. By definition 2.7 and proposition 2.8, we note that m_X -N-int(U) is an m_X -N-open set. Furthermore, by proposition 2.9, we conclude that m_X -N-int(m-N-int(U)) = m_X -N-int(U).
- x. By definition 2.7 and proposition 2.8, we note that m_X -N-cl(U) is an m_X -N-closed set. Furthermore, by proposition 2.9, we conclude that m_X -N-cl(m-N-cl(U)) = m_X -N-cl(U).
- xi. Let $x \notin (m_X-N-int(U))^C$, then $x \in m_X-N-int(U)$. Thus, there is an m_X-N -open set U_X such that $x \in U_X \subseteq U$. In this way, $x \in U_X$ and $U_X \cap U^C = \emptyset$. So, $x \notin m_X-N-cl(U^C)$. Thus, we get $m_X-N-cl(U^C) \subseteq (m_X-N-int(U))^C$. Now, let $x \notin m_X-N-cl(U^C)$, thus there is an m_X-N -open set U_X such that $x \in U_X$ and $U_X \cap U^C = \emptyset$. Hence, $x \in U_X \subseteq U$ and, in this manner, $x \in m_X-N-int(U)$. Consequently, $x \notin (m_X-N-int(U))^C$. Thus, we get $(m_X-N-int(U))^C \subseteq m_X-N-cl(U^C)$.
- xii. Let $x \in m_X$ -N-int(U^C). Accordingly, there is an m_X -N-open set U_X such that $x \in U_X \subseteq U^C$. In this manner, $x \in U_X$ and $U_X \cap U = \emptyset$. Consequently, $x \notin m_X$ -N-cl(U). Thus, we get $x \in (m$ -N-cl(U))^C and lastly m_X -N-int(U^C) $\subseteq (m_X$ -N-cl(U))^C. Then again, let $x \in (m_X$ -N-cl(U))^C, then $x \notin m_X$ -N-cl(U) and, in this way, there is an m_X -N-open set U_X such that $x \in U_X$ and $U_X \cap U = \emptyset$. Hence, $x \in U_X$ and $U_X \subseteq U^C$. Therefore, $x \in m_X$ -N-int(U^C) and hence $(m_X$ -N-cl(U))^C $\subseteq m_X$ -N-int(U^C). Finally, $(m_X$ -N-cl(U))^C = m_X -N-int(U^C).

Definition (2.11)

Let (X, m_X) be an m-space, then two non-empty subcategories U and V of X are nominated to be m_X -N-separated if $U \cap m_X$ -N-cl $(V) = \emptyset$ and $V \cap m_X$ -N-cl $(U) = \emptyset$.

Proposition (2.12): Two m_X -N-closed (open) subcategories U and V of X are m_X -N-separated iff they are disjoint.

Proof: Let U and V are both disjoint and m_X -N-open sets, then U^C and V^C are m_X -N-closed. As $U \subseteq V^C$, then m_X -N-cl(U) $\subseteq V^C$, thus m_X -N-cl(U) $\cap V = \emptyset$. Likewise, we demonstrated that m_X -N-cl(V) $\cap U = \emptyset$. Hence, both U and V are m_X -N-separated. Convrsely, if U and V are m_X -N-separated, then both U and V are disjoint in light of the fact that $U \cap V \subseteq m_X$ -N-cl(U) $\cap V$.

Definition (2.13)

Let X be an m-space, then U \subseteq X, U is nominated to be m_X-N-dense in X if m_X-N-cl(U) = X.

Example (2.14): Let R be the arrangement of all genuine numbers and $m_X = \{\emptyset, R\}$, then we realize that all R/finite sets are m_X -N-dense.

Definition (2.15)

A subcategory U of an m-space (X, m_X) is nominated to be m_X -N-nowhere dense if m_X -N-int(m_X -cl(U)) = Ø.

Proposition (2.16): Every m_X -N-nowhere dense is an m_X -nowhere dense.

Proof: Clear.

Remark (2.17): The opposite of the above proposition might be not valid as a rule.

Example (2.18): Let $X = \{x_1, x_2, x_3\}$ and $m_X = \{\emptyset, \{x_1\}, \{x_2\}, X\}$, then we realize that the set $\{x_3\}$ is m_X -nowhere dense but it is not m_X -N-nowhere dense.

