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Abstract 
     In this paper, we discuss the difference between classical and nonclassical 

symmetries. In addition, we found the non-classical symmetry of  the 

Benjamin Bona Mahony Equation  (BBM). Finally, we found a new exact 

solution to a Benjamin Bona Mahony Equation (BBM) using nonclassical 

symmetry. 
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 التماثل غير الكلاسيكي للمعادلات التفاضلية
 

 طلعت جاسم محمود الدهلكي

التربيه الاساسيه، الجامعه الطدتظصريه، بغداد، العراق، كلية قدم الرياضيات  
 

 الخلاصه
في هذا البحث، نظاقش الفرق بين التطاثلات الكلاسيكية وغير الكلاسيكية ، وكذلك وجدنا التطاثل      

جديدًا لطعادلة  مضبهطاأخيرًا ، نجد حلًا   (BBM) .غير الكلاسيكي لطعادلة بظيامين بهنا ماههني
 .باستخدام التظاظر غير الكلاسيكي (BBM) بظيامين بهنا ماههني

 

1. Introduction 
    It is well known that the field of partial differential equations (PDEs) is an active area of 

Mathematics, due to the important applications of PDEs in many real problems in physics, 

chemistry, and engineering. Therefore, many authors have interested in studying PDEs with 

different types of initial-boundary conditions, see for instance [1-10].   

     Over the years¸ there have been several generalizations of Lie's classical method for 

finding group invariant solutions of partial differential equations (PDEs). In fact, there exist 

two ways for extending Lie's symmetries:  

1. Through the weakening of the invariance criterion by calculating the symmetries of the basic 

equation supplemented by certain differential constraints (side conditions) in order to provide us 

with larger Lie-point symmetry groups for the augmented system, e.g. non-classical symmetry 

and weak symmetry (conditional symmetry) [1-8]. Olver [6] divided Lie group symmetry into : 

i) The strong symmetry group of the system of differential equations     , which is a group 

of transformations G on the space of independent and dependent variables, which has the 
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following two properties: 

a) The elements of G transform solutions of the system to other solutions of the system. 

b) The G invariant solutions of the system are found from a reduced system of differential 

equations which involve a fewer number of independent variables than the original system 

    . 

ii) The weak symmetry group of the system      is a group of transformations that satisfies 

the reduction property (b), but no longer transforms solutions to solutions. 

2. Extending the space of symmetries to include some derivatives and/or integrals of the 

dependent variables (e.g. contact, generalized or Lie Backlund symmetry, nonlocal and extend 

symmetry) [5, 11-13]. 

     One can mix (1) and (2) to have both weak and strong generalized symmetry groups of the 

system       [6]. 

     In this paper, we discuss the first way- that is- weakening the invariance criterion. We find 

the nonclassical symmetries of the Benjamin Bona Mahony Equation (BBM) and make a 

comparison among the classical and nonclassical symmetries. 

2. Basic Definitions 

Definition 2.1 [13]. A k-th order (   )   system E of s differential equations is defined by  

  (     ( )    ( ))                                      (   ) 

where   (          )   (          )    and  ( )  ( )    ( ) are respectively the 

collection of all first, second, up to k-th order partial derivatives. 

Definition 2.2 [13]. The first order linear differential operator  

  ∑  (   )

 

   

 

   
 ∑  (   )

 

   

 

   

                  (   ) 

is called symmetry operator, Lie symmetry, Lie operator, infinite operator or admitted group. 

Definition 2.3 [13]. The k-prolongation of X which is denoted by  , - is defined by: 

 , -    (   )
 

   
   (   )

 

   
           

 (       ( ))
 

       
        (   ) 

where the Einstein summation convention is adopted.  

Definition 2.4 [13]. The generator X is admitted by the system of differential equation (2.1) with 

maximal rank if and only if  

           , -                                                     (   ) 
where  , -  is the k-th prolongation of   and       means that it is evaluated on the frame of the 

system of differential equations (2.1). 

