Some Results on m_X-N-connected Space

Ahmed A. Salih1, Haider J. Ali2

2 Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq

Received: 30/12/2019 Accepted: 15/3/2020

Abstract

In this essay, we utilize m - space to specify m_X-N-connected, m_X-N-hyper connected and m_X-N-locally connected spaces and some functions by exploiting the intelligible m_X-N-open set. Some instances and outcomes have been granted to boost our tasks.

Keywords: minimal structure, m_X-N-open set, m_X-N-connected space, m_X-N-hyper connected space, m_X-N-locally connected space, m-N-continuous.

المقدمة

أحمد عاشور صالح1, حيدر جبر علي2

1 المديرية العامة ل التربية بغداد / الكرخ /3, وزارة التربية، العراق
2 قسم الرياضيات، كلية العلوم، جامعة المستنصرية، العراق

في هذا البحث استعملنا الفضاء m للتعريف الفضاءات m_X المغلقة والمتصلة محلياً، وبعض الفروقات والمجموعات المغلقة $-N$-m_X المفتوحة. بعض الحقائق والنتائج قد أُعطت معززة لعملنا.

Introduction

A. AL-Omari, and M.S.Md. Noorani [1] presented the idea of N – open sets which can be described as follows. A subcategory U of a space X is nominated to be N – open if for every $x \in U$ an open set U_X is found and comprising x, with the end goal that U_X / U is a finite. In 2000, Popa and Noiri [2,3] presented the idea of minimal structure space. They additionally characterized m-compactness and m-connectedness and analyzed their essential attributes. Hussain and Nasser [4] characterized the N – disconnected space in an association of two N – separated sets. They provided several depictions and relate them to some other recently known classes of space, for instance, N – locally connected and N – hyper connected spaces. In this paper, we first presented and studied the idea of m-connected, m-N-hyper connected, m-locally connected and m-N-locally connected spaces, by utilizing m_X-N-open set, and demonstrated some outcomes on this idea.

1: PRELIMINARIES

Definition (1.1) [5, 3]

Let X be a non-empty set and $\lambda(X)$ the power set of X. A subfamily m_X of $\lambda(X)$ is called a minimal structure (briefly m-structure) on X if $\emptyset \in m_X$ and $X \in m_X$. By (X, m_X), we indicate a non-empty set X with an m-structure m_X on X, and it is called m-space. Every individual from m_X is nominated to be m_X-open and the complement of an m_X-open set is nominated to be m_X-closed set.

Definition (1.2) [6]

Let X be a non-empty set and m_X be an m-structure on X. For a subcategory U of X, the m_X-closure of U and the m_X-interior of U are characterized as:

*Email: ahmadhmw67@gmail.com
Definition (1.3) [7]: Let X be a non-empty set and m_X a minimal structure on X. For a subcategory U and V of X, the accompanying properties hold:

i. $m_X\text{-int}(X / U) = X / m_X\text{-cl}(U)$.

ii. If $(X / U) \in m_X$, then $m_X\text{-cl}(U) = U$ and if $U \subseteq m_X$, then $m_X\text{-int}(U) = U$.

iii. If $U \subseteq V$, then $m_X\text{-cl}(U) \subseteq m_X\text{-cl}(V)$ and $m_X\text{-int}(U) \subseteq m_X\text{-int}(V)$.

iv. $m_X\text{-cl}(m_X\text{-cl}(U)) = m_X\text{-cl}(U)$ and $m_X\text{-int}(m_X\text{-int}(U)) = m_X\text{-int}(U)$.

Definition (1.4) [8]: Let X be a non-empty set with a minimal structure m_X, and let U be a subcategory of X. Then $x \in m_X\text{-cl}(U)$ if and only if $K \cap U \neq \emptyset$ for every $K \in m_X$ containing x.

Definition (1.5) [6]: An m-structure m_X on a non-empty set X is said to have property \mathcal{B} if the union of any family of subsets belong to m_X belongs to m_X.

Definition (1.6) [9]: A subcategory U of an m-space (X, m_X) is nominated to be

i. m_X-dense if $m_X\text{-cl}(U) = X$.

ii. m_X-nowhere dense if $m_X\text{-int}(m_X\text{-cl}(U)) = \emptyset$.

Definition (1.7) [10]: The subsets U and V of m-space X are designated to be m_X-separated in X if and only if $(U \cap m_X\text{-cl}(V)) \cup (m_X\text{-cl}(U) \cap V) = \emptyset$.

Definition (1.8) [10]: A subset U of X in (X, m_X) is nominated to be m_X-connected in X (or simply m-connected) if U cannot be composed as the association of two non-empty m_X-separated subcategories of X. If U is not m-connected in X, then we state that U is m-disconnected in X. A space (X, m_X) is designated to be m-connected if the underlying set X is m-connected.

Definition (1.9) [3]: A non-empty set X with a minimal structure m_X that is fulfilling \mathcal{B} property is nominated to be m_X-connected if X cannot be composed as the association of two non-empty disjoint m_X-open sets.

Definition (1.10) [11]: A function $f: (X, m_X) \to (Y, m_Y)$ is nominated to be m-open if $f(U)$ is an m_Y-open set of (Y, m_Y) for every m_X-open set U of (X, m_X).

2: m_X-N-open set

Definition (2.1) [12]: A subcategory U of an m-space X is nominated to be m_X-N-open set if every single $x \in U$, there exists an m_X-open set V containing x such that V/U is a finite set and the complement of an m_X-N-open set is called m_X-N-closed set.

Remark (2.2): each m_X-open set is an m_X-N-open set.

Proof: Let U be m_X-open set and $x \in U$, then $x \in U \subseteq U$ and $U/U = \emptyset$. In this manner, U is an m_X-N-open set.

Example (2.3): Let R be a set of all real numbers and $m_X = \{\emptyset, R\}$. We realize that $R/\{1\} \subseteq R$ is an m_X-N-open any way and it is definitely not an m_X-open.

