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Abstract 

      In this essay, we utilize m - space to specify mX-N-connected, mX-N-hyper 

connected and mX-N-locally connected spaces and some functions by exploiting the 

intelligible mX-N-open set. Some instances and outcomes have been granted to boost 

our tasks. 
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 الخلاصة
  الطتصلة محليا -N-mو الطتصلة -N-mاءات يف الفضلتعخ   - m فضاءالفي هحا البحث استعطلظا      

 معدزة أعطيت قجبعض الحقائق والظتائج  .الطفتوحة -mX-Nالطجطوعات مفهوم  باستخجامبعض الجوال و 
 .لعطلظا

Introduction 
       A. AL-Omari, and M.S.Md. Noorani [1] presented the idea of N – open sets which can be 

described as follows. A subcategory U of a space X is nominated to be N – open if for every xU an 

open set UX is found and comprising x, with the end goal that UX / U is a finite.  In 2000, Popa and 

Noiri [2,3] presented the idea of minimal structure space. They additionally characterized m-

compactness and m-connectedness and analyzed their essential attributes. Hussain and Nasser [4] 

characterized the N – disconnected space in  an association of two N – separated sets. They provided 

several depictions and relate them to some other recently known classes of space, for instance, N – 

locally connected  and N – hyper connected spaces. In this paper,  we first presented and studied the 

idea of m-N-connected, m-N-hyper connected, m-locally connected and m-N-locally connected 

spaces,  by utilizing mX-N-open set, and  demonstrated some outcomes on this idea. 

1: PRELIMINARIES  

Definition (1.1) [5, 3] 

    Let X be a non-empty set and  (X) the power set of X. A subfamily mX of   (X) is called a 

minimal structure (briefly m-structure) on X if Ø∈  mX and X ∈  mX. By (X, mX), we indicate a non-

empty set X with an m-structure mX on X, and it is called m-space. Every individual from mX is 

nominated to be mX-open and the complement of an mX-open set is nominated to be mX-closed set. 

Definition (1.2) [6] 
     Let X be a non-empty set and mX be an m-structure on X. For a subcategory U of X, the mX-closure 

 of U and the mX-interior of U are characterized as: 
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i.mX-cl(U) = ∩{M: U⊆ M, X / M ∈ mX}. 

ii.mX-int(U) =   {K: K ⊆ U, K ∈ mX}. 

Lemma (1.3) [7]: Let X be a non-empty set and mX a minimal structure on X. For a  subcategory  U 

and V of X, the accompanying properties hold: 

i.mX-int(X /  U) = X / mX-cl(U). 

ii. If (X / U) ∈ mX, then mX-cl(U) = U and if U∈ mX, then mX-int(U) = U. 

iii. If U⊆ V, then mX-cl(U) ⊆ mX-cl(V) and mX-int(U) ⊆ mX-int(V). 

iv. mX-cl(mX-cl(U)) = mX-cl(U) and mX-int(mX-int(U)) = mX-int(U).  

Lemma (1.4) [8]: Let X be a non-empty set with a minimal structure mX, and let U be a subcategory 

of X. Then x∈  mX-cl(U) if and only if K ∩ U ≠ Ø for every K ∈  mX containing x. 

Definition (1.5) [6] 

 An m-structure     on a non-empty set X is said to have property 𝔅 if the union of any family of 

subsets belong to     belongs to    .   

Definition (1.6) [9] 

 A subcategory U of a an m-space (X, mX) is nominated to be 

i. mX-dense if mX-cl(U) = X.  

ii. mX-nowhere dense if mX-int(mX-cl(U)) = Ø. 

Definition (1.7) [10] 

     The subsets U and V of  m-space X are designated to be mX-separated in X if and only if (U∩ mX-

cl(V))   (mX-cl(U) ∩ V) = Ø. 

Definition (1.8) [10] 

    A subset U of X in (X, mX) is nominated to be m-connected in X (or simply m-connected) if U 

cannot be composed as the association of two non-empty mX-separated subcategories of X. If U is not 

m-connected in X, then we state that U is m-disconnected in X. A space (X, mX) is designated to be m-

connected if the underlying set X is m-connected. 

Definition (1.9) [3] 

     A non-empty set X with a minimal structure mX that is fulfilling 𝔅 property  is nominated to be mX-

connected if  X cannot be composed as the association of two non-empty disjoint mX-open sets.    

Definition (1.10) [11]  

    A function f: (X, mX) → (Y, mY) is nominated to be m-open if  f(U) is an mY-open set of 

 (Y, mY) for every mX-open set U of (X, mX). 

2: mX-N-open set 

Definition (2.1) [12] 
     A subcategory U of an m-space X is nominated to be mX-N-open set if every single x   U, there 

exists an mX-open set V containing x such that V/U is a finite set and the complement of an mX-N-

open set is called mX-N-closed set. 

Remark (2.2):  each mX-open set is an mX-N-open set. 

Proof: Let U be mX-open set and x   U, then x   UU and U/U = Ø. In this manner, U is an mX-N-

open set. 

Example (2.3): Let R be a set of all real numbers and mX = {Ø, R}. We realize that R/{1}R is an 

mX-N-open anyway and it is definitely not an mX-open. 

