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Abstract

Rumaila supergiant oilfield, located in Southern Iraq has a huge footprint and is
considered as the second largest oilfield in the world. It contains many productive
reservoirs, some known but without produced zones, and significant exploration
potential. A fault divides the field into two domes to the north and south. Mishrif
reservoir is the main producing reservoir in the North Rumaila oilfield. It has been
producing for more than 40 years and is under depletion. However, it was subjected
to water injection processes in 2015, which assisted in recovery and pressure
support. Thus, requirements of managing flooding strategies and water-cut
limitations are necessary in the next stages of the field life.

In this paper, sector modeling was applied to a specific portion of the field, rather
than full-field modeling, to accelerate history matching strategy and correlate static
to dynamic models’ efficiently, with a minimum level of tolerance. The sector was
modeled by surrounding with additional grid blocks and two pseudo wells to achieve
a good matching with actual available data.

PVT data were used for fluid modeling of a well contained in the sector, and two
rock functions were inserted to the model to achieve acceptable history matching.
Twelve wells were considered in this research, two of them were injectors and the
remaining are producers. For future performance, some of these wells were
subjected to new completion and workover processes for field development and
pressure maintenance. The importance of the development plan is to represent a way
for field development without new wells to be drilled. This was conducted by adding
perforations to some wells, plugging the high water-cut production zones, changing
production and injection rates, and converting the producers to injectors.

Keywords: Sector modeling; Future performance; Mishrif Reservoir/Rumaila
Oilfield.
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1- Introduction

The multi-layered productive zones with large footprint in North-Rumaila oilfield, located in
Basra/Southern Irag, are composed mainly of carbonate rocks and separated from the south dome by a
fault. The field structure is dipping gently, composed of two domes (North and South Rumaila)
separated from each other by saddle. The extent of the structure is approximately 120Km long and
about 15Km wide. The main oil-bearing reservoirs are Mishrif (this case study) and Mainpay. The
composition of Mishrif is of shallow water carbonate, which is deposited throughout the Upper
Cretaceous in the Cenomanian age. Generally, in many oilfields in the southern part of Iraq and
neighboring countries, Mishrif reservoirs are prolific [1].

Essentially, although the reservoirs produce under depletion or waterflooding recovery, they
require full realization and monitoring to be managed effectively. A reservoir management is the
group of serial activities related to the analysis of reservoir models (geological and numerical models)
and field production data. These activities are utilized to develop and exploit a reservoir to realize a
maximum hydrocarbon recovery with low economic cost. The beneficial outcome of reservoir
simulation is to ensure the validity of the current strategy of reservoirs and promote a convenient
future schema for any field [2, 3].

Developing a full simulation study of large oil fields requires upscaling of the geological models that
might minimize the level of detalization and inevitably. However, additional errors can be resulted in
the simulation process due to this upscaling [4]. Moreover, the simulation runs for large fields would
take long time. Sector modeling is more convenient to represent a comprehensive field and can
accelerate reservoir simulations and characterizations by focusing on the sector only. This helps to
construct both geological and dynamic models quickly and easily [5, 6].

2- Reservoir Description

The Mishrif formation is composed of shallow water carbonates, deposited during the Upper
Cretaceous/ Cenomanian period. The broad shallow water carbonate platform extends from Southern
Turkey, through Iraq and the Arabian Peninsula, to Somalia. The Mishrif formations in Iraq overlie
deeper-water oligostenid carbonates of the Rumaila formations in a belt between the Irag-Iran border
to the Northwest and the Basra area in Southeast Irag.

The deposition of Mishrif formation was part of a second order sequence spanning from the Lower
Cenomanian (top of the Mauddud) to the Lower Turonian (Top of the Mishrif). Historically, the
reservoir zonation over the Rumaila Field was divided into mA (above) and mB (below) with cap
rocks (CR) above these reservoir layers, which are tight zones. The new interpretations of Mishrif
reservoir is recognized by five 3rd-order sequences in Rumaila field. The mB is subdivided into three
3rd-order sequences (Mhfl, Mhf2 and Mhf3 from base to top) while the mA is composed of two 3rd-
order sequences (Mhf4 and Mhf5).

2-1 Rock properties

Essentially, understanding the main rock properties that control flow in porous medium is a
precondition to understanding water flooding performance and how it should be designed and
controlled. Some of these rock properties are related to the properties of rock material alone; for
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example, permeability, porosity, surface area and pore throat distribution. While others are concerned
with properties of the interaction of the contained rock and fluid ,including wettability, capillary
pressure and relative permeability [8, 9].