Definition (2.4): Let X be an m-space and U be a subcategory of it, then $x \in X$ is designated to be m_X-N-interior point to U if an m_X-N-open set V is found such that $x \in V \subseteq U$. Then, the set of all m_X-N-interior points for U is indicated by m_X-N-int(U).

Definition (2.5): Let X be an m-space and $U \subseteq X$, then $x \in X$ is nominated to be m_X-N-limit point to U if all m_X-N-open sets V containing x We have $V \setminus \{x\} \cap U \neq \emptyset$, and the arrangement of all m_X-N-limit points for U is indicated by m_X-N-d(U).

Definition (2.6): Let X be an m-space and $U \subseteq X$, then $x \in X$ is nominated to be m_X-N-adherent point to U if every single m_X-N-open set V that containing x is intersected with U. i.e. $V \cap U \neq \emptyset$. The arrangement of all m_X-N-adherent points for U is indicated by m_X-N-adh(U) or m_X-N-cl(U).
Definition (2.7)
Let X be a non-empty set and m_X an m-structure on X. For a subcategory U of X, the m_X-N-closure of U and the m_X-N-interior of U are described as:

i. m_X-N-int(U) = \bigcup \{M : M \subseteq U, M \text{ is an m_X-N-open}\}.

ii. m_X-N-cl(U) = \bigcap \{K : U \subseteq K, K \text{ is an m_X-N-closed}\}.

Proposition (2.8): Let (X, m_X) be an m-space, then the following accompanying attributes are verified:

i. The union of any family of m_X-N-open sets is an m_X-N-open set.

ii. The intersection of any family of m_X-N-closed sets is an m_X-N-closed set.

Proof:

i. Let U\alpha be an m_X-N-open set for each \alpha \in \wedge. To prove that \bigcup \{U\alpha, \alpha \in \wedge\} is m_X-N-open, let x \in \bigcup \{U\alpha, \alpha \in \wedge\}, then x \in U\alphai for some \alpha \in \wedge. Since U\alphai is an m_X-N-open, then there can be found V as an m_X-open set, such that x \in V and V / U\alpha is a finite set. Since U\alphai \subseteq \bigcup \{U\alpha, \alpha \in \wedge\}, then (\bigcup \{U\alpha, \alpha \in \wedge\})^C \subseteq (U\alphai)^C. So, V \cap (\bigcup \{U\alpha, \alpha \in \wedge\})^C \subseteq V \cap (U\alphai)^C. Hence, V \cap (\bigcup \{U\alpha, \alpha \in \wedge\}) \subseteq V / U\alpha. Since V / U\alpha is a finite set, then V / \bigcup \{U\alpha, \alpha \in \wedge\} is a finite set, too. Hence \bigcup \{U\alpha, \alpha \in \wedge\} is an m_X-N-open set.

ii. Clear by (i).

Proposition (2.9): Let U be a subcategory of m-space X, then:

i. U is m_X-N-open set if and only if m_X-N-int(U) = U.

ii. U is m_X-N-closed set if and only if m_X-N-cl(U) = U.

Proof:

i. As the union of each m_X-N-open set is m_X-N-open set, then m_X-N-int(U) is the largest m_X-N-open set contained in U. Since U is m_X-N-open set, then m_X-N-int(U) = U. Conversely, whenever m_X-N-int(U) = U, then U is m_X-N-open set, since m_X-N-int(U) is an m_X-N-open set.

ii. As the intersection of each m_X-N-closed set is m_X-N-closed set, then m_X-N-cl(U) is the smallest m_X-N-closed set that containing U. Since U is an m_X-N-closed set, then m_X-N-cl(U) = U. Conversely, whenever m_X-N-cl(U) = U, then U is an m_X-N-closed set, since m_X-N-cl(U) is an m_X-N-closed set.

Proposition (2.10): Let U, V be a subcategory of m-space X and U \subseteq V, then:

i. m_X-N-int(U) \subseteq m_X-N-int(U).

ii. m_X-N-cl(U) \subseteq m_X-N-cl(U).

iii. m_X-N-cl(U) \subseteq m_X-N-cl(V).

iv. m_X-N-int(U) \subseteq m_X-N-int(V).

v. m_X-N-int(X) = X and m_X-N-int(\emptyset) = \emptyset.

vi. m_X-N-cl(X) = X and m_X-N-cl(\emptyset) = \emptyset.

vii. m_X-N-int(m_X-N-int(U)) \subseteq m_X-N-int(U).

viii. m_X-N-cl(m_X-N-cl(U)) \subseteq m_X-N-cl(U).

ix. m_X-N-int(m_X-N-int(U)^C) = (m_X-N-int(U)^C)^C.

x. m_X-N-cl(m_X-N-cl(U)^C) = (m_X-N-cl(U)^C)^C.

Proof:

i. Let x \in m_X-N-int(U), then there can be found m_X-open set U_X such that x \in U_X \subseteq U. For the reason that every m_X-open set is an m_X-N-open set, therefore x \in m_X-N-int(U).

ii. Let x \notin m_X-N-cl(U), then there can be found M as an m_X-open set, such that x \in M and M \cap U = \emptyset. For the reason that every m_X-open set is an m_X-N-open set, then x \notin m_X-N-cl(U) and consequently m_X-N-cl(U) \subseteq m_X-N-cl(U).

iii. Postulate that x \in m_X-N-cl(U), then each m_X-N-open set K containing x intersect U. Since U \subseteq V, then the set K intersect V. Consequently, x \in m_X-N-cl(V) and, in this way, m_X-N-cl(U) \subseteq m_X-N-cl(V).

iv. Let x \in m_X-N-int(U), then there can be found an m_X-N-open set U_X such that x \in U_X \subseteq U. For the reason that U \subseteq V, then x \in U_X \subseteq V. Consequently, x \in m_X-N-int(V). Therefore, m_X-N-int(U) \subseteq m_X-N-int(V).