Definition (2.4) 

    Let X be an m-space and U be a subcategory of it, then x   X is designated to be mX-N-interior 

point to U if an mX-N-open set V is found such that xVU. Then, the set of all mX-N-interior 

points for U is indicated by mX-N-int(U). 

Definition (2.5) 

    Let X be an m-space and UX, then x X is nominated to be mX-N-limit point to U if  all mX-N-

open sets V containing x We have V /{x}) ∩U ≠ Ø, and the arrangement of all mX-N-limit points for 

U is indicated by mX-N-d(U). 

Definition (2.6) 

     Let X be an m-space and UX, then xX is nominated to be mX-N- adherent point to U if  every 

single mX-N-open set V that containing x is intersected with U. i.e. V∩U ≠ Ø. The arrangement of all 

mX-N-adherent  points for U is indicated by mX-N-adh(U) or mX-N-cl(U). 
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Definition (2.7) 

    Let X be a non-empty set and mX an m-structure on X. For a subcategory U of  X, the mX-N-closure 

of U and the mX-N-interior of U are described as: 

i. mX-N-int(U) =  {M: M ⊆ U, M is an mX-N-open}. 

ii. mX-N-cl(U) = ∩{K: U ⊆ K, K is an mX-N-closed}. 

Proposition (2.8): Let (X, mX) be an m-space, then the following accompanying attributes are 

verified: i. The union of any family of mX-N-open sets is an mX-N-open set. 

        ii.The intersection of  any family of mX-N-closed sets is an mX-N-closed set. 

Proof: 

i. Let U be an mX-N-open set for each ˄. To prove that  {U, ˄} is mX-N-open, let x 
{U, ˄}, then x  Ui for some i˄. Since Ui is an mX-N-open, then there can be found V as an 

mX-open set, such that xV and V / Ui is a finite set. Since UI    {U, ˄}, then (  {U , 

˄})
C
   

 (Ui)
C
. So, V∩ (  {U , ˄})

C
 V∩(Ui)

C
. Hence, V /    {U , ˄}V/ Ui. Since V 

/ Ui is a finite set, then  V /   {U , ˄} is a finite set, too. Hence   {Ui , ˄} is an mX-N-

open set.   

ii. Clear by (i).   

Proposition (2.9): Let U be a subcategory of m-space X, then: 

i.U is mX-N-open set if and only if  mX-N-int(U) = U. 

ii.U is mX-N-closed set if and only if  mX-N-cl(U) = U.  

proof: 

i. As the union of each mX-N-open set is mX-N-open set, then mX-N-int(U) is the largest mX-N-open 

set contained in U. Since U is mX-N-open set, then  mX-N-int(U) = U. Conversely, whenever  mX-N-

int(U) = U, then  U is mX-N-open set, since mX-N-int(U) is an mX-N-open set.  

ii. As the intersection of each mX-N-close set is mX-N-close set, then  mX-N-cl(U) is the smallest 

mX-N-close set that containing U. Since U is an mX-N-closed set, then mX-N-cl(U) = U. Conversely, 

whenever  mX-N-cl(U) = U, then U is an mX-N-closed set, since mX-N-cl(U) is an mX-N-closed set. 

Proposition (2.10):  Let U, V be a subcategory of m-space X and U  V, then : 

i.mX -int(U)   mX-N-int(U).                           ii. mX -N-cl(U)   mX-cl(U). 

iii.mX -N-cl(U)   mX-N-cl(V).                       iv.mX -N-int(U)   mX-N-int(V) 

v.mX-N-int(X) = X and mX-N-int(Ø) = Ø.       vi.mX-N-cl(X) = X and mX-N-cl(Ø) = Ø. 

vii.mX-N-int(U)   U and U  mX-N-cl(U)   viii.mX-N-int(m-N-int(U))= mX-N-int(U) 

x.mX-N-cl(m-N-cl(U))= mX-N-cl(U)              ix.mX-N-cl(U
C
) = (mX-N-int(U))

C
 . 

x.mX-N-int(U
C
) = (mX-N-cl(U))

C
. 

Proof: 

i. Let x   mX-int(U), then there can be found mX-open set UX such that xUXU. For the reason that 

every mX-open set is an mX-N-open set, therefore x  mX-N-int(U). 

ii. Let xmX-cl(U), then there can be found M as an mX-open set, such that x  M and M ∩ U ꞊ Ø.  For 

the reason that every mX-open set is an mX-N-open set, then xmX-N-cl(U) and consequently mX-N-

cl(U)   mX -cl(U). 

iii. Postulate that xmX-N-cl(U), then each mX-N-open set K containing x intersect U, Since UV, 

then the set K intersect V. Consequently, x mX-N-cl(V) and, in this way, mX-N-cl(U)  mX-N-

cl(V).  

iv. Let xmX-N-int(U), then there can be found an mX-N-open set UX such thatxUXU.  For the 

reason that UV, then xUXV. Consequently, xmX-N-int(V). Therefore, mX-N-int(U)  mX-

N-int(V). 