Definition (2.19)

A subcategory U of an m-space (X, m_X) is nominated to be m_X -N*-nowhere dense if m_X -N-int(m_X -N-cl(U)) = Ø.

Proposition (2.20): Every m_X -N-nowhere dense is an m_X -N*nowhere dense.

Proof: Clear.

Remark (2.21): The opposite of the above proposition might be not valid as a rule.

Example (2.22): Let R be the arrangement of all genuine numbers and $m_x = \{\emptyset, R\}$, then we realize that every finite set is m_x -N*-nowhere dense, yet it is not m_x -N-nowhere dense.

Remark (2.23): Let (X, m_X) be an m-space and U be a subcategory of X. If U is an m_X -N*-nowhere dense then it is not necessary to be an m_X -nowhere dense, as well the converse.

Example (2.24): Let X=R set all real numbers and $m_X = \{\emptyset, R\}$, then we realize that the set $\{1\}$ is m_X -N*-nowhere dense, but not m_X -nowhere dense. On the other hand, let $X = \{x_1, x_2, x_3\}$ and $m_X = \{\emptyset, \{x_1, x_2\}, X\}$, then we realize that the set $\{x_3\}$ is an m-nowhere dense, but not m_X -N*-nowhere.

Proposition (2.25): Let m_X , m_X' be an m-structure on the set X such that $m_X \subseteq m_X'$ and U are a subcategory of X. Then,

i. U is an m_X^{\prime} -N-open set whenever U is an m_X -N-open set.

ii. m_X' -N-cl(U) $\subseteq m_X$ -N-cl(U).

Proof:

- i. Let U be an m_X -N-open set, then apiece $x \in U$, and there will be found an m_X -open set U_X of X, such that $x \in U_X$ and U_X / U is a finite set. Since $m_X \subseteq m_X'$, then $U_X \in m_X'$ and therefore U is an m_X' -N-open set.
- ii. Let $a \notin m_X$ -N-cl(U), then there will be found m_X -N-open set K such that $a \in K$ and $K \cap U = \emptyset$. By (i), K is an m_X' -N-open set and therefore $a \notin m_X'$ -N-cl(U). Subsequently, m_X' -N-cl(U) $\subseteq m_X$ -N-cl(U).

Definition (2.26)

- Let $f: (X, m_X) \rightarrow (Y, m_Y)$ be a function, then :
- i. [7] f is nominated to be m-continuous if $f^{-1}(U)$ is m_X -open subcategory in X for a piece m_Y -open subcategory U of Y.
- ii. f is nominated to be m-N-continuous function if $f^{-1}(U)$ is an m_X-N-open subcategory in X for a piece m_Y-open subcategory U of Y.
- iii. f is nominated to be m-N*-continuous function if $f^{-1}(U)$ is an an m_x-open subcategory in X for a piece m_y-N-open subcategory U of Y.
- iv. f is nominated to be m-N**- continuous function if $f^{-1}(U)$ is an m_X-N-open subcategory in X for a piece m_Y-N-open subcategory U of Y.

Theorem (2.27): Let $f: (X, m_X) \rightarrow (Y, m_Y)$ be a function, then the accompanying proclamations are identical:

- i. f is an m-N**-continuous.
- ii. The inverse image of every m_Y -N-closed set is an m_X -N-closed.
- iii. For a piece subcategory U of Y, m_X -N-cl $(f^{-1}(U)) \subseteq f^{-1}(m_Y$ -N-cl(U)).

Proof:

(i) \rightarrow (ii). let V be a subset of Y be an m_Y-N-closed. Then V^C is m_Y-N-open and, by (i),

 $f^{-1}(V^{C}) = (f^{-1}(V))^{C}$ is an m_X-N-open set. Consequently, $f^{-1}(V)$ is an m_X-N-closed set in X.

(ii) \rightarrow (iii). Let U be a subcategory in Y. As $U \subseteq m_Y$ -N-cl(U), then $f^{-1}(U) \subseteq f^{-1}(m_Y$ -N-cl(U)), m_X -N-cl($f^{-1}(U)) \subseteq m_X$ -N-cl($f^{-1}(m_Y$ -N-cl(U))). Since $f^{-1}(m_Y$ -N-cl(U)) is an m_X -N-closed set in X, then m_X -N-cl($f^{-1}(m_Y$ -N-cl(U))) = $f^{-1}(m_Y$ -N-cl(U)). Hence, m_X -N-cl($f^{-1}(U)) \subseteq f^{-1}(m_Y$ -N-cl(U)).