v. For the reason that X and \emptyset are m_X-N-open sets, then by definition 2.7, m_X-N-int(X) = \bigcup \{U : U \text{ is an m_X-N-open, } U \subseteq X\} = X \bigcup \text{all m_X-N-open sets} = X. In this manner, m_X-N-int(X) = X. Since \emptyset is the only m_X-N-open set contained in \emptyset, henceforth, m_X-N-int(\emptyset) = \emptyset.

vi. By definition 2.7, then m_X-N-cl(X) = \bigcap \{V : \emptyset \subseteq V, V \text{ is m_X-N-closed}\} is m_X-N-closed set. But X is the only m_X-N-closed set comprising X. In this way m_X-N-cl(X) = X. Thus, m_X-N-cl(X) = X. By the definition of m_X-N-cl(\emptyset), m_X-N-cl(\emptyset) = \bigcap \{V : \emptyset \subseteq V, V \text{ is m_X-N-closed}\} = \emptyset \bigcap \text{any m_X-N-closed sets comprising } \emptyset = \emptyset. In this way m_X-N-cl(\emptyset) = \emptyset.
viii. Clear.
ix. By definition 2.7 and proposition 2.8, we note that \(m_X \)-N-int(U) is an \(m_X \)-N-open set. Furthermore, by proposition 2.9, we conclude that \(m_X \)-N-int(m-N-int(U)) = \(m_X \)-N-int(U).
x. By definition 2.7 and proposition 2.8, we note that \(m_X \)-N-cl(U) is an \(m_X \)-N-closed set. Furthermore, by proposition 2.9, we conclude that \(m_X \)-N-cl(m-N-cl(U)) = \(m_X \)-N-cl(U).
xii. Let \(x \not\in (m_X \text{-N-int}(U))^C \), then \(x \in m_X \text{-N-int}(U) \). Thus, there is an \(m_X \)-N-open set \(U_X \) such that \(x \in U_X \subseteq U \). In this way, \(x \in U_X \cup U_X^C = \emptyset \). So, \(x \not\in m_X \text{-N-int}(U^C) \). Thus, we get \(m_X \text{-N-cl}(U^C) \subseteq (m_X \text{-N-int}(U))^C \). Now, let \(x \not\in m_X \text{-N-cl}(U^C) \), then there is an \(m_X \)-N-open set \(U_X \) such that \(x \in U_X \cup U_X^C = \emptyset \). Hence, \(x \in U_X \subseteq U \) and, in this manner, \(x \in m_X \text{-N-int}(U) \). Consequently, \(x \not\in (m_X \text{-N-int}(U))^C \).

Thus, we get \((m_X \text{-N-int}(U))^C \subseteq m_X \text{-N-cl}(U^C) \).

\textbf{Definition (2.11)}

Let \((X, m_X) \) be an \(m \)-space, then two non-empty subcategories \(U \) and \(V \) of \(X \) are nominated to be \(m_X \)-N-separated if \(U \cap m_X \text{-N-cl}(V) = \emptyset \) and \(V \cap m_X \text{-N-cl}(U) = \emptyset \).

\textbf{Proposition (2.12):} Two \(m_X \)-N-closed (open) subcategories \(U \) and \(V \) of \(X \) are \(m_X \)-N-separated iff they are disjoint.

\textbf{Proof:} Let \(U \) and \(V \) be both disjoint and \(m_X \)-N-open sets, then \(U^C \) and \(V^C \) are \(m_X \)-N-closed. As \(U \subseteq V^C \), then \(m_X \text{-N-cl}(U) \subseteq V^C \), thus \(m_X \text{-N-cl}(U) \cap V = \emptyset \). Likewise, we demonstrated that \(m_X \text{-N-cl}(V) \cap U = \emptyset \). Hence, both \(U \) and \(V \) are \(m_X \)-N-separated.

\textbf{Definition (2.13)}

Let \(X \) be an \(m \)-space, then \(U \subseteq X \), \(U \) is nominated to be \(m_X \)-N-dense in \(X \) if \(m_X \text{-N-cl}(U) = X \).

\textbf{Example (2.14):} Let \(R \) be the arrangement of all genuine numbers and \(m_X = \{ \emptyset, R \} \), then we realize that all \(R/ \text{finite sets are } m_X \)-N-dense.

\textbf{Definition (2.15)}

A subcategory \(U \) of an \(m \)-space \((X, m_X) \) is nominated to be \(m_X \)-N-nowhere dense if \(m_X \text{-N-int}(m_X \text{-cl}(U)) = \emptyset \).

\textbf{Proposition (2.16):} Every \(m_X \)-N-nowhere dense \(X \) is \(m_X \)-N-nowhere dense.

\textbf{Proof:} Clear.

\textbf{Remark (2.17):} The opposite of the above proposition might be not valid as a rule.

\textbf{Example (2.18):} Let \(X = \{ x_1, x_2, x_3 \} \) and \(m_X = \{ \emptyset, \{ x_1 \}, \{ x_2 \}, \{ x_3 \} \} \), then we realize that the set \(\{ x_1 \} \) is \(m_X \)-nowhere dense but it is not \(m_X \)-N-nowhere dense.

\textbf{Definition (2.19)}

A subcategory \(U \) of an \(m \)-space \((X, m_X) \) is nominated to be \(m_X \)-N*-nowhere dense if \(m_X \text{-N-int}(m_X \text{-N-cl}(U)) = \emptyset \).

\textbf{Proposition (2.20):} Every \(m_X \)-N-nowhere dense \(X \) is \(m_X \)-N*-nowhere dense.

\textbf{Proof:} Clear.

\textbf{Remark (2.21):} The opposite of the above proposition might be not valid as a rule.

\textbf{Example (2.22):} Let \(R \) be the arrangement of all genuine numbers and \(m_X = \{ \emptyset, R \} \), then we realize that every finite set is \(m_X \)-N*-nowhere dense, yet it is not \(m_X \)-N-nowhere dense.