v. For the reason that X and Ø are mX-N-open sets, then by definition 2.7, mX-N-int (X) =   {U: U 

 is an  mX-N-open, UX} = X  all mX-N-open sets = X. In this manner, mX-N-int (X) = X. Since Ø 

is the only mX-N-open set contained in Ø, henceforth, mX-N-int (Ø) = Ø. 

vi. By definition 2.7, then  mX-N-cl(X)= ∩{V: X⊆ V, V} is mX-N-closed set. But X is the only mX- 

vii. N-closed set comprising X. In this way mX-N-cl(X) = X. Thus, mX-N-cl(X) = X. By the definition of 

mX-N-cl(Ø), mX-N-cl(Ø) = ∩{V: Ø ⊆ V, V is an mX-N-closed} = Ø ∩ any mX-N-closed sets 

comprising Ø = Ø. In this way mX-N-cl(Ø) = Ø. 
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viii. Clear. 

ix. By definition 2.7 and proposition 2.8, we note that mX-N-int(U) is an mX-N-open set. Furthermore, 

by proposition 2.9, we conclude that mX-N-int(m-N-int(U)) = mX-N-int(U). 

x. By definition 2.7 and proposition 2.8, we note that mX-N-cl(U) is an mX-N-closed set. Furthermore, 

by proposition 2.9, we conclude that mX-N-cl(m-N-cl(U)) = mX-N-cl(U).     

xi. Let x(mX-N-int(U))
C
, then  xmX-N-int(U). Thus, there is an mX-N-open set UX such thatxUX

U. In this way, x   UX and UX ∩U
C
 = Ø. So, xmX-N-cl(U

C
). Thus, we get mX-N-cl(U

C
)   (mX-N-

int(U))
C
. Now, let xmX-N-cl(U

C
), thus there is an mX-N-open set UX such that xUX and UX ∩ U

C
 

= Ø. Hence, xUX  U and, in this manner, xmX-N-int(U). Consequently, x(mX-N-int(U))
C
. 

Thus, we get (mX-N-int(U))
C
   mX-N-cl(U

C
).   

xii. Let xmX-N-int(U
C
). Accordingly, there is an mX-N-open set UX such thatxUX U

C
. In this 

manner, xUX and UX ∩ U = Ø. Consequently, xmX-N-cl(U). Thus, we get x(m-N-cl(U))
C
 and 

lastly mX-N-int(U
C
)   (mX-N-cl(U))

C
. Then again, let x  (mX-N-cl(U))

C
, then xmX-N-cl(U) and, 

in this way, there is an mX-N-open set UX such thatxUX and UX ∩ U = Ø. Hence, xUX and UX

U
C
. Therefore, x mX-N-int(U

C
) and hence (mX-N-cl(U))

C
  mX-N-int(U

C
). Finally, (mX-N-cl(U))

C
 = 

mX-N-int(U
C
). 

Definition (2.11)   
     Let (X, mX) be an m-space, then two non-empty subcategories U and V of X are nominated to be 

mX-N-separated if U∩ mX-N-cl(V) = Ø and V ∩ mX-N-cl(U) = Ø. 

Proposition (2.12): Two mX-N-closed (open) subcategories U and V of X are mX-N-separated iff they 

are disjoint. 

 Proof: Let U and V are both disjoint and mX-N-open sets, then U
C
 and V

C
 are mX-N-closed. As U  

V
C
, then mX-N-cl(U) V

C
, thus mX-N-cl(U) ∩ V = Ø. Likewise, we demonstrated that mX-N-cl(V)∩U 

= Ø. Hence, both U and V are mX-N-separated. Convrsely,  if U and V are mX-N-separated, then both 

U and V are disjoint in light of the fact that U ∩ V   mX-N-cl(U)∩ V. 

Definition (2.13) 

 Let X be an m-space, then U⊆X, U is nominated to be mX-N-dense in X if mX-N-cl(U) = X.  

Example (2.14): Let R be the arrangement of all genuine numbers and mX ={Ø, R}, then we realize 

that all R/finite sets are mX-N-dense. 

Definition (2.15) 

A subcategory U of an m-space (X, mX) is nominated to be mX-N-nowhere dense if mX-N-int(mX-

cl(U)) = Ø. 

Proposition (2.16): Every mX-N-nowhere dense  is an mX-nowhere dense. 

Proof: Clear. 

Remark (2.17): The opposite of the above proposition might be not valid as a rule. 

Example (2.18): Let X = {x1, x2, x3} and mX = {Ø, {x1}, {x2}, X}, then we realize that  the set {x3}is 

mX-nowhere dense but it is not mX-N-nowhere dense.  

Definition (2.19) 

A subcategory U of an m-space (X, mX) is nominated to be mX-N*-nowhere dense if mX-N-int(mX-N-

cl(U)) = Ø. 

Proposition (2.20): Every mX-N-nowhere dense  is an mX-N*nowhere dense. 

Proof: Clear. 

Remark (2.21): The opposite of the above proposition might be not valid as a rule. 

Example (2.22): Let R be the arrangement of all genuine numbers and mX = {Ø, R}, then we realize 

that every finite set is mX-N*-nowhere dense, yet it is not mX-N-nowhere dense.      