(iii) \rightarrow (i). Let U be an m_Y-N-open set in Y, then U^C is m_Y-N-closed set and therefore U^C = m_Y-Ncl(U^C). As m_X-N-cl($f^{-1}(U^C)$) $\subseteq f^{-1}(m_Y$ -N-cl(U^C)), then m_X-N-cl($f^{-1}(U^C)$) $\subseteq f^{-1}(U^C)$. Hence, m_X-N-cl($f^{-1}(U^C)$) = $f^{-1}(U^C)$ and therefore $f^{-1}(U^C) = (f^{-1}(U))^C$ is an m_X-N-closed set. So, $f^{-1}(U)$ is an m_Y-N open set in Y

$$f^{-1}(U)$$
 is an m_X-N-open set in X.

Theorem (2.28): Let $f: (X, m_X) \rightarrow (Y, m_Y)$ be a function, then f is an m-N**-continuous iff $f(m_X-N-cl(U)) \subseteq m_Y-N-cl(f(U))$ for a piece subcategory U of X.

Proof: Let f be an m-N**-continuous. As m_Y -N-cl(f (U)) is an m_Y -N-closed, then f^{-1} (m_Y -N-cl(f (U))) is an m_X -N-closed. Consequently, m_X -N-cl(f^{-1} (m_Y -N-cl(f (U)))) = f^{-1} (m_Y -N-cl(f (U))). As f (U) \subseteq m_Y -N-cl(f (U)), then U $\subseteq f^{-1}$ (m_Y -N-cl(f (U)) and therefore m_X -N-cl(U) \subseteq m_X -N-cl(f^{-1} (m_Y -N-cl(f (U))) = f^{-1} (m_Y -N-cl(f (U)). So, f (m_X -N-cl(U)) \subseteq m_Y -N-cl(f (U)).

Conversely, let $f(m_X-N-cl(U)) \subseteq m_Y-N-cl(f(U))$ for a piece subcategory U of X. Let V be an $m_Y-N-closed$, then $f(m_X-N-cl(f^{-1}(V))) \subseteq m_Y-N-cl(f(f^{-1}(V))) \subseteq m_Y-N-cl(V) = V$. Hence, $m_X-N-cl(f^{-1}(V)) \subseteq f^{-1}(V)$ and, in this manner, $m_X-N-cl(f^{-1}(V)) = f^{-1}(V)$.

So, $f^{-1}(V)$ is an m_X-N-closed set in X. In this way, f is an m-N**-continuous.

3: m_x-N-connected spaces

Definition (3.1)

A subset U of X in (X, m_X) is nominated to be m_X -N-connected in X if U cannot be composed as the association of two non-empty m_X -N-separated subsets of X. If U is not m_X -N-connected in X, then we state that U is an m_X -N-disconnected in X. A space (X, m_X) is designated to be m_X -N-connected i the fundamental set X is an m_X -N-connected.

Definition (3.2)

A subset U of m-space X is nominated to be m_X -N-clopen set if U is both m_X -N-open set and m_X -N-closed set.

Proposition (3.3): Let X be an m-space, then the following is identical:

i. X is an m_X -N-connected space.

ii. The only m_X -N-clopen sets in the space are X and \emptyset .

iii. X is not able to compose as the association of two non-empty disjoint m_X -N-open sets.

i⇒ ii. Let X be m_X -N-connected space, to demonstrate that the only m_X -N-clopen sets in the space are X and Ø. Let U be an m_X -N-clopen set such that U≠Ø and U≠X and let U^C = V. Consequently, X= U \bigcup V and V is additionally m_X -N-clopen set. As V is an m_X -N-closed, then m_X -N-cl(V) = V, U∩ m_X -N-cl(V) = U∩V = Ø, and V ∩ m_X -N-cl(U) = V∩U= Ø. Subsequently, X is not an m_X -N-connected space, which is a logical inconsistency. Consequently, the only m_X -N-clopen sets in the space are X and Ø.

ii⇒iii. Let the only m_X -N-clopen sets in the space be X and Ø and assume that $X=U\bigcup V$ such that U and V are non-empty disjoint m_X -N-open sets. Then $U=V^C$ and, in this way, U is an m_X -N-closed set. Consequently, U is m_X -N-clopen set, which is a logical inconsistency. So, X is not able to compose as the association of two non-empty disjoint m_X -N-open sets.