\textbf{Remark (2.23):} Let \((X, m_X) \) be an \(m \)-space and \(U \) be a subcategory of \(X \). If \(U \) is an \(m_X \)-N*-nowhere dense then it is not necessary to be an \(m_X \)-nowhere dense, as well the converse.

\textbf{Example (2.24):} Let \(X = \mathbb{R} \) set all real numbers and \(m_X = \{ \emptyset, \mathbb{R} \} \), then we realize that the set \(\{ 1 \} \) is \(m_X \)-N*-nowhere dense, but not \(m_X \)-nowhere dense. On the other hand, let \(X = \{ x_1, x_2, x_3 \} \) and \(m_X = \{ \emptyset, \{ x_1, x_2 \}, \{ x_3 \} \} \), then we realize that the set \(\{ x_1 \} \) is an \(m \)-nowhere dense, but not \(m_X \)-N*-nowhere.

\textbf{Proposition (2.25):} Let \(m_X \), \(m_X' \) be an \(m \)-structure on the set \(X \) such that \(m_X \subseteq m_X' \) and \(U \) are a subcategory of \(X \). Then,
i. \(U \) is an \(m_X \)-N-open set whenever \(U \) is an \(m_X \)-N-open set.
ii. \(m_{X}' \text{-N-cl}(U) \subseteq m_X \text{-N-cl}(U) \).

Proof:

i. Let \(U \) be an \(m_X \)-N-open set, then a piece \(x \in U \), and there will be found an \(m_X \)-open set \(U_X \) of \(X \), such that \(x \in U_X \) and \(U_X / U \) is a finite set. Since \(m_X \subseteq m_{X}' \), then \(U_X \subseteq m_{X}' \) and therefore \(U \) is an \(m_{X}' \)-N-open set.

ii. Let \(a \notin m_X \text{-N-cl}(U) \), then there will be found an \(m_X \)-N-open set \(K \) such that \(a \in K \) and \(K \cap U = \emptyset \). By (i), \(K \) is an \(m_{X}' \)-N-open set and therefore \(a \notin m_{X}' \text{-N-cl}(U) \). Subsequently, \(m_{X}' \text{-N-cl}(U) \subseteq m_X \text{-N-cl}(U) \).

Definition (2.26):

Let \(f : (X, m_X) \rightarrow (Y, m_Y) \) be a function, then:

i. \(f \) is nominated to be \(m \)-continuous if \(f^{-1}(U) \) is an \(m_X \)-open subcategory in \(X \) for a piece \(m_Y \)-open subcategory \(U \) of \(Y \).

ii. \(f \) is nominated to be \(m \)-N-continuous function if \(f^{-1}(U) \) is an \(m_X \)-open subcategory in \(X \) for a piece \(m_Y \)-open subcategory \(U \) of \(Y \).

iii. \(f \) is nominated to be \(m \)-N*-continuous function if \(f^{-1}(U) \) is an \(m_X \)-open subcategory in \(X \) for a piece \(m_Y \)-open subcategory \(U \) of \(Y \).

iv. \(f \) is nominated to be \(m \)-N**-continuous function if \(f^{-1}(U) \) is an \(m_X \)-open subcategory in \(X \) for a piece \(m_Y \)-open subcategory \(U \) of \(Y \).

Theorem (2.27): Let \(f : (X, m_X) \rightarrow (Y, m_Y) \) be a function, then the accompanying proclamations are identical:

i. \(f \) is an \(m \)-N**-continuous.

ii. The inverse image of every \(m_Y \)-N-closed set is an \(m_X \)-N-closed.

iii. For a piece subcategory \(U \) of \(Y \), \(m_X \text{-N-cl}(f^{-1}(U)) \subseteq f^{-1}(m_Y \text{-N-cl}(U)) \).

Proof:

(i)\(\rightarrow\)(ii). Let \(V \) be a subset of \(Y \) be an \(m_Y \)-N-closed. Then \(V^c \) is an \(m_X \)-N-open and, by (i), \(f^{-1}(V^c) = (f^{-1}(V))^c \) is an \(m_X \)-N-open set. Consequently, \(f^{-1}(V) \) is an \(m_X \)-N-closed set in \(X \).

(ii)\(\rightarrow\)(iii). Let \(U \) be a subcategory in \(Y \). As \(U \subseteq m_Y \text{-N-cl}(U) \), then \(f^{-1}(U) \subseteq f^{-1}(m_Y \text{-N-cl}(U)) \), \(m_X \text{-N-cl}(f^{-1}(U)) \subseteq m_X \text{-N-cl}(f^{-1}(m_Y \text{-N-cl}(U))) \). Since \(f^{-1}(m_Y \text{-N-cl}(U)) \) is an \(m_X \)-N-closed set in \(X \), then \(m_X \text{-N-cl}(f^{-1}(m_Y \text{-N-cl}(U))) = f^{-1}(m_Y \text{-N-cl}(U)) \). Hence, \(m_X \text{-N-cl}(f^{-1}(U)) \subseteq f^{-1}(m_Y \text{-N-cl}(U)) \).

(iii)\(\rightarrow\)(i). Let \(U \) be an \(m_Y \)-N-open set in \(Y \), then \(U^c \) is an \(m_Y \)-N-closed set and therefore \(U^c = m_Y \text{-N-cl}(U^c) \). As \(m_X \text{-N-cl}(f^{-1}(U)) \subseteq f^{-1}(m_Y \text{-N-cl}(U^c)) \), then \(m_X \text{-N-cl}(f^{-1}(U^c)) \subseteq f^{-1}(U^c) \). Hence, \(m_X \text{-N-cl}(f^{-1}(U^c)) = f^{-1}(U^c) \) and therefore \(f^{-1}(U^c) = f^{-1}(U)^c \) is an \(m_X \)-N-closed set. So, \(f^{-1}(U) \) is an \(m_X \)-N-open set in \(X \).

Theorem (2.28): Let \(f : (X, m_X) \rightarrow (Y, m_Y) \) be a function, then \(f \) is an \(m \)-N**-continuous iff \(f \) is an \(m_X \)-N-cl(f(U)) \subseteq m_Y \text{-N-cl}(f(U)) \) for a piece subcategory \(U \) of \(X \).