Remark (2.23): Let (X, mX) be an m-space and U be a subcategory of X. If U is an mX-N*-nowhere 

 dense then it is not necessary to be an mX-nowhere dense, as well the converse. 

Example (2.24): Let X=R set all real numbers and mX = {Ø, R}, then we realize that the set {1} is  

mX-N*-nowhere dense, but not mX-nowhere dense. On the other hand, let X = {x1, x2, x3} and mX ={Ø, 

{x1, x2}, X}, then we realize that the set {x3} is an m-nowhere dense, but not mX-N*-nowhere. 

Proposition (2.25): Let mX, mX
/
 be an m-structure on the set X such that mXmX

/
 and U are a 

subcategory of X. Then , 

i. U is an mX
/
-N-open set whenever U is an mX-N-open set. 
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ii. mX
/
-N-cl(U)   mX-N-cl(U). 

Proof: 

i. Let U be an mX-N-open set, then apiece xU, and there will be found an mX-open set UX of X, 

such that xUX and UX / U is a finite set. Since mX   mX
/
, then UXmX

/
 and therefore U is an mX

/ 
-

N-open set. 

ii. Let amX-N-cl(U), then there will be found mX-N-open set K such that aK and K∩U ꞊ Ø. By (i),  

K is an mX
/ 
-N-open set and therefore amX

/
-N-cl(U). Subsequently, mX

/
-N-cl(U)  mX-N-cl(U). 

Definition (2.26) 

 Let ƒ: (X, mX)→(Y, mY) be a function, then :  

i. [7] ƒ is nominated to be m-continuous if ƒ
-1 

(U) is mX-open subcategory in X for a piece mY-

open subcategory U of  Y. 

ii. ƒ is nominated to be m-N-continuous function if 
 
ƒ

-1 
(U) is an mX-N-open subcategory in X for a 

piece mY-open subcategory U of  Y. 

iii. ƒ is nominated to be m-N*-continuous function if  ƒ
-1

 (U) is an an mX-open subcategory in X for 

a piece mY-N-open subcategory U of Y. 

iv. ƒ is nominated to be  m-N**- continuous function if  ƒ
-1 

(U) is an mX-N-open subcategory in X 

for a piece  mY-N-open subcategory U of Y. 

Theorem (2.27): Let ƒ: (X, mX) → (Y, mY) be a function, then the accompanying proclamations are 

identical:  

i. ƒ is an m-N**-continuous. 

ii. The inverse image of every mY-N-closed set is an mX-N-closed. 

iii. For a piece subcategory U of Y, mX-N-cl (ƒ ‾
1 
(U))   ƒ ‾

1 
(mY-N-cl(U)). 

Proof: 

(i)→(ii). let V be a subset of Y be an    -N-closed. Then V
C
 is mY-N-open and, by (i),  

ƒ ‾
1
 (V

C
) = (ƒ ‾

1 
(V))

C
 is an mX-N-open set.  Consequently, ƒ ‾

1 
(V) is an mX-N-closed set in X. 

(ii)→(iii). Let U be a subcategory in Y. As UmY-N-cl(U), then ƒ ‾
1
(U)   ƒ ‾

1 
(mY-N-cl(U)),  mX-N-

cl(ƒ ‾
1 

(U))   mX-N-cl( ƒ‾
1
 (mY-N-cl(U))). Since ƒ ‾

1
 (mY-N-cl(U)) is an mX-N-closed set in X, then 

mX-N-cl(ƒ ‾
1
 (mY-N-cl(U)) = ƒ ‾

1
 (mY-N-cl(U)). Hence, mX-N-cl(ƒ ‾

1
(U))   ƒ ‾

1 
(mY-N-cl(U)). 

(iii)→(i). Let U be an mY-N-open set in Y, then U
C
 is mY-N-closed set and therefore U

C
 = mY-N-

cl(U
C
). As mX-N-cl(ƒ ‾

1 
(U

C
))   ƒ ‾

1
 (mY-N-cl(U

C
)), then mX-N-cl(ƒ ‾

1 
(U

C
))   ƒ ‾

1 
(U

C
). Hence, mX-

N-cl(ƒ ‾
1
(U

C
)) ꞊ ƒ ‾

1 
(U

C
) and therefore ƒ ‾

1 
(U

C
) = (ƒ ‾

1
 (U))

C
 is an mX-N-closed set. So,  

ƒ ‾
1 
(U) is an mX-N-open set in X. 

Theorem (2.28): Let ƒ: (X, mX)→(Y, mY) be a function, then  ƒ is an m-N**-continuous iff  ƒ (mX-N-

cl(U))   mY-N-cl(ƒ(U)) for a piece subcategory U of X. 

Proof: Let ƒ be an m-N**-continuous. As mY-N-cl(ƒ (U)) is an mY-N-closed, then ƒ
 -1

 (mY-N-cl(ƒ 

(U))) is an mX-N-closed. Consequently, mX-N-cl(ƒ
 -1

 (mY-N-cl(ƒ
 
(U)))) = ƒ

 -1
 (mY-N-cl(ƒ (U))). As ƒ 

(U)   mY-N-cl(ƒ (U)), then U ƒ
 -1

 (mY-N-cl(ƒ
 
(U)) and therefore mX-N-cl(U)   mX-N-cl(ƒ 

-1
(mY-

N-cl(ƒ (U))) = ƒ
 -1

(mY-N-cl(ƒ (U)). So, ƒ (mX-N-cl(U))   mY-N-cl(ƒ (U)). 