In Mishrif reservoir of Rumaila field, the independent porosity is obtained from Density-Neutron
logs, after correction of shale content and calibrated with core porosity is displayed in CPI. However,
the permeability is calculated based on the hydraulic flow unit (HFU) concepts using FZI (Flow Zone
Indicator) and RQI (Reservoir Quality Index) parameters in the following equations:

RQI =0.0314 \/g 2-1

_ Qe
0z =~ e, o 2-2
FZI = m = E 2-3
Log (RQI) = Log (@z) + Log (FZI) 2-4
Finally, the following equation is applied for permeability prediction:
3
K =1014 F21> 2 2-5
(1-@e)?

where:

K: permeability (um?),

@e: effective porosity (fraction),

RQI: Reservoir Quality Index (um),

@z: the ratio of pore volume to the grain volume (fraction),
FZI: Flow Zone Indicator (um).

Based on equation (2-4), a plot of RQI versus @z on log-log paper yields a unit slope straight line
for core samples with similar values of FZI. However, core samples with different FZI values will lay
on different parallel a unit slope line. FZI is a unique and homogeneous property that is considered
constant within a specific flow unit. Data that have similar values of FZI lie on the same straight line
and may consider having similar pore throats attributes, represented by HFU. FZI value for each one
of these flow units is specified by the interception of the straight line at @z equal to one.
Unfortunately, the concept of flow units with the same slope of the straight lines is not always the
case, as Civan (2002) and Haro and Oil (2004) showed that reservoir rock systems tend to show
various rather than similar slopes.

Figure-1 shows a log-log cross plot of (RQI) versus (&z) obtained from core data analysis. This
plot shows a different HFU with different values of FZI. The permeability-porosity cross plot of these
units is displayed in Figure-2. Depending on the well logs response and final well report (FWR), FZI
values were distributed among the reservoir major units, where the unit with good properties has taken
a higher FZI value and so on. Based on these subdivisions, the permeability value was obtained using
equation (2-5) and FZI values were specified for each subunit. Figure-3 shows the plot of core and
predicted permeability versus depth, which gives an acceptable agreement between core permeability
and K-calculated from FZI approach. Based on CPIs for each well, which included all parameters that
describe the formations such as log porosity, resistivity, water and hydraulic saturations, and final well
report (FWR), the unit with good properties has taken higher FZI values and so on.
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Figure 1-Log-log cross plot of RQI versus @z, which shows seven separated hydraulic flow unit.
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Figure 3-K values predicted by HUF method and from cores versus depth.

Capillary pressure and relative permeability curves, that describe the movement of any single fluid
in presence of others, are selected from special core analyses displayed in Figures-4 to 6. In this
model, two rock functions are inserted in PETREL to represent two different units, which are mA
(Unit 2) and mB (Unit 1).

Figure 4-Pc curves for all units of the Mishrif reservoir.
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Figure 5-Relative permeability of water-wet system (mB).

Figure 6-Relative permeability of oil-wet system (mA).

The calculations of water saturation depended on the open hole well log analysis in CPI and then
distributed as a surface map in a static model (geological model).
2-2 Fluid Properties

The black oil reservoir of Mishrif formations/ North Rumaila oilfield was found to be with an
undersaturated oil phase without gas cup, since all logs showed no evidence of gas and, hence, the
reservoir fluid is initially liquid. The initial reservoir properties are shown in table_1, with initial
reservoir pressure and temperature values, respectively, of about 3900 psi and 170 F°. PVT analysis of
three samples of different wells was relied upon for gathering hydrocarbon properties. These wells are
R-024, R-059 that is involved in the sector modeling, and R-083.
Table 1-Hydrocarbon properties at initial conditions of Mishrif reservoir

Saturation Pressure Gas Oil Ratio Stock Tank Gravity Viscosity at Initial
. Reservoir Pressure
(psia) (scf/stb) (API) (cP)
1650-2400 585 25.8 1.32

PVT analysis of oil properties, including viscosity, formation volume factor, and in-solution and
liberated gas to oil ratio of Mishrif reservoir were displayed as a function of pressure, as shown in
Figures-7 through 9, respectively. Average oil density of Mishrif formation is about 0.9 % while that
for the gas phase is about 0.765 (air=1.0).

The characteristics of reservoir water for Mishrif formation in North Rumaila field are listed in
Table-2.

196



Shamkhi and Aljawad Iraqi Journal of Science, 2021, Vol. 62, No. 1, pp: 192-203

Figure 7- Oil formation volume factor versus pressure.

Figure 8-Oil viscosity versus pressure.