iii \Rightarrow i. Let X be not able to compose as the association of two non-empty disjoint m_X -N-open sets, and suppose that X is an m_X -N-disconnected space. Then there will be found non-empty subcategories U, V of X such that $U \cap m_X$ -N-cl(V) = Ø, $V \cap m_X$ -N-cl(U) = Ø, and $U \bigcup V = X$. Since $V \subseteq m_X$ -N-cl(V), then $U \cap V = \emptyset$. Since $V \cap m_X$ -N-cl(U) = Ø, then m_X -N-cl(U) $\subseteq V^C = U$. Consequently, m_X -N-cl(U) = U. Hence, U is an m_X -N-closed set. As $U^C = V$, then V is an m_X -N-open set. It is similarly proved that U is an m_X -N-open set, which is an inconsistency. So, X is an m_X -N-connected space.

Proposition (3.4): Every m_X-N-connected space is an m_X-connected space.

Proof: Let X be an m_X -N-connected space and assume that X is not m_X -connected, then there will be found U, V as non-empty subsets of X such that $X = U \bigcup V$, $U \cap m_X$ -cl(V) = Ø, and $V \cap m_X$ -cl(U) = Ø. By proposition 2.10 - ii, we deduced that $U \cap m_X$ -N-cl(V) = Ø and $V \cap m_X$ -N-cl(U) = Ø. Accordingly, X is an m_X -N-disconnected space, which is a logical inconsistency. Consequently, X is an m_X -connected space.

Remark (3.5): The opposite of the above proposition might be not valid as a rule.

Example (3.6): Let $X = \{a_1, a_2, a_3\}$ and $m_X = \{\emptyset, X\}$, we realize that X is an m_X -connected, nevertheless it is not m_X -N-connected.

Theorem (3.7): Let $f: (X, m_X) \rightarrow (Y, m_Y)$ be surjective m-N-continuous. If (X, m_X) is an m_X -N-connected space and (Y, m_Y) possess attributes \mathfrak{B} , then (Y, m_Y) is m_Y -connected.

Proof: Let $f: (X, m_X) \rightarrow (Y, m_Y)$ be surjective m-N-continuous, X is an m_X -N-connected space, and (Y, m_Y) possess attributes \mathfrak{B} . To demonstrate that Y is m_Y -connected, assume that Y is an m-disconnected space, then $Y = U \bigcup V$ such that U, V are non-empty disjoint m_Y -open sets. Subsequently $X = f^{-1}(Y) = f^{-1}(U \bigcup V) = f^{-1}(U) \bigcup f^{-1}(V)$. Since f is an m-N-continuous, then $f^{-1}(U)$ and $f^{-1}(V)$ are m_X -N-open sets in X, and since $U \neq \emptyset$, $V \neq \emptyset$ and f are surjective functions, then

 $f^{-1}(U) \neq \emptyset$, $f^{-1}(V) \neq \emptyset$ and $f^{-1}(U) \cap f^{-1}(V) = \emptyset$. Hence, X is an m_X-N-disconnected space, which is an inconsistency. In this way, Y is an m_Y-connected space.

Proposition (3.8): Let $f: (X, m_X) \rightarrow (Y, m_Y)$ be surjective m-N^{**}-continuous and (X, m_X) is an m_X-N-connected space, then (Y, m_Y) is m_Y-N-connected.

Proof: Let $f: (X, m_X) \to (Y, m_Y)$ be surjective m-N^{**} - continuous function such that X is an m_X -N-connected space. To demonstrate that Y is m_Y -N-connected, suppose that Y is an m_Y -N-disconnected space, then $Y = U \bigcup V$ such that U, V are non-empty disjoint m_Y -N-open sets, therefore $X = f^{-1}(Y) = f^{-1}(U \bigcup V) = f^{-1}(U) \bigcup f^{-1}(V)$. Since *f* is m-N^{**} -continuous, thus $f^{-1}(U)$ and $f^{-1}(V)$ are m_X -N-open in X and since $U \neq \emptyset$, $V \neq \emptyset$, and *f* are surjective functions, then $f^{-1}(U) \neq \emptyset$, $f^{-1}(V) \neq \emptyset$ and $f^{-1}(U) \cap f^{-1}(V) = \emptyset$. Subsequently, X is an m_X -N-disconnected space, which is an inconsistency. Subsequently, Y is an m_Y -N-connected space.