Conversely, let ƒ
 
(mX-N-cl(U))   mY-N-cl(ƒ

 
(U)) for a piece subcategory U of X. Let V be an mY-N-

closed, then ƒ (mX-N-cl(ƒ 
-1 

(V)))   mY-N-cl(ƒ (ƒ 
-1 

(V)))   mY-N-cl(V) = V. Hence, mX-N-cl(ƒ 
-1

 

(V))   ƒ 
-1

 (V) and, in this manner, mX-N-cl(ƒ 
-1 

(V)) = ƒ 
-1 

(V).  

So, ƒ 
-1

(V) is an mX-N-closed set in X. In this way, ƒ  is an m-N**-continuous.     

3: mX-N-connected spaces 

Definition (3.1)  
     A subset U of X in (X, mX) is nominated to be mX-N-connected in X if U cannot be composed as  

the association of two non-empty mX-N-separated subsets of X. If U is not mX-N-connected in X, then  

we state that U is an mX-N-disconnected in X. A space (X, mX) is designated to be mX-N-connected i 

 the fundamental set X is an mX-N-connected.  

Definition (3.2) 

 A subset U of m-space X is nominated to be mX-N-clopen set if U is both mX-N-open set and mX-N- 

closed set. 

Proposition (3.3): Let X be an m-space, then the following is identical: 

i. X is an mX-N-connected space. 
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ii. The only mX-N-clopen sets in the space are X and Ø. 

iii. X  is not able to compose as the association of two non-empty disjoint mX-N-open sets. 

Proof: 

i⇒ ii. Let X be mX-N-connected space, to demonstrate that the only mX-N-clopen sets in the space are 

X and Ø.  Let U be an mX-N-clopen set such that U≠Ø and U≠X and let U 
C
 = V. Consequently, X= U

 V and V is additionally mX-N-clopen set. As V is an mX-N-closed, then mX-N-cl(V) = V, U∩ mX-

N-cl(V) = U∩V = Ø, and V ∩ mX-N-cl(U) = V∩U= Ø.  Subsequently, X is not an mX-N-connected 

space, which is a logical inconsistency. Consequently, the only mX-N-clopen sets in the space are X 

and Ø. 

ii⇒iii. Let the only mX-N-clopen sets in the space be X and Ø and assume that X=U V such that U 

and V are non-empty disjoint mX-N-open sets. Then U=V
C
 and, in this way, U is an mX-N-closed set. 

Consequently, U is mX-N-clopen set, which is a logical inconsistency. So, X is not able to compose as 

the association of two non-empty disjoint mX-N-open sets. 

iii⇒i.  Let X be not able to compose as the association of two non-empty disjoint mX-N-open sets, and  

suppose that X is an mX-N-disconnected space. Then there will be found non-empty subcategories U, 

V of X such that U∩ mX-N-cl(V) = Ø, V∩ mX-N-cl(U) = Ø, and U V ꞊ X. Since V  mX-N-cl(V), 

then U∩V= Ø.  Since V∩ mX-N-cl(U) = Ø, then mX-N-cl(U)  V
C
 = U. Consequently, mX-N-cl(U) = 

U. Hence, U is an mX-N-closed set. As U
C 

= V, then V is an mX-N-open set. It is similarly proved that 

U is an mX-N-open set, which is an inconsistency. So, X is an mX-N-connected space. 

Proposition (3.4): Every mX-N-connected space is an mX-connected space. 

Proof: Let X be an mX-N-connected space and assume that X is not mX-connected, then there will be 

found U, V as non-empty subsets of X such that X =U V, U ∩ mX-cl(V) = Ø, and V ∩ mX-cl(U) = 

Ø. By proposition 2.10 - ii, we deduced that U ∩ mX-N-cl(V) = Ø and V ∩ mX-N-cl(U) = Ø. 

Accordingly, X is an mX-N-disconnected space, which is a logical inconsistency. Consequently, X is 

an mX-connected space.  

Remark (3.5): The opposite of the above proposition might be not valid as a rule. 

Example (3.6): Let X = {a1, a2, a3} and mX = {Ø, X}, we realize that X is an mX-connected, 

nevertheless it is not mX-N-connected. 

Theorem (3.7): Let ƒ: (X, mX) → (Y, mY) be surjective m-N-continuous. If (X, mX) is an mX-N-

connected space and (Y, mY) possess attributes 𝔅, then (Y, mY) is mY-connected.  