Figure 9-Liberated and in-solution gas to oil ratio versus pressure.
Table 2-Formation water properties of Mishrif reservoir
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3- Reservoir Modeling

Geological or static modeling of a reservoir is the technique of constructing a stratigraphic and
structural reservoir model depending on the analysis and interpretation of core data, well log data,
seismic data and fluid flowing data. The static model describes the reservoir quantitatively and is
employed as input in the simulator programs, which finally assists in initially estimating reservoir
hydrocarbon volume and future performance. This section focuses on building a 3D geological model
of Mishrif formation in North Rumaila oilfield based on the available core and log data, followed by
numerical modeling and finally history matching.

The surface map with well locations is shown in Figure-10. The first step of building the structural
model was constructing 3D maps for each main zone in the reservoir depending on input data, which
are represented by well head (well position in three-dimensional coordinates), well tops, and contour
map.

After defining the 3D maps, a 3D geocellular grid was constructed from the horizon modeling and
limited the area encompassed by the Rumaila concession that divides the sector into small boxes.
However, each one of these boxes represents a grid cell with specific properties, such as permeability,
porosity, saturation, rock type and fluid production parameters, including pressures and flow rates.
Horizontal resolution was set to 200m by 200m in the X and Y directions and the grid rotation was left
as 0 degree (i.e. aligned approximately north to south). Consequently, the model gridding represents
three- main skeletons of the reservoir that are illustrated in Figure-11.

7iso0o0  7zo000 722000 724000 726000

3398000

3000 31%000
000268 (0076E€ (00g6eE (0088¢8

000

3000
00006¢8

3388000
(00egee

999999999999999999999999

111111

Type of well
oil

Open water injector
Undefined

i T
Hg 5 o

Figure 10-Wells location in the structural map of Mishrif formation.
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Figure 11-The skeletons of the sector

Usually, 3D grid properties homogenization is considered the ultimate execution step during
geological or static modeling, after which the reservoir simulation modeling was ready to be applied
using Eclipse software. The petrophysical properties were subjected to modeling using an adequate
geostatistical method, the SGS (Sequential Gaussian Simulation), as executed in PETREL [12].
Figure-12 shows an example of porosity modeling for the mA layer.

Figure 12-Porosity distribution for unit MA MHF 5

After modeling the sector geologically, numerical modeling was acquired for the matching process.
The input data for the model were as follows:
1- Grid block geometry, size, and elevation, which were discussed in the previous section. The areal
dimensions were 200m by 200m and the vertical one depended on the layering model (86 layers),
while the total number of cells or grids was 170519 grid blocks.
2- Porosity and horizontal permeability, that were described previously, and the relationship
between horizontal and vertical permeability obtained from core analysis by the following equation:

KH =1.33* Ky104 3-1

3- The data of capillary pressure and relative permeability that are applied for the determination of
initial and connate water saturation and fluids movement.
4-  PVT analysis data of reservoir fluids with oil properties that are related to well R-059, as this well
is included in the sector modeling of the current study, whilst saturation pressure was about 2100 psi.
5-  Well locations, completions, and perforated intervals (from CPI) for each well.
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6- Production data (oil flow rate, water cut, gas/oil ratio, water injection rate, bottom hole pressure,
and static pressure) for all individual wells in the sector, which are 12 wells involved in the history
matching process.

7- Initial conditions of Mishrif reservoir. This point refers to the depth of oil-water contact in
Mishrif formation, which is 2447mKB, and the initial pressure of the reservoir at this depth, which is
approximately equal to 3900 psi.

8- Boundary conditions of the sector. Basically, Mishrif formation/North Rumaila field has no flow
boundary with both east and west flanks, a flow boundary in the north with West Qurna field, and a
saddle that separates North Rumaila from South Rumaila. The sector represents a small part of the
entire Mishrif reservoir which was taken from the middle area of the reservoir. Consequently, flow
boundaries around the sector were acquired. This could be solved either by additional grid-blocks or
three phase tank-cell, as Bruijnzeels and Halloran (1995) included in their study. Additional wells
were included in the model (only well tops and log data) to add several grid blocks around this sector,
which leads to fix the boundary of the model, resulting in the simulation of these blocks in future
developments as they are represented by actual field properties.

After the definition of all the above input data to the reservoir model, the final step was to run the
model using PETREL 2016 as well as ECLIPSE 100 simulators to verify the validity of this model.

A history match analysis for the immediate study was carried out for the sector model from
December 1974 to the end of 2018. The wells that were historically matched in this study are R-059,
R-069, R-138, R-203, R-280, R-309, R-315, R-399, R-412 and R-415, as production wells only, while
R-397 and R-414 were producers which then converted to injectors. The matching was achieved for
oil production rate, water production rate, cumulative oil production, static reservoir pressure, and
bottom hole flowing pressure. Figures-13 illustrates matching between observed and actual data for
the full sector.
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Figure 13-Observed and calculated field oil production rate with the simulated pressure.

