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Abstract

In this paper, the blow-up solutions for a parabolic problem, defined in a bounded
domain, are studied. Namely, we consider the upper blow-up rate estimate for heat
equation with a nonlinear Neumann boundary condition defined on a ball in R,,.
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1. Introduction
In this paper, we study the follwoing parabolic problem:
U = Au, (x,t) € B x (0,7),
Ju
Fri AuPed% | (x,t) € 0Br X (0,7), (8]

u(x,0) =up(x), x € B,
where p > 1; q,A > 0; By is a ball in R™; n is the outward normal and u, is smooth, nonzero,
nonnegative, radially symmetric, satisfiing the following condition:

auo_ D qu
W—Auoe ° , x €0JBg,

Auy >0, x € Bp.

Many real problems in the fields of fluid dynamics, population, heat propagation, and others are
modeled using the forms of parabolic partial differntional equations assosiated with different types of
initial-boudary conditions [1-3].

In some cases, the solutions of parabolic problems cannot be continued globally in time. This is called
the blow-up phenomenon which, in time-dependent problems, has been studied over the past years by

many authoes [3-7]. One of these problems is the problem of the heat equation defined in a ball By

with a nonlinear Neumann boundary condition, a—u—f(u) on dBi x (0,T), which has been

an
introduced in previous articles [7-11].
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In an earlier study [10], it was proved that if 1/f is integrable at infinity for positive values, and f
is nondecreasing, then with any positive initial function u,, the blow-up occurs in a finite time. In
addition, if f € C2(0,), is a convex and increasing function in (0, ), then the blow-up can only
occur on the boundary.

In another study [8], a speial case was considerd, where f(u) = u?, showing that for any u,, the
blow-up occurs for p > 1, and it can only occur on the boundary. Futhermore, in other investigations

[9,11], it was proved that the upper (Iower) blow-up rate estimates are as follows:
-1

Cy(T — t)Z(P D < maxu(x, t) < C,(T — t)2@-1, t€ (0,T).
XEBR

Another special case, where f(u) = e, was considered in another work [7], showing that all
positive solutions blow up in finite times, and the blow-up can only occur on the boundary. Moreover,
the upper (lower) blow-up rate estimates are as follows:

C(T—t)"Y2<e¥@D < C(T—t)"Y2, 0<t<T.
A similer result has been obtained [3] for another case: f(u) = e’ p >1.
In this paper, we derive that upper blow-up rate estimate for problem (1), showing that:

A
maxu(x t) <logC ——qlog(T— t), 0<t<T

The rest of this paper is organlzed as follows: In section two, we discuss the local existance, blow-
up, and blow-up set with stating the main properties of classical solutions for problem (1). In section
three, we derive the upper blow-up rate estimate. Section four is devoted to state some conclusions.

2. Basic properties and Blow-up Set

It is well known that with any smooth initial function, problem (1) has a local unique classical
solution [12]. Moreover, since f(u) = AuPe?™ is positive, increasing , convex, and 1/f is integrable
at infinity for u > 0, then each solution of problem (1) blows up in a finite time and the blow-up can
only occur on the boundary [10] .

The next lemma, proved in an earlier study [3], presents some solution properties of problem (1).
For simplicity, we denote u(r,t) = u(x,t).
Lemma?2.l. Letu € C“(BR % (0,T)) be a solution to problem (1). Then
1. u is positive and radial on By x (0,T), and u, is nonnegatlve in [0,R] x [O ).
2. u, is positive in By x (0,T), and if Auy = a > 0, in By, thenu, > a, in By x [0, T).
3. Upper Blow-up Rate Estimate

The next theorem is concerned with deraving the upper blow-up rate estimate for problem (1).
Theorem 3.2 Let u € C*?(Bg x (0,T)) be a blow-up solution to (1), such that Auy = a >0
V x € Bg. Then there is a positive constant C such that

maxu(x,t) < logC — ilog(T —-t), 0<t<T. 2
Br
Proof.
As in another work [5], we define the function:
F(x,t) = u.(r,t) — eu(r,t), (x,t) € B x (0,T).
By some dirct calculations, it follows that
— AF = Ze(nr—_zluﬁ +u?) = 0.

Since Augy = a > 0, and u, € C(Bg), for a samll enough value &, we have

F(x,0) = Aug(r) — eud, (r) = 0, x € By,

In addition,
aF

an |xESR = ure(Rt) — 2eu, (R, Oupr (R, 1)
= (uPe®™ ), — 2eluPe™ (uy(R,t) = —u.(R, 1))
> (qu+p—2e)AuPte®™ y (R,t).
Since u; >0, on By x(0,T), it follows that
oF
|xESR = O, te (01 T)'

provided that
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e < quo+p

2

From the comparison principles [13] and [14], we obtain

F(x,t)>0, (x,t)€ Bgrx(0,T),
In particular, F(x,t) = 0, for |x|] = R, which leads to

ur (R, t) = eu(R,t) = eA?u?Pe?™ | t € (0,T).
Since u blows up at T, and increases in time, there exists T < T such that
uR,t) =1 for t<t<T,

which leads to

u (R t) = eA%e?TRY ¢ € [1,T).
By integrating the last inequality from ¢ to T, we obtain

ftT u e 2R > )2(T — ¢).

Thus
—ie—zqu(&m{ > eA2(T — t). 3)
Since
u(R,t) >, e R 50 as t-T,

So that, from the inequality (3), we get
(2A2qe(T — t))V/?,

equ(Rt) 2
Thus

1
— Eetu®RY) <« M
(T —t)ze < e

So, for some postiive constant C , we have
maxu(x,t) < logC — %log(T —-t), 0<t<T.
Bg

4. Conclusions

This paper is devoted to derive the upper blow-up rate estimate for problem (1). The results show
that the upper blow-up rate estimate formula does not depend on p, which means that the power
function, appeared in the boundary condition, does not make any effect on the blow-up profile to
problem (1). Therefore, the influence of the power function may only appear on the blow-up time.
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