Remark (3.9): The above Proposition is also true if f is m-N*-continuous.

4: m-N-hyper connected space

Definition (4.1) [9]

A space X is nominated to be m-hyper connected space if every non-empty m_X -open subcategory of X is m_X -dense.

Definition (4.2)

A space X is nominated to be m_X -N-hyper connected space if every non-empty m_X -N-open subcategory of X is an m_X -N-dense.

Proposition (4.3): Every m_X-N-hyper connected space is m_X-hyper connected.

Proof: Let X be an m_X -N-hyper connected space. To demonstrate that X is an m_X -hyper connected space, let U be an m_X -open set in X. Consequently, it is an m_X -N-open set. As X is an m_X -N-hyper connected space, then m_X -N-cl(U) = X. By proposition 2.10-ii, we conclude that m_X -cl(U) = X and, subsequently, X is an m_X -hyper connected space.

Remark (4.4): The opposite of the above proposition might be not valid as a rule.

Example (4.5): Let $X = \{x_1, x_2, x_3\}$, $m_X = \{\emptyset, X\}$. Obviously, X is m_X -hyper connected, however, it is not m-N-hyper connected, since $\{x_1\}$ is an m_X -N-open set and m_X -N-cl $\{x_1\} = \{x_1\} \neq X$.

Proposition (4.6): Every m_X-N-hyper connected space is an m_X-N-connected space.

Proof: Let X be an m_X -N-hyper connected space and assume that X is not m_X -N-connected. Then, it can be found that a subset U of X is an m_X -N-clopen set such that $U \neq \emptyset$ and $U \neq X$. Consequently, $U = m_X$ -N-cl(U), which is a logical inconsistency, since X is m-N-hype connected. Therefore, X is an m_X -N-connected space.

Remark (4.7): The opposite of the above proposition might be not valid as a rule.

Example (4.8): Let X= R be the arrangement of all genuine numbers and $m_X=\{\emptyset, (-1,1], [1,3], R\}$, then m_X -N-open sets are $\{\emptyset, R, (-1,1], [1,3], (-1,1), (1,3), (1,3], [1,3), (-1,3], R/finite set,....\}$. Therefore, m_X -N-closed sets are $\{\emptyset, R, R/(-1,1], R/[1,3], R/(-1,1), R/(1,3), R/(1,3], R/(-1,3), R/(-1,3], finite set,....\}$. We realize that R is an m_X -N-connected space and m_X -N-cl(-1,1)=R\[1,3] \neq R, therefore R is not m_X -N-hyper connected space.

Remark (4.9): The essential attribute of m-space X being m_X -N-hyper connected is not a hereditary property.

Example (4.10): Let (R, m_X) be an m-space and $m_X = \{\emptyset, R\}$, then we realize that R is an m_X -N-hyper connected but a subcategory A= $\{1, 2, 3\}$ with a relative m-structure is not m_X -N-hyper connected, since m_X -N-cl $\{1\} = \{1\}$.

Proposition (4.11): Let m_X , m_X' be m-structure on the set X such that $m_X \subseteq m_X'$, If (X, m_X') is m_X' -N-hyper connected space, then (X, m_X) is m_X -N-hyper connected space.

Proof: Let U be an m_X -N-open set, then by proposition 2.25, U is an m_X' -N-open set, but (X, m_X') is an m_X' -N-hyper connected space, so m_X' -N-cl(U) = X. Then, by the same (Proposition 2.25) we get that m_X -N-cl(U) = X. Hence, (X, m_X) is an m_X -N-hyper connected space.

Remark (4.12): The opposite of the above proposition might be not valid as a rule.

Example (4.13): Let X=R be the arrangement of all genuine numbers and $m_x = \{\emptyset, R\}$, then R is an m_x -N-hyper connected space, but whenever $m_x' = \{\emptyset, 1, R\}$, then R is not an m_x' -N-hyper connected space, since m_x' -N-cl{1} = $\{1\} \neq R$.

Theorem (4.14): Let (X, m_X) be an m-space and U be a subcategory of X. Then, the following is identical:

i. X is m_X -N-hyper connected.

ii. U is m_X -N-dense or m_X -N*-nowhere dense, for each subcategory U of X.

iii. $U \cap V \neq \emptyset$, for each non-empty m_X-N-open subcategory U and V of X.