Proof: Let ƒ: (X, mX)→(Y, mY) be surjective m-N-continuous, X is an mX-N-connected space, and (Y, 

mY) possess attributes 𝔅. To demonstrate that Y is mY-connected, assume that Y is an m-disconnected 

space, then Y =U V such thatU, V are non-empty disjoint mY-open sets. Subsequently X= ƒ
 -1

(Y) = ƒ
 

-1
(U V) = ƒ

 -1
(U)   ƒ

 -1
(V). Since ƒ is an m-N-continuous, then  ƒ

 -1
(U) and ƒ

 -1
(V) are mX-N-open 

sets in X, and since U≠∅, V≠∅ and ƒ  are surjective  functions, then 

 ƒ
 -1

(U) ≠∅, ƒ
 -1

 (V) ≠ ∅ and ƒ
 -1

(U) ∩ ƒ 
-1

(V) = ∅. Hence, X is an mX-N-disconnected space, which is 

an inconsistency. In this way, Y is an mY-connected space.  

Proposition (3.8): Let ƒ: (X, mX) → (Y, mY) be surjective m-N
**

-continuous and (X, mX) is an mX-N-

connected space, then  (Y, mY) is mY-N-connected.   

Proof: Let ƒ: (X, mX) → (Y, mY) be surjective  m-N
**

- continuous function such that X is an mX-N-

connected space. To demonstrate that Y is mY-N-connected, suppose that Y is an mY-N-disconnected 

space,  then  Y = U V such thatU, V are non-empty disjoint mY-N-open sets, therefore X = ƒ
 -1

  (Y) = 

ƒ
 -1

 (U V) = ƒ
 -1

 (U)   ƒ
 -1 

(V). Sinceƒ is m-N
**

-continuous, thus ƒ
 -1

 (U) and ƒ
 -1

 (V) are mX-N-open 

in X and since U≠∅, V≠∅, and ƒ are surjective functions, then  ƒ
 -1

(U) ≠∅, ƒ
 -1 

(V) ≠ ∅ and ƒ
 -1

(U) ∩ ƒ
 -1 

(V) = ∅. Subsequently, X  is an mX-N-disconnected space, which is an inconsistency. Subsequently, Y 

is an mY-N-connected space . 

Remark (3.9): The above Proposition is also true if ƒ is m-N*-continuous. 

4: m-N-hyper connected space 

Definition (4.1) [9] 

A space X is nominated to be m-hyper connected space if every non-empty mX-open subcategory of  

 X is mX-dense.  
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Definition (4.2) 

 A space X is nominated to be mX-N-hyper connected space if every non-empty mX-N-open 

subcategory of  X is an mX-N-dense. 

Proposition (4.3): Every mX-N-hyper connected space is mX-hyper connected. 

Proof:  Let X be an mX-N-hyper connected space. To demonstrate that X is an mX-hyper connected 

space, let U be an mX-open set in X. Consequently, it is an mX-N-open set. As X is an mX-N-hyper 

connected space, then mX-N-cl(U) = X.  By proposition 2.10-ii, we conclude that mX-cl(U) = X and, 

subsequently, X is an mX-hyper connected space. 

Remark (4.4): The opposite of the above proposition might be not valid as a rule. 

Example (4.5): Let X= {x1, x2, x3}, mX = {∅, X}. Obviously, X is mX-hyper connected, however, it is 

not m-N-hyper connected, since {x1} is an mX-N-open set and  mX-N-cl{x1} ꞊ {x1} ≠ X. 

Proposition (4.6): Every mX-N-hyper connected space is an mX-N-connected space. 

Proof: Let X be an mX-N-hyper connected space and assume that X is not mX-N-connected. Then, it 

can be found that a subset U of  X is an mX-N-clopen set such thatU≠∅ and U ≠ X. Consequently, U= 

mX-N-cl(U), which is a logical inconsistency, since X is m-N-hype connected. Therefore, X is an mX-

N-connected space. 

Remark (4.7): The opposite of the above proposition might be not valid as a rule. 

Example (4.8): Let X= R be the arrangement of all genuine numbers and mX={Ø, (-1,1], [1,3], R}, 

then mX-N-open sets are {Ø, R, (-1,1], [1,3], (-1,1), (1,3), (1,3], [1,3), (-1,3], R/finite set,….}. 

Therefore, mX-N-closed sets are {Ø, R, R/(-1,1], R/[1,3], R/(-1,1), R/(1,3), R/(1,3], R/[1,3), R/(-1,3], 

finite set,….}. We realize that R is an mX-N-connected space  and mX-N-cl(-1,1)=R\[1,3]≠R,  therefore 

R is not mX-N-hyper connected space. 

Remark (4.9): The essential attribute of m-space X being mX-N-hyper connected is not a hereditary 

property. 

Example  (4.10): Let (R, mX) be an m-space and mX = {Ø, R}, then we realize that R is an mX-N-

hyper connected but a subcategory A= {1, 2, 3} with a relative m-structure is not mX-N-hyper 

connected,  since  mX-N-cl{1} = {1}. 

Proposition (4.11): Let mX, mX
/
 be m-structure on the set X such that mX  mX

/
, If (X, mX

/
) is mX

/
-N-

hyper connected space, then  (X, mX) is mX-N-hyper connected space. 

Proof: Let U be an mX-N-open set, then by proposition 2.25, U is an mX
/
-N-open set, but (X, mX

/
) is 

an mX
/
-N-hyper connected space, so mX

/
-N-cl(U) = X. Then, by the same (Proposition 2.25) we get 

that mX-N-cl(U) = X. Hence, (X, mX) is an mX-N-hyper connected space.  