The history matching process indicates a reasonable matching between available actual data and
simulator output results. This indicates that most of the water-cut is caused from the flooding strategy.
Moreover, there is a noticeable decrease in the average reservoir pressure.

In the developing plan, a single case was carried out that was aiming to achieve a target oil rate,
constantly about 75000 STB/day, for the sector. For this purpose, the wells were distributed in groups
with different production and injection schedules. Moreover, the wells were subjected to workover
processes and possibility of converting producers to injectors. Flowchart_1 shows the main inputs to
the model, while Figures-(14 and 15) illustrate reservoir pressure, injection and production rate,
cumulative oil rate, and water-cut. Finally, Figure-16 displays the main results (events) presented
during the case’s running time.
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*Qil production rate = 75,000 STB/day (target)
e\Water injection rate depends on rate of injectors

eIncludes R-069 & R-415
«0il Rate limited, Qo < 20000 STB/day

eIncludes R-059, R-203 & R-315
*Qil Rate limited, Qo < 15000 STB/day

eIncludes R-412
+0il Rate limited, Qo < 8000 STB/day

e|Includes R-138, R-280 & R-399
«Qil Rate limited, Qo < 8000 STB/day

eW.C > 0.4 shut-in worst intervals (plugged)
ePossibility of conversion to injector
*BHP < 2200 Close Well

e|Includes R-397 & R-414
eWater Injection Rate = 30,000 STB/day
e BHP > 5500 (fracture pressure) Stop Injection

eIncludes R-309inj & R-412inj
eWater Injection Rate = 25,000 STB/day
*BHP > 5500 (fracture pressure) Stop Injection

Flowchart 1- Roles and constraints for the developing plan

.
et

Figure 14-Pressure and cumulative oil of the plan.
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= Oil production rate - Water cut — Water injection rate

Figure 15-Rates of oil production and water injection with water-cut.

*Run the case, All producers and injectors are online
*R-3092 converted to injector

sTotal oil rate = 75,000 STB/day (Target)

s\Water injection rate = 110,000 STB/day

s Perforation intervals added to R-280, R-138, R-059 & R-203
s Average pressure = 2545 psi

®* R-230 and R-138 bottom interval was plugged due to
w.C > 0.9

*R-412 shut-in then converted to injector.

*R-059, R-315, R-399 and R-415 were plugged in bottom interwvals
due to W.C > 0.4

*R-069 & R-203, were plugged in bottom intervals due to W.C
> 0.4

*End the case
sPavg = 2307 psi
s Cumulative oil = 6.4911E+08 STB

Figure 16-The main events occurred throughout the developing plan.

4-  Conclusions

1)  Instead of full field, a sector modeling was chosen for the simulation process as the timeframe
2) of the matching process is much shorter. In addition, the sector provided an elastic way for
geological hypothesis and optimized well spacing in comparison with the full-field model.

3)  Boundary conditions for the modeled sector were treated by grid-blocks attachment to the
sector, which represented unsimulated portions around the sector. These blocks were added based on
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wells located close to the sector. Moreover, two injection wells were included for the matching
process and they were considered as phantom or pseudo wells.
4)  Two sets of core data were employed for Pc curves, namely initialization and relative-
permeability, so that the sector was modeled based on two hydraulic units. Pc curves showed that the
thickness of Mishrif transition zones is minimum, which resulted from less density differences
between formation water and oil, as Mishrif formation water is considered close to fresh. Although the
data are assigned for each of the units that are having different initial water saturation, they are the
only available data for the model and have given an accepted result in history matching.
5)  Although the PVT data were available for more than one well, R-059 well data were selected
for sector fluid characteristics, as it was included in the sector.
6)  History matching was performed for time duration from 1974 to end of 2018. The matching
process was conducted depending on flowing data and static pressure data. A good point of matching
was the available water-cut data that showed that most of produced water resulted from the injection
process, as production was achieved after a period water injection. Consequently, the matching
process showed the effect of injected water on reservoir pressure and production schedules.
7)  In the development plan, there was not even a single well that has been added to the sector for
future development. Instead, the available wells were constructed to achieve production targets.
Moreover, Mishrif formation in North-Rumaila has been producing with more than 500 wells
(producers and injectors) and spacing values that range from 2000 meters to 700 meters. Thus, the
production was carried out without the necessity of additional wells in the studied sector. As displayed
in the plan, the production total rate was constant along production time because of the workover
processes.
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