Proof: (i) \rightarrow (ii). Let (X, m_X) be m_X-N-hyper connected and U be a subcategory of X. Assume that U is not m_X-N*-nowhere dense, then m_X-N-int(m_X-N-cl(U)) $\neq \emptyset$, so by (i), m_X-N-cl(m_X-N-int(m_X-N-cl(U))) = X. Since m_X-N-int(m_X-N-cl(U) \subseteq m_X-N-cl(U), then m_X-N-cl(U) = X and, therefore, U is m_X-N-dense. Also, if U is not m_X-N-dense, then m_X-N-cl(U) \neq X. Assume that m_X-N-int(m_X-N-cl(U)) $\neq \emptyset$, then by (i), m_X-N-cl(m_X-N-int(m_X-N-cl(U))) = X \subseteq m_X-N-cl(U). Therefore, m_X-N-cl(U) = X, which is a contradiction. So, m_X-N-int(m_X-N-cl(U)) = \emptyset . Thus, U is an m_X-N*-nowhere dense.

(ii) \rightarrow (iii). Suppose that U \cap V=Ø for some non-empty m_X-N-open subcategory U and V of X. Then, m_X-N-cl(U) \cap V=Ø and, therefore, U is not m_X-N-dense. Since U is an m_X-N-open set, so Ø \neq U \subseteq m_X-N-int(m_X-N-cl(U)). Subsequently, U is not m_X-N*-nowhere dense, which is an inconsistency. So U \cap V \neq Ø for each non-empty m_X-N-open subset U and V of X.

(iii) \rightarrow (i). Let $U \cap V \neq \emptyset$ for each non-empty m_X -N-open subcategories U and V of X and assume that (X, m_X) is not m_X -N-hyper connected space, then there will be found, at any rate, m_X -N-open subset W of X that is not m_X -N-dense in X. So, m_X -N-cl(W) \neq X. In this manner, X / m_X -N-cl(W) and W are

disjoint non-empty m_X -N-open subcategories of X, which is a logical inconsistency. Subsequently, (X, m_X) is an m_X -N-hyper connected space.

Theorem 4.15: Let $f: (X, m_X) \rightarrow (Y, m_Y)$ be surjective m-N^{**}-continuous and (X, m_X) is an m_X-Nhyper connected space, then (Y, m_y) is an m_y -N-hyper connected.

Proof: Let $f: (X, m_X) \rightarrow (Y, m_Y)$ be a surjective m-N**-continuous function and U is an m_Y-N-open set. To demonstrate that m_Y -N-cl(U) = Y, since f is m-N**-continuous and X is an m_X -N-hyper connected space, then $f^{-1}(U)$ is m_X -N-open and $X = m_X$ -N-cl $(f^{-1}(U)) \subseteq f^{-1}(m_Y$ -N-cl(U)). Consequently, m_Y -N-cl(U) = Y. Accordingly, Y is an m_Y -N-hyper connected space.

5: m_x-N- locally connected space

Definition (5.1)Let X be an m-space, then (X, m_X) is nominated to be m_X -locally connected space if, for each point $x \in X$ and each m_x -open set U such that $x \in U$, there will be found m_x -connected open set V such that $x \in V \subset U$.

Definition (5.2) Let X be an m-space, then (X, m_X) is nominated to be m_X-N-locally connected space if, for every point $x \in X$ and every m_x -N-open set such that $x \in U$, there will be found an m_x -Nconnected open set V such that $x \in V \subset U$.

Proposition (5.3): Every m_x -N-locally connected space is an m_x -locally connected space.

Proof: Let X be an m_X -N-locally connected space and let $a \in X$ and U be an m_X -open set in X such thata \in U, as every m_X-open set is an m_X-N-open set and X is an m_X-N-locally connected space. Then, there will be found an m_X -N-connected open set V such that $\in V \subseteq U$. By proposition 3.4, we conclude that V is an m_x -connected open set in X. Consequently, X is an m_x -locally connected space. **Remark (5.4):** The opposite of the above proposition might be not valid as a rule.

Example (5.5): Let $X = \{a, b, c\}, m_X = \{\emptyset, \{b, c\}, X\}$. The m_X -N-open set is

 $\{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}.$

Obviously (X, m_x) is an m_x -locally connected space, however (X, m_x) is not m_x -N-locally connected space since $a \in \{a, b\}$ and exist no U is an m_x-N-connected m_x-open set such that $a \in U \subseteq \{a, b\}$.