     Equation (2.4) is known as the determining equation (Invariance criteria), which decomposes 

into several equations, thus becoming an over-determining system of differential equation for   

and  . After solving this system, one finds all generators of point transformations admitted by 

the differential equations. 

3 The Nonclassical Symmetries (Q-conditional Symmetry or standard conditional 

Symmetry) 

Recall the system (2.1), that is, 

         (     ( )    ( ))                                                (   ) 
     The nonclassical symmetries were suggested by a previous article [14]. In this method, the 

problem is to find a linear operator X defined by (2.2), which is not admitted by the differential 

equation (3.1), but admitted by the differential equation (3.1) and the invariant surface condition, 

that is  

      (     ( ))  ∑  (   )

 

   

   

   
   (   )      

                                                                                        (   ) 
Definition 3.1 [15]. We say that the linear operator X, defined by (2.2). is nonclassical 
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symmetry of the equations (3.1), if (2.2) is Lie symmetry of the combined systems (3.1) and 

(3.2), that is,  

  ( ̅  ̅  ̅( )    ̅( ))                                                  (   ) 

and  

  ( ̅  ̅  ̅( )    ̅( ))                                                 (   ) 
when (3.1) and (3.2) are satisfied. 

Remark 3.1. 

1. If the systems (3.1) and (3.2) are compatible, we can use the following equation to find 

nonclassical symmetries for (3.1), that is 

 , -                                                                 

 , -                                                                                                      (   ) 
where N is the set solution of (3.1) and (3.2), we note that the invariance criterion (3.5) may be 

replace by  , -       where the second equation of (3.5) is automatically satisfied [16]. 

2. For the systems (3.1) and (3.2) to be compatible [17], the k-th prolongation  , -  of the 

vector field X must be tangent to M, where  

  * (     ( )    ( ))   
                              

       
(   )

                                      +                             (3.6) 

that is 

                         , -                                                            (3.7) 

3.1   Comparison Between Classical and Nonclassical Symmetries 

1. Invariance: 

    Any Lie symmetry locally maps the solution set (whole) of the corresponding system of 

differential equations onto itself. This is, the main characteristic of any type of symmetry (e.g. 

contact, generalized, nonlocally symmetry) gives rise to the possibility of generating new 

solutions from known ones (maybe trivial). But the basic prerequisite of the definition of 

nonclassical symmetry is the consideration of only the set of solutions invariant (subset of whole 

solutions) under the associated transformation. That is, symmetries of special solutions are not at 

the same time symmetries of the equations (2.1). Therefore, it is impossible to use nonclassical 

symmetries in order to generate new solutions from known ones. 

2.  Determining equations: - The determining equations (2.4) for Lie symmetry X are linear and 

homogeneous PDEs with respect to the coordinates   and   of the operator X. Therefore, the set 

of solutions generates a linear vector space, which implies getting the Lie algebra [13]. While 

the determining equations (3.7) are nonlinear PDEs, since   ,    play a double role: it appears 

not only as the symmetry vector field, but also in the equation of (3.2). Therefore, the solution 

(3.7) in general does not constitute a vector space (i.e. a Lie algebra). Therefore, we need a new 

notion (involutive) to define module (similar to Lie algebra in case of the classical symmetry) 

[16]. 

3.  In the classical symmetry method, if X is a symmetry, then    is also a symmetry, where   is 

a constant, since the over-determining equations are linear and homogenous partial differential 

equations. If X is nonclassical symmetry, then  (   )  is also nonclassical symmetry [16]. This 

fact is useful, since it leads to two simplifying cases for              when   
 (     )    (     )    (     )  . 

4.  Reduction: - Each classical (Lie) symmetry and nonclassical symmetry leads to an anstaz* 

reducing the initial system to a system with a smaller number of independent variables, and in 

principle, the reduced system is more easily solvable than the initial one, that is this property is 

preserved in both cases. 

5.  Structure of the equation:- In both cases, classical or nonclassical symmetries, the structure of 

the equation is preserved, which means that the linear equation is converted to a linear one and 

the nonlinear to a nonlinear one. 

*Anastaz: It is a hypothesis used to simplify a differential equation into a differential equation 
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that is simpler to solve. 