Proof: Let \(f \) be an \(m \)-N**-continuous. As \(m_X \text{-N-cl}(f(U)) \) is an \(m_X \)-N-closed, then \(f^{-1}(m_X \text{-N-cl}(f(U))) = m_X \text{-N-cl}(f^{-1}(U)) \) is an \(m_X \)-N-closed. Consequently, \(m_X \text{-N-cl}(f^{-1}(U)) = m_X \text{-N-cl}(f^{-1}(U)) \). As \(U \subseteq m_X \text{-N-cl}(f(U)) \), then \(f^{-1}(m_X \text{-N-cl}(f(U))) \) and therefore \(m_X \text{-N-cl}(f^{-1}(U)) \subseteq m_X \text{-N-cl}(f^{-1}(U)) \). So, \(f^{-1}(U) \) is an \(m_X \)-N-open set in \(X \).

Conversely, let \(f \) be an \(m \)-N**-continuous. As \(m_X \text{-N-cl}(f(U)) \) is an \(m_X \)-N-closed, then \(f^{-1}(m_X \text{-N-cl}(f^{-1}(U))) \subseteq m_X \text{-N-cl}(f^{-1}(U)) \subseteq m_X \text{-N-cl}(f^{-1}(U)) \). Hence, \(m_X \text{-N-cl}(f^{-1}(U)) \subseteq f^{-1}(U) \) and, in this manner, \(m_X \text{-N-cl}(f^{-1}(V)) = f^{-1}(V) \).

So, \(f^{-1}(V) \) is an \(m_X \)-N-closed set in \(X \). In this way, \(f \) is an \(m \)-N**-continuous.

3: \(m_X \)-N-connected spaces

Definition (3.1):

A subset \(U \) of \(X \) (\(m_X \)) is nominated to be \(m_X \)-N-connected in \(X \) if \(U \) cannot be composed as the association of two non-empty \(m_X \)-N-separated subsets of \(X \). If \(U \) is not \(m_X \)-N-connected in \(X \), then we state that \(U \) is an \(m_X \)-N-disconnected in \(X \). A space \((X, m_X) \) is designated to be \(m_X \)-N-connected if the fundamental set \(X \) is an \(m_X \)-N-connected.

Definition (3.2):

A subset \(U \) of \(m \)-space \(X \) is nominated to be \(m_X \)-N-clopen set if \(U \) is both \(m_X \)-N-open set and \(m_X \)-N-closed set.

Proposition (3.3): Let \(X \) be an \(m \)-space, then the following is identical:

i. \(X \) is an \(m_X \)-N-connected space.
ii. The only m_X-N-clopen sets in the space are X and \emptyset.

iii. X is not able to compose as the association of two non-empty disjoint m_X-N-open sets.

Proof:

1. Let X be m_X-N-connected space, to demonstrate that the only m_X-N-clopen sets in the space are X and \emptyset. Let U be an m_X-N-clopen set such that $U \neq \emptyset$ and $U \neq X$ and let $U \subset V$. Consequently, $X = U \cup V$ and V is additionally m_X-N-clopen set. As V is an m_X-N-closed, then m_X-N-cl(V) = V, $U \cap m_X$-N-cl(V) = $U \cap V = \emptyset$, and $V \cap m_X$-N-cl(U) = $V \cap U = \emptyset$. Subsequently, X is not an m_X-N-connected space, which is a logical inconsistency. Consequently, the only m_X-N-clopen sets in the space are X and \emptyset.

2. Let the only m_X-N-clopen sets in the space be X and \emptyset and assume that $X = U \cup V$ such that U and V are non-empty disjoint m_X-N-open sets. Then $U \neq V$ and, in this way, U is an m_X-N-closed set. Consequently, U is m_X-N-clopen set, which is a logical inconsistency. So, X is not able to compose as the association of two non-empty disjoint m_X-N-open sets.

3. Let X be not able to compose as the association of two non-empty disjoint m_X-N-open sets, and suppose that X is an m_X-N-disconnected space. Then there will be found non-empty subcategories U, V of X such that $U \cap m_X$-N-cl(V) = \emptyset, $V \cap m_X$-N-cl(U) = \emptyset, and $U \cup V = X$. Since $V \subseteq m_X$-N-cl(V), then $U \cap V = \emptyset$. Since $V \cap m_X$-N-cl(U) = \emptyset, then m_X-N-cl(U) $\subseteq V = U$. Consequently, m_X-N-cl(U) $\subseteq U$. Hence, U is an m_X-N-closed set. As $U \subseteq V$, then V is an m_X-N-open set. It is similarly proved that U is an m_X-N-open set, which is an inconsistency. So, X is an m_X-N-connected space.

Proposition (3.4): Every m_X-N-connected space is an m_X-N-connected space.

Proof: Let X be an m_X-N-connected space and assume that X is not m_X-connected, then there will be found U, V as non-empty subsets of X such that $X = U \cup V$, $U \cap m_X$-cl(V) = \emptyset, and $V \cap m_X$-cl(U) = \emptyset. By proposition 2.10-ii, we deduced that $U \cap m_X$-N-cl(V) = \emptyset and $V \cap m_X$-N-cl(U) = \emptyset. Accordingly, X is an m_X-N-disconnected space, which is a logical inconsistency. Consequently, X is an m_X-N-connected space.

Remark (3.5): The opposite of the above proposition might not be valid as a rule.

Example (3.6): Let $X = \{a_1, a_2, a_3\}$ and $m_X = \{\emptyset, X\}$, we realize that X is an m_X-connected, nevertheless it is not m_X-N-connected.

Theorem (3.7): Let $f: (X, m_X) \rightarrow (Y, m_Y)$ be surjective m-N-continuous. If (X, m_X) is an m_X-N-connected space and (Y, m_Y) possess attributes \mathcal{B}, then (Y, m_Y) is m_Y-connected.