Remark (5.6): If (X, m_x) is m_x -N-locally connected space, then it needs not to be m_x -N-connected and if (X, m_X) is an m_X -N-connected space, then it needs not to be an m_X -N-locally connected space.

Example (5.7): Let $X = \{a, b, c\}, m_x$ be discrete m-structure. Unmistakably, (X, m_x) is m_x -N-locally connected, but (X, m_X) is not m_X -N-connected space, Since {a}, {b, c} are m_X -N-open sets in X such that $X = \{a\} \bigcup \{b, c\}$ and $\{a\} \cap \{b, c\} = \emptyset$. Furthermore, let N be the arrangement of every single natural numbers and $m_x = \{\emptyset, N\}$, then the arrangements of all m_x -N-open sets are $\{\emptyset, N, N / \text{finite}\}$ set}. Obviously, (N, m_X) is m_X -N-connected, but it is not m_X -N- locally connected. Since if $M = N / M_X$ finite set, then for a piece $a \in M$, there will be found no m_X -N-connected open set U such that $a \in U \subset$ Μ.

Proposition (5.8): Let m_X, m_X' be two diverse m-structures defined on the set X, such that $m_X \subset m_X'$. Then:

If (X, m_x) is m_x -N-locally connected space, then (X, m_x) might be not m_x -N-locally connected i. space.

If (X, m_X) is m_X -N-locally connected space, then (X, m_X) might be not m_X -N-locally connected ii. space.

Examples (5.9):

- Let X={a, b, c}, $m_X = \{\emptyset, \{b, c\}, X\}$, and $m_X' = \{X, \emptyset, \{a\}, \{b\}, \{c\}, \{b,c\}\}$. Obviously, (X, m_X') is i. an m_X^{\prime} -N-locally connected space, however, (X, m_X) is not m_X -N-locally connected space.
- Let X = R be the arrangement of all genuine numbers and $m_X' = \{\emptyset, R/\text{finite set}, \{1,2\}, R\}$ and ii. $m_X = \{\emptyset, R/\text{finite}, R\}$ set. Obviously, (X, m_X) is an m_X -N-locally connected space, yet (X, m_X') is not m_X -N-locally space, Since $l \in R$ and $\{1\}$ are an m_X' -N-open set, $l \in \{1\}$, but there is no U as an m_X' -N-connected open set such that $1 \in U \subseteq \{1\}$.

iii.

Proposition (5.10): Let $f: (X, m_X) \rightarrow (Y, m_Y)$ be a surjective m-N-continuous open. If (X, m_X) is an m_X -N-locally connected space and (Y, m_Y) has the property \mathfrak{B} , then (Y, m_Y) is locally connected.

Proof: Let the data of the proposition be achieved. To demonstrate that (Y, m_Y) is m_Y -locally connected, let $b \in Y$ and V be an m_y-open set in Y such that $b \in V$. Since f is onto, then there will be found $a \in X$ such that f (a) = b. Since f is m-N-continuous, then $f^{-1}(V)$ is m_X -N-open set in X such that $\in f^{-1}(V)$. Since X is an m_x-N-locally connected space, then there will be found U as an m_x-N-

connected open set in X such that $e \cup \subseteq f^{-1}$ (V). Hence, b = f (a) $e \in f$ (U) \subseteq V. Since *f* is an m-open function, then *f* (U) is an m_Y-open set, and by theorem 3.7, then *f* (U) is m_Y-connected. Therefore, Y is m_Y-locally connected.

Remark (5.11): The above Proposition is also true if we change the property m-N-continuous to m - continuous.

Remark (5.12): If $f: (X, m_X) \rightarrow (Y, m_Y)$ be an m-N-continuous or m-continuous or m-N^{**}- continuous image of m_X-N-locally connected space need not be m_Y-N-locally connected space.