Remark (4.12): The opposite of the above proposition might be not valid as a rule. 

Example (4.13): Let X=R be the arrangement of all genuine numbers and mX = {Ø, R}, then R is an 

mX-N-hyper connected space, but whenever mX
/
 = {Ø, 1, R}, then R is not an mX

/
-N-hyper connected 

space, since mX
/
-N-cl{1} = {1} ≠ R. 

Theorem (4.14): Let (X, mX ) be an m-space  and U be a subcategory of X. Then, the following is 

identical: 

i. X is mX-N-hyper connected. 

ii. U is mX-N-dense or mX-N*-nowhere dense, for each subcategory U of X. 

iii. U∩V≠ Ø, for each non-empty mX-N-open subcategory U and V of X. 

Proof: (i) →(ii). Let (X, mX) be mX-N-hyper connected and U be a subcategory of X. Assume that U 

is not mX-N*-nowhere dense,  then mX-N-int(mX-N-cl(U)) ≠ Ø, so by (i), mX-N-cl(mX-N-int(mX-N-

cl(U))) = X. Since mX-N-int(mX-N-cl(U)   mX-N-cl(U), then mX-N-cl(U) = X and, therefore, U is 

mX-N-dense. Also, if U is not mX-N-dense, then mX-N-cl(U) ≠ X. Assume that mX-N-int(mX-N-cl(U)) 

≠ Ø, then by (i), mX-N-cl(mX-N-int(mX-N-cl(U))) = XmX-N-cl(U). Therefore, mX-N-cl(U) = X, 

which is a contradiction. So, mX-N-int(mX-N-cl(U)) = Ø. Thus, U is an mX-N*-nowhere dense. 

(ii) → (iii). Suppose that U∩V=Ø for some non-empty mX-N-open subcategory U and V of X. Then, 

mX-N-cl(U)∩V=Ø and, therefore, U is not mX-N-dense. Since U is an mX-N-open set, so Ø≠UmX- 

N-int(mX-N-cl(U)). Subsequently, U is not mX-N*-nowhere dense, which is an inconsistency. So 

U∩V≠Ø for each non-empty mX-N-open subset U and V of X. 

(iii) →(i). Let U∩V≠ Ø for each non-empty mX-N-open subcategories U and V of X and assume that 

(X, mX) is not mX-N-hyper connected space, then there will be found, at any rate, mX-N-open subset W 

of X that is not mX-N-dense in X. So, mX-N-cl(W) ≠ X. In this manner, X / mX-N-cl(W) and W are 
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disjoint non-empty mX-N-open subcategories of X, which is a logical inconsistency. Subsequently, (X, 

mX) is an mX-N-hyper connected space.  

Theorem 4.15: Let ƒ: (X, mX)→ (Y, mY) be surjective m-N
**

-continuous and (X, mX) is an mX-N- 

hyper connected space, then  (Y, mY) is an mY-N- hyper connected.   

Proof: Let ƒ: (X, mX)→(Y, mY) be a surjective m-N**-continuous function and U is an mY-N-open 

set. To demonstrate that mY-N-cl(U) = Y,  since ƒ is m-N**-continuous and X is an mX-N-hyper 

connected space, then ƒ 
-1 

(U) is mX-N-open  and X = mX-N-cl(ƒ
 -1 

(U))   ƒ
 -1

(mY-N-cl(U)). 

Consequently, mY-N-cl(U) = Y. Accordingly, Y is an mY-N-hyper connected space.       

5: mX-N- locally connected space 

Definition (5.1)Let X be an m-space, then (X, mX) is nominated to be mX-locally connected space  if,  

for each point xX and each mX-open set U such that xU, there will be found mX-connected open 

set V such thatx  VU. 

Definition (5.2) Let X be an m-space, then (X, mX) is nominated to be mX-N-locally connected space  

if,  for every point xX and every mX-N-open set  such that xU, there will be found an mX-N-

connected open set V such that xVU. 

Proposition (5.3): Every mX-N-locally connected space is an mX-locally connected space. 

Proof: Let X be an mX-N-locally connected space and let aX and U be an mX-open set in X such 

thataU, as every mX-open set is an mX-N-open set and X is an mX-N-locally connected space. Then , 

there will be found an mX-N-connected open set V such thataVU.  By proposition 3.4, we 

conclude that V is an mX-connected open set in X. Consequently,  X is an mX-locally connected space. 

Remark (5.4): The opposite of the above proposition might be not valid as a rule. 

Example (5.5): Let X= {a, b, c}, mX = {Ø, {b, c}, X}. The mX-N-open set is 

{∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, X}. 

Obviously (X, mX) is an mX-locally connected space, however (X, mX) is not mX-N-locally connected 

space since a ∈ {a, b} and exist no U is an mX-N-connected mX-open set such that a ∈ U ⊆ {a, b}. 

Remark (5.6): If (X, mX) is mX-N-locally connected space, then it needs not to be mX-N-connected 

and if (X, mX) is an mX-N-connected space, then it needs not to be an mX-N-locally connected space. 