3.2  Nonclassical Symmetry (NCS) Algorithm  
For the construction of nonclassical symmetry, the following algorithm is presented [5, 18]: 

 
 

The following examples illustrate nonclassical symmetry algorithm. 

Example 3.1 [1, 14] Heat equation 

The first PDE considered through the nonclassical method is the homogeneous heat equation:  

                                                                                                                   (3.8) 

By property (3) in 3.1, two cases will be considered  

Case 1 :     , therefore X becomes 

   (     )       (     )   
If u satisfies the augmented PDE system consisting of (3.8) and the invariant surface condition 

                                (     )   (     )               (3.9) 

then the invariance criterion is 

                                   , -,      - (   )(   )                                         (3.10) 

By solving the equation (3.10), we get the over-determining equations. 

 

                                                                                                     (    ) 
 

                                                                                         (3.12) 

  

                                                                                                            (    ) 
 

                                                                                                                                (    ) 
and finally we obtain 

   (   ) 
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                                             (   )   (   )                                                  (3.15) 

    

where * (   )  (   )  (   )+  is any solution of the nonlinear system 

                  

              

                                                                                                          (    ) 
Case 2:        , therefore        (     )   and (3.9) become 

    (     ) 
                                                                                               (3.17) 

The invariance criteria is 

 , -,      - (   )(    )    

which leads to the infinitesimals 

    

    
 and, 

   (     ) 
 where 

                                                                                              (3.18) 

Theorem 3.1. An arbitrary operator X nonclassical symmetry of the BBM equation, 

                                                                                            (    ) 
is equivalent to either the operator 

        
or the operator 

      (     )   

where   satisfies 

                      
           (       )    

Especially when    (   ) then      
 

   
   

Proof: 

The first case is taking the following 

      (     )    (     )                                        (    ) 
The corresponding constraint invariant surface condition is 

    (     )   (     )                                                     (    ) 
By differentiating (3.21), we get 

                               (       )                                  (3.22) 

By invariance criteria, we obtain 

        , -,              - (    )(    )(    )                                (3.23) 

which implies to 

                      
  (    )(    )(    )                                        (3.24) 

By solving the equation (3.24), we get the over-determining equations 

          (        )   (      )              

      

      (        )(     )                           (        )  
 (      )                                   

 (        )                 (        )(     )                  
                                        

  (        )                                   

               

 (        )                              

  (        )          (     )                     
(      )             
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This case leads to the generator 

        
The second case is taking 

      (     )    
The corresponding constraint invariant surface  condition is: 

                   (     )                                                        (    ) 
So, we can write (3.19) in the equivalent form 

                                              (     )                                                  (3.26) 

where 

 (     )                                                           (    ) 
By substituting (3.25) in (3.27), we get 

 (     )                                                              (    ) 
from the invariance criteria 

 ( )(    ) (    )(    )    

that is, 

 ( )       (    )(    )    

we obtain the equation 

                                                                 (    ) 
By substituting (3.28)  and its derivatives in (3.29), we get 

                      
           (       )

                                                                                                                     (    ) 
 

It is difficult to solve this equation, therefore, we take simple the case that    (   )  then the 

equation (3.30) becomes 

                           
                                                        (3.31) 

where its solution 

  
 

   
 

Therefore X becomes 

                                          
 

   
                                                   (3.32) 

Theorem 3.2  

     The function  (   )  
     

   
 is a solution of BBM equation , where b and c are arbitary 

constants. 

Proof: 

      By using the nonclassical (3.32), we can obtain a new solution for BBM equation, that is,  

                                       (   )  
 

   
  ( )                                                  (3.33) 

By substituting (3.33) in (3.19), we get the ODE  

  ( )  
 ( )

   
  

 

   
 

The solutions takes the form 

 ( )  
    

   
 

Therefore (3.33) becomes 

 (   )  
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where b and c are arbitrary constants. 

4 Conclusion 
     From this work, we notice that, when we can find the non-classical symmetry of the partial 

differential equation, we can find a new solution to this equation. 
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