Example (5.13): Let $X = \{a, b, c\}$, $Y = \{1, 2, 3\}$, $m_X = \{\emptyset, \{a\}, \{b\}, \{c\}, X\}$, and $m_Y = \{\emptyset, \{1\}, Y\}$. Define $f: (X, m_X) \rightarrow (Y, m_Y)$ such that f(a) = 1, f(b) = 2, f(c) = 3. It is obvious that f is m-N-continuous, m-continuous and m-N^{**}- continuous and (X, m_X) is an m_X -N-locally connected space. Yet (Y, m_Y) is not m_Y -N-locally connected space, Since $\{2,3\}$ is an m_Y -N-open set, $3 \in \{2,3\}$, and there

exists no m_Y -N-connected open set U to such an extent that $3 \in U \subseteq \{2,3\}$. **Proposition (5.14):** Let $f: (X, m_X) \to (Y, m_Y)$ be a surjective m-N^{**}-continuous, m-open. If (X, m_X) is

Proposition (5.14): Let $f: (X, m_X) \to (Y, m_Y)$ be a surjective m-N -continuous, m-open. If (X, m_X) is an m_X -N-locally connected space, then (Y, m_Y) is an m_Y -N-locally connected space.

Proof: Let $f: (X, m_X) \to (Y, m_Y)$ is an m-N**- continuous, m-open, and onto function and (X, m_X) is an m_X -N-locally connected space. To demonstrate that (Y, m_Y) is m_Y -N-locally connected, let $b \in Y$ and U is an m_X -N-open set in Y such that $b \in U$. Since f is onto, then there will be found $a \in X$ such that f(a) = b. Since f is an m-N**- continuous, then $f^{-1}(U)$ is an m_X -N-open set in X, such that $a \in f^{-1}(U)$. Since (X, m_X) is an m_X -N-locally connected space, then there will be found V as an m_X -Nconnected open set in X such that $a \in V \subseteq f^{-1}(U)$. Hence, $b = f(a) \in f(V) \subseteq U$. Since f is m-open, then f(V) is an m_Y -open set, and by Proposition 3.8, f(V) is m_Y -N-connected. Thus, Y is an m_Y -Nlocally connected space.

Remark (5.15): The above Proposition is also true if we change the property m-N**-continuous to m-N*-continuous.

Reference

- 1. AL-Omari, M.S. and Noorani, Md. 2009. "New Characterizations of Compact Spaces", proceedings of the 5th Asian Mathematical Conference, Malaysia.
- 2. Popa, V. and Noiri, T. 2000. On M-continuous functions, Anal. Univ. "Dunarea de Jos" *Galati, Ser. Mat. Fiz. Mec. Teor. Fasc.* II, 18(23): 31-41.
- 3. T. Noiri, T. and Popa, v. 2000. On upper and lower M-continuous multifunction, *Filomat*, 14(2000): 73-86.
- **4.** Hussain, R.A. and Nasser, H.I. **2012**. On Connected Space by using N Open Set, *Journal of Al-Qadisiyah for Computer Science and mathematics*.**4**(2): 1-19.
- **5.** Sunisa Buadong, Chokchai Viriyapong and Chawalit Boonpok. **2011**. On Generalized Topology and Minimal Structure Spaces, *Int. Journal of Math. Analysis*, **5**(31): 1507 1516
- **6.** Ahmad Al-Omari, Hanan Al-Saadi, and Takashi Noiri. **2018**. On Extremally Disconnected spaces Via m-structures, *Commun. Korean Math. Soc.* **0**(0): 1-0
- 7. Sharmistha Bhattacharya. 2010. A study on Rare m_X Sets and Rarely m_X Continuous functions, *Hacettepe Journal of Mathematics and Statistics*, 39(3): 295 303.
- **8.** Shyamapada Modak. **2016**. Minimal spaces with a mathematical structure, *Journal of the Association of Arab Universities for Basic and Applied Sciences*.
- **9.** Adiya K. Hussein. **2018**. On Minimal Hyperconnectedness, *International Journal of Mathematics Trends and Technology (IJMTT)*, **60**(2): 128-132.
- **10.** Hiranmay Dasgupta, Sucharita Chakrabarti. **2013**. Connectedness and its Applications, *International Mathematical Forum*, **8**(38): 1889 1901.
- Chokchai Viriyapong, Maliwan Tunapan, Witchaya Rattanametawee and Chawalit Boonpok, Generalized m-Closed Sets in Biminimal Structure Spaces, *Int. Journal of Math. Analysis*, 5(7): 333 – 346
- **12.** Haider J. Ali & Raad F. Hassan. On Light Mapping and certain concepts by using m_x-open sets. *Baghdad Science Journal*. Submitted.