Proof: Let $f: (X, m_X) \rightarrow (Y, m_Y)$ be surjective m-N-continuous, X is an m_X-N-connected space, and (Y, m_Y) possess attributes \mathcal{B}. To demonstrate that Y is m_Y-connected, assume that Y is an m-N-disconnected space, then $Y = U \cup V$ such that U, V are non-empty disjoint m_Y-open sets. Subsequently $X = f^{-1}(Y) = f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$. Since f is an m-N-continuous, then $f^{-1}(U)$ and $f^{-1}(V)$ are m_X-N-open sets in X, and since $U \neq \emptyset$, $V \neq \emptyset$ and f are surjective functions, then $f^{-1}(U) \neq \emptyset$, $f^{-1}(V) \neq \emptyset$ and $f^{-1}(U) \cap f^{-1}(V) = \emptyset$. Hence, X is an m_X-N-disconnected space, which is an inconsistency. In this way, Y is an m_Y-connected space.

Proposition (3.8): Let $f: (X, m_X) \rightarrow (Y, m_Y)$ be surjective m-N^*-continuous and (X, m_X) is an m_X-N-connected space, then (Y, m_Y) is m_Y-N-connected.

Proof: Let $f: (X, m_X) \rightarrow (Y, m_Y)$ be surjective m-N^*-continuous function such that X is an m_X-N-connected space. To demonstrate that Y is m_Y-N-connected, suppose that Y is an m_Y-N-disconnected space, then $Y = U \cup V$ such that U, V are non-empty disjoint m_Y-N-open sets, therefore $X = f^{-1}(Y) = f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$. Since f is m-N^*-continuous, thus $f^{-1}(U)$ and $f^{-1}(V)$ are m_X-N-open in X and since $U \neq \emptyset$, $V \neq \emptyset$, and f are surjective functions, then $f^{-1}(U) \neq \emptyset$, $f^{-1}(V) \neq \emptyset$ and $f^{-1}(U) \cap f^{-1}(V) = \emptyset$. Subsequently, X is an m_X-N-disconnected space, which is an inconsistency. Subsequently, Y is an m_Y-N-connected space.

Remark (3.9): The above Proposition is also true if f is m-N^*-continuous.

4: m-N-hyper connected space

Definition (4.1) [9]
A space X is nominated to be m-hyper connected space if every non-empty m_X-open subcategory of X is m_X-dense.
Definition (4.2)

A space X is nominated to be m_X-N-hyper connected space if every non-empty m_X-N-open subcategory of X is an m_X-N-dense.

Proposition (4.3): Every m_X-N-hyper connected space is m_X-hyper connected.

Proof: Let X be an m_X-N-hyper connected space. To demonstrate that X is an m_X-hyper connected space, let U be an m_X-open set in X. Consequently, it is an m_X-N-open set. As X is an m_X-N-hyper connected space, then m_X-N-$\text{cl}(U) = X$. By proposition 2.10-ii, we conclude that m_X-$\text{cl}(U) = X$ and, subsequently, X is an m_X-hyper connected space.

Remark (4.4): The opposite of the above proposition might not be valid as a rule.

Example (4.6): Let $X= \{x_1, x_2, x_3\}$, $m_X = \{\emptyset, X\}$. Obviously, X is m_X-hyper connected, however, it is not m-N-hyper connected, since $\{x_1\}$ is an m_X-N-open set and m_X-N-$\text{cl}(\{x_1\}) = \{x_1\} \neq X$.

Proposition (4.6): Every m_X-N-hyper connected space is an m_X-N-connected space.

Proof: Let X be an m_X-N-hyper connected space and assume that X is not m_X-N-connected. Then, it can be found that a subset U of X is an m_X-N-clopen set such that $U \neq \emptyset$ and $U \neq X$. Consequently, $U = m_X$-N-$\text{cl}(U)$, which is a logical inconsistency, since X is m-N-hype connected. Therefore, X is an m_X-N-connected space.

Remark (4.7): The opposite of the above proposition might not be valid as a rule.

Example (4.8): Let $X = R$ be the arrangement of all genuine numbers and $m_X = \{\emptyset, (1,1], [1,3], R\}$, then m_X-N-open sets are $\{\emptyset, R, (-1,1], [1,3], (-1,1), (1,3), [1,3], (-1,3), R/\text{finite set}, \ldots\}$. Therefore, m_X-N-closed sets are $\{\emptyset, R, R/(-1,1], R/[1,3], R/(-1,1), R/(1,3], R/[1,3], R/(1,3], R/(-1,3), R/((-1,3], \text{finite set}, \ldots\}$. We realize that R is an m_X-N-connected space and m_X-N-$\text{cl}(-1,1) = R/[1,3] \neq R$, therefore R is not m_X-N-hyper connected space.

Remark (4.9): The essential attribute of m-space X being m_X-N-hyper connected is not a hereditary property.

Example (4.10): Let (R, m_X) be an m-space and $m_X = \{\emptyset, R\}$, then we realize that R is an m_X-N-hyper connected, but a subcategory $A= \{1, 2, 3\}$ with a relative m-structure is not m_X-N-hyper connected, since m_X-N-$\text{cl}\{1\} = \{1\}$.

Proposition (4.11): Let $m_X, m^{'X}$- m-structure on the set X such that $m_X \subseteq m^{'X}$. If $(X, m^{'X})$ is an $m^{'X}$-N-hyper connected space, then (X, m_X) is m_X-N-hyper connected space.

Proof: Let U be an m_X-N-open set, then by proposition 2.25, U is an $m^{'X}$-N-open set, but $(X, m^{'X})$ is an $m^{'X}$-N-hyper connected space, so $m_X^{'X}$-N-$\text{cl}(U) = X$. Then, by the same (Proposition 2.25) we get that $m_X^{'X}$-N-$\text{cl}(U) = X$. Hence, (X, m_X) is an m_X-N-hyper connected space.

Remark (4.12): The opposite of the above proposition might not be valid as a rule.