Example (5.7): Let X= {a, b, c}, mX be discrete m-structure. Unmistakably,  (X, mX) is mX-N-locally 

connected, but (X, mX) is not mX-N-connected space, Since{a}, {b, c} are mX-N-open sets in X such 

thatX = {a} {b, c} and {a}∩{b, c} = ∅. Furthermore,  let N be the arrangement of every single 

natural numbers and  mX = {∅, N},  then the arrangements of all mX-N-open sets are {∅, N, N / finite 

set}. Obviously, (N, mX) is mX-N-connected, but it is not mX-N- locally connected. Since if M = N / 

finite set, then for a piece aM, there will be found no mX-N-connected open set U such that aU

M . 

Proposition (5.8): Let mX, mX
/
 be two diverse m-structures defined on the set X, such that mX   mX

/
. 

Then: 

i. If (X, mX
/
) is mX

/
-N-locally connected space, then  (X, mX) might  be not mX-N-locally connected 

space. 

ii. If (X, mX) is mX -N-locally connected space, then  (X, mX
/
) might be not mX

/
-N-locally connected 

space. 

Examples (5.9): 

i. Let X={a, b, c}, mX ={Ø,{b, c}, X}, and mX
/
={X, Ø, {a}, {b}, {c}, {b,c}}. Obviously, (X, mX

/
) is 

an mX
/
-N-locally connected space, however, (X, mX) is not mX-N-locally connected space. 

ii. Let X = R be the arrangement of all genuine numbers and mX
/
 = {Ø, R/finite set, {1,2}, R} and 

mX = {Ø, R/finite, R} set. Obviously, (X, mX) is an mX-N-locally connected space,  yet  (X, mX
/
) is 

not mX-N-locally space, Since1R and {1} are an mX
/
-N-open set, 1{1}, but there is no U as an  

iii. mX
/
-N-connected open set such that1U {1}.  

Proposition (5.10):  Let ƒ: (X, mX) → (Y, mY) be a surjective m-N-continuous open. If  (X, mX) is an  

mX-N-locally connected space and (Y, mY) has the property 𝔅,  then (Y, mY) is locally connected. 

Proof: Let the data of the proposition be achieved. To demonstrate that (Y, mY) is mY -locally 

connected, let bY and V be an mY-open set in Y such thatbV, Sinceƒ is onto, then  there will be 

found aX such thatƒ (a) ꞊ b. Sinceƒ is m-N-continuous, then  ƒ
 -1

 (V) is mX-N-open set in X such 

thataƒ
 -1

(V). SinceX is an mX-N-locally connected space, then there will be found U as an mX-N-



Salih and Ali                                                 Iraqi Journal of Science, 2021, Vol. 62, No. 2, pp: 604-612 
 

612 

connected open set in X such thataUƒ
 -1

 (V). Hence, b = ƒ (a) ƒ (U)V. Sinceƒ is an m-open 

function, then ƒ (U) is an mY –open set, and by theorem 3.7, then ƒ (U) is mY-connected. Therefore, Y 

is mY-locally connected. 

Remark (5.11): The above Proposition is also true if  we change the property m-N-continuous to m - 

continuous. 

Remark (5.12): If ƒ: (X, mX) → (Y, mY) be an m-N-continuous or m-continuous or m-N
**

- 

continuous image of mX-N-locally connected space need not be mY-N-locally connected space. 

Example (5.13): Let X= {a, b, c}, Y= {1, 2, 3}, mX = {∅, {a}, {b}, {c}, X}, and mY = {∅, {1}, Y}.  

Define ƒ: (X, mX) → (Y, mY) such thatƒ (a) =1, ƒ(b) = 2, ƒ (c) = 3. It is obvious that ƒ is m-N-

continuous, m-continuous and m-N
**

- continuous and (X, mX) is an mX-N-locally connected space. 

Yet (Y, mY) is not mY-N-locally connected space, Since{2,3} is an mY-N-open set, 3{2,3}, and there 

exists no mY-N-connected open set U to such an extent that 3U {2,3}.  

Proposition (5.14): Let ƒ: (X, mX) → (Y, mY) be a surjective m-N
**

-continuous, m-open. If (X, mX) is 

an mX-N-locally connected space, then  (Y, mY) is an mY-N-locally connected space. 

Proof: Let ƒ: (X, mX) → (Y, mY) is an m-N**- continuous, m-open, and onto function and (X, mX) is 

an mX-N-locally connected space. To demonstrate that (Y, mY) is mY-N-locally connected, let bY 

and U is an mX-N-open set in Y such that bU. Since ƒ is onto, then  there will be found aX such 

that ƒ (a) ꞊ b. Sinceƒ is an m-N**- continuous, then  ƒ 
-1

 (U) is an mX-N-open set in X, such that aƒ
-1

 

(U) . Since (X, mX) is an mX-N-locally connected space, then  there will be found V as an mX-N-

connected open set in X such thataVƒ
-1

(U). Hence, b = ƒ (a)   ƒ (V) U. Since ƒ is m-open, 

then  ƒ (V) is an mY-open set, and by Proposition 3.8, ƒ (V) is mY-N-connected. Thus, Y is an mY-N-

locally connected space. 

Remark (5.15): The above Proposition is also true if we change the property m-N**-continuous to m-

N*-continuous. 
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