Example (4.13): Let $X=R$ be the arrangement of all genuine numbers and $m_X = \{\emptyset, R\}$, then R is an m_X-N-hyper connected space, but whenever $m_X^{'X} = \{\emptyset, 1, R\}$, then R is not an m_X-N-hyper connected space, since $m_X^{'X}$-N-$\text{cl}\{1\} = \{1\} \neq R$.

Theorem (4.14): Let (X, m_X) be an m-space and U be a subcategory of X. Then, the following is identical:

i. X is m_X-N-hyper connected.

ii. U is m_X-N-dense or m_X-N^*-nowhere dense, for each subcategory U of X.

iii. $U \cap \emptyset \neq \emptyset$, for each non-empty m_X-N-open subcategory U and V of X.

Proof: (i) \rightarrow (ii). (Let (X, m_X) be m_X-N-hyper connected and U be a subcategory of X. Assume that U is not m_X-N^*-nowhere dense, then m_X-N-$\text{int}(m_X$-N-$\text{cl}(U)) \neq \emptyset$, so by (i), m_X-N-$\text{cl}(m_X$-N-$\text{int}(m_X$-N-$\text{cl}(U))) = X$. Since m_X-N-$\text{int}(m_X$-N-$\text{cl}(U)) \subseteq m_X$-$N$-$\text{cl}(U)$, then m_X-N-$\text{cl}(U) = X$ and, therefore, U is m_X-N-dense. Also, if U is not m_X-N-dense, then m_X-N-$\text{cl}(U) \neq X$. Assume that m_X-N-$\text{int}(m_X$-N-$\text{cl}(U)) \neq \emptyset$, then by (i), m_X-N-$\text{cl}(m_X$-N-$\text{int}(m_X$-N-$\text{cl}(U))) = X \subseteq m_X$-$N$-$\text{cl}(U)$. Therefore, m_X-N-$\text{cl}(U) = X$, which is a contradiction. So, m_X-N-$\text{int}(m_X$-N-$\text{cl}(U)) = \emptyset$. Thus, U is an m_X-N^*-nowhere dense. (ii) \rightarrow (iii). Suppose that $U \cap V \neq \emptyset$ for some non-empty m_X-N-open subcategory U and V of X. Then, m_X-N-$\text{cl}(U) \cap V = \emptyset$ and, therefore, U is not m_X-N-dense. Since U is an m_X-N-open set, so $\emptyset \neq U \subseteq m_X$-$N$-$\text{int}(m_X$-$N$-$\text{cl}(U))$. Subsequently, U is not m_X-N^*-nowhere dense, which is an inconsistency. So $U \cap V \neq \emptyset$ for each non-empty m_X-N-open subset U and V of X. (iii) \rightarrow (i). Let $U \cap V \neq \emptyset$ for each non-empty m_X-N-open subcategories U and V of X and assume that (X, m_X) is not m_X-N-hyper connected space, then there will be found, at any rate, m_X-N-open subset W of X that is not m_X-N-dense in X. So, m_X-N-$\text{cl}(W) \neq X$. In this manner, X / m_X-N-$\text{cl}(W)$ and W are
disjoint non-empty m_X-N-open subcategories of X, which is a logical inconsistency. Subsequently, (X, m_X) is an m_X-N-hyper connected space.

Theorem 4.15: Let $f: (X, m_X) \rightarrow (Y, m_Y)$ be surjective m-N**-continuous and (X, m_X) is an m_X-N-hyper connected space, then (Y, m_Y) is an m_Y-N-hyper connected space.

Proof: Let $f: (X, m_X) \rightarrow (Y, m_Y)$ be a surjective m-N**-continuous function and U is an m_Y-N-open set. To demonstrate that m_Y-N-cl$(U) = Y$, since f is m-N**-continuous and X is an m_X-N-hyper connected space, then $f^{-1}(U)$ is m_X-N-open and $X = m_X$-N-cl$(f^{-1}(U)) \subseteq f^{-1}(m_Y$-N-cl$(U))$. Consequently, m_Y-N-cl$(U) = Y$. Accordingly, Y is an m_Y-N-hyper connected space.

5: m_X-N-locally connected space

Definition (5.1): Let X be an m-space, then (X, m_X) is nominated to be m_X-locally connected space if, for each point $x \in X$ and each m_X-open set U such that $x \in U$, there will be found m_X-connected open set V such that $x \in V \subseteq U$.

Definition (5.2): Let X be an m-space, then (X, m_X) is nominated to be m_X-N-locally connected space if, for every point $x \in X$ and every m_X-N-open set such that $x \in U$, there will be found an m_X-N-connected open set V such that $x \in V \subseteq U$.

Proposition (5.3): Every m_X-N-locally connected space is an m_X-locally connected space.

Proof: Let X be an m_X-N-locally connected space and let $a \in X$ and U be an m_X-open set in X such that $a \in U$, as every m_X-open set is an m_X-N-open set and X is an m_X-N-locally connected space. Then, there will be found an m_X-N-connected open set V such that $a \in V \subseteq U$. By proposition 3.4, we conclude that V is an m_X-connected open set in X. Consequently, X is an m_X-locally connected space.

Remark (5.4): The opposite of the above proposition might be not valid as a rule.

Example (5.5): Let $X = \{a, b, c\}$, $m_X = \{\emptyset, \{b, c\}, X\}$. The m_X-N-open set is $\{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Obviously (X, m_X) is an m_X-N-locally connected space, however (X, m_X) is not an m_X-N-locally connected space since $a \in \{a\}$ and exist no U is an m_X-N-connected m_X-open set such that $a \in U \subseteq \{a\}$.

Remark (5.6): If (X, m_X) is m_X-N-locally connected space, then it needs not to be m_X-N-connected and if (X, m_X) is an m_X-N-connected space, then it needs not to be an m_X-N-locally connected space.

Example (5.7): Let $X = \{a, b, c\}$, m_X be discrete m-structure. Unmistakably, (X, m_X) is m_X-N-locally connected, but (X, m_X) is not m_X-N-connected space. Since $\{a\}, \{b, c\}$ are m_X-N-open sets in X such that $X = \{a\} \cup \{b, c\}$ and $\{a\} \cap \{b, c\} = \emptyset$. Furthermore, let N be the arrangement of every single natural numbers and $m_X = \{\emptyset, N\}$, then the arrangements of all m_X-N-open sets are $\{\emptyset, N, N / \text{finite set}\}$. Obviously, (N, m_X) is m_X-N-connected, but it is not m_X-N-locally connected. Since if $M = N / \text{finite set}$, then for a piece $a \in M$, there will be found no m_X-N-connected open set U such that $a \in U \subseteq M$.

Proposition (5.8): Let m_X, m_X' be two diverse m-structures defined on the set X, such that $m_X \subseteq m_X'$. Then:

i. If (X, m_X') is m_X'-N-locally connected space, then (X, m_X) might be not m_X-N-locally connected space.

ii. If (X, m_X) is m_X-N-locally connected space, then (X, m_X') might be not m_X'-N-locally connected space.

Examples (5.9):

i. Let $X = \{a, b, c\}$, $m_X = \{\emptyset, \{b, c\}, X\}$, and $m_X' = \{X, \emptyset, \{a\}, \{b\}, \{c\}, \{b, c\}\}$. Obviously, (X, m_X') is an m_X'-N-locally connected space, however (X, m_X) is not m_X-N-locally connected space.

ii. Let $X = R$ be the arrangement of all genuine number and $m_X = \{\emptyset, R / \text{finite set}, \{1, 2\}, R\}$ and $m_X = \{\emptyset, R / \text{finite}, R\}$ set. Obviously, (X, m_X) is an m_X-N-locally connected space, yet (X, m_X') is not m_X-N-locally space. Since $1 \in R$ and $\{1\}$ are an m_X'-N-open set, $1 \in \{1\}$, but there is no U as an m_X-N-connected open set such that $1 \in U \subseteq \{1\}$.

Proposition (5.10): Let $f: (X, m_X) \rightarrow (Y, m_Y)$ be a surjective m-N-continuous open. If (X, m_X) is an m_X-N-locally connected space and (Y, m_Y) has the property \mathcal{B}, then (Y, m_Y) is locally connected.

Proof: Let the data of the proposition be achieved. To demonstrate that (Y, m_Y) is m_Y-locally connected, let $b \in Y$ and V be an m_Y-open set in Y such that $b \in V$. Since f is onto, then there will be found $a \in X$ such that $f(a) = b$. Since f is m-N-continuous, then $f^{-1}(V)$ is m_X-N-open set in X such that $a \in f^{-1}(V)$. Since X is an m_X-N-locally connected space, then there will be found U as an m_X-N-
connected open set in \(X \) such that \(a \in U \subseteq f^{-1}(V) \). Hence, \(b = f(a) \in f(U) \subseteq V \). Since \(f \) is an m-open function, then \(f(U) \) is an \(m_Y \)-open set, and by theorem 3.7, then \(f(U) \) is \(m_Y \)-connected. Therefore, \(Y \) is \(m_Y \)-locally connected.

Remark (5.11): The above Proposition is also true if we change the property m-N-continuous to m-continuous.

Remark (5.12): If \(f: (X, m_X) \to (Y, m_Y) \) be an m-N-continuous or m-continuous or m-N**-continuous image of \(m_X \)-N-locally connected space need not be \(m_Y \)-N-locally connected space.

Example (5.13): Let \(X = \{a, b, c\} \), \(Y = \{1, 2, 3\} \), \(m_X = \{\emptyset, \{a\}, \{b\}, \{c\}, X\} \), and \(m_Y = \{\emptyset, \{1\}, Y\} \).

Define \(f: (X, m_X) \to (Y, m_Y) \) such that \(f(a) = 1, f(b) = 2, f(c) = 3 \). It is obvious that \(f \) is m-N-continuous, m-continuous and m-N**-continuous and \((X, m_X) \) is an \(m_X \)-N-locally connected space.

Yet \((Y, m_Y) \) is not \(m_Y \)-N-locally connected space, Since \(\{2, 3\} \) is an \(m_Y \)-open set, \(3 \in \{2, 3\} \), and there exists no \(m_Y \)-N-connected open set \(U \) to such an extent that \(3 \in U \subseteq \{2, 3\} \).

Proposition (5.14): Let \(f: (X, m_X) \to (Y, m_Y) \) be a surjective m-N**-continuous, m-open. If \((X, m_X) \) is an \(m_X \)-N-locally connected space, then \((Y, m_Y) \) is an \(m_Y \)-N-locally connected space.

Proof: Let \(f: (X, m_X) \to (Y, m_Y) \) be an m-N**-continuous, m-open, and onto function and \((X, m_X) \) is an \(m_X \)-N-locally connected space. To demonstrate that \((Y, m_Y) \) is \(m_Y \)-N-locally connected, let \(b \in Y \) and \(U \) is an \(m_Y \)-N-open set in \(Y \) such that \(b \in U \). Since \(f \) is onto, then there will be found \(a \in X \) such that \(f(a) = b \).

Since \(f \) is an m-N**-continuous, then \(f^{-1}(U) \) is an \(m_X \)-N-open set in \(X \), such that \(a \in f^{-1}(U) \). Since \((X, m_X) \) is an \(m_X \)-N-locally connected space, then there will be found \(V \) as an \(m_X \)-N-connected open set in \(X \) such that \(a \in V \subseteq f^{-1}(U) \). Hence, \(b = f(a) \in f(V) \subseteq U \). Since \(f \) is m-open, then \(f(V) \) is an \(m_Y \)-open set, and by Proposition 3.8, \(f(V) \) is \(m_Y \)-N-connected. Thus, \(Y \) is an \(m_Y \)-N-locally connected space.

Remark (5.15): The above Proposition is also true if we change the property m-N**-continuous to m-N*-continuous.

Reference

