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Abstract

Let R be a ring with 1 and D is a left module over R. In this paper, we
study the relationship between essentially small quasi-Dedekind modules
with scalar and multiplication modules. We show that if D is a scalar small
quasi-prime R-module, thus D is an essentially small quasi-Dedekind R-
module. We also show that if D is a faithful multiplication R-module, then
D is an essentially small prime R-module iff R is an essentially small quasi-
Dedekind ring.
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Introduction

A submodule S of an R-module D is small in D(S « D) if whenever a submodule H of D such that
D =S+ Hthen H = D[1]. A submodule S of an R- module D is essentially small(S «, D), if for every
non zero small submodule G of D, GNS # 0. Equivalently, for each 0« d € D, 3 0 # r € R such that
0+ rd € S [2]. An R-module D is essentially small quasi-Dedekind(ESQD) if Hom(D/H, D) = 0 for
all H<K, D [2]. Aring R is ESQD if R is an ESQD R-module [2]. An R-module D is a scalar
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R-module if, v g € End. (D), 3 U € Rsuch that g(d) = ud v d e D [3]. We will ask the following:

If D is ESQD R-module, then End,, (D) will be ESQD ring.

First, we give the following proposition.

Proposition1. Assume that D is a scalar R-module with ann, (D) is a semiprime ideal of R, thus
End, (D) is ESQD ring.

Proof: Since D is a scalar R-module, thus, as previously described [4, Lemma6.2, p.80],
End, (D) = R/ann, (D), since ann,(D) is semiprime ideal of R, then R = R/ann.(D) is a
semiprime ring. Thus, End,(D)is a semiprime ring and hence, as in another article [2, Prop.9],
End, (D) is an ESQD ring.

An R-module D is essentially small prime (ESP) if ann, (D) =ann, (H) for all H«, D[5].
Corollary2. Let D be a scalar R-module. Then (1) = (2) = (3),(3) (1) and (3) = (2).

1) D is ESQD R-module.
2) Dis ESP R-module.

3) End, (D) is ESQD ring.

Proof: (1) = (2): As previously described [5, Prop.18].

(2)=(3): Since D is an ESP, then, by a previous article [5, Coro 28],§ = R/ann.(D)is an ESQD
ring. But D is a scalar R-module, thus, by  another article [4, Lemma 6.2, p.80],
End. (D) = R/ann, (D) Then End; (D) is an ESQD ring.

In the following example, we explain that (3)=% (1) and (3) = (2).

Example3. Zy* as Z-module is not ESQD. But Endz(Z,™) is an integral domain. It is clear that it is an

ESQD ring. Notice that Z,” as Z-module is not ESP, since if H:(%+z)§e Zp”, thus

ann, (H) =PZ #ann, (D) =(0) , where P is prime number.

The following corollary shows that under the class of faithful scalar modules, End,(D)is ESQD
ring iff R is ESQD ring.
Corollary4. Assume that D is a faithful scalar R-module. Then End, (D) is ESQD ring iff R is
ESQD ring.
Proof: Since D is a scalar R-module, thus, as previously shown [4, Lemma 6.2, p.80],
End, (D) = R/ann, (D) = R . Hence we get the result.

An R-module D is a small quasi-prime (SQP) if ann,(H)is a prime ideal of R for each non
zero small submodule H of D. In addition, a proper small submodule H of D is SQP if [ H:d ] be

small prime ideal of rRvd e D, d ¢z H .

Theorem5. Assume that D is an R-module. Then (1) = (2) = (3) = (4)

1. Dis SQP R-module.

2. anngH = anngrH for each small submodule H of D such that rH = (0),r e R ..

3. anng(d) = anng(rd) for each d € D such thatrd # 0,r € R.

4. annp(d) be small prime ideal of R for each d € D.

Proof: (1) = (2) Since rH € H then anngH S anngrH. Let a € anngrH so arH = 0 which implies
that ar € anngH is a prime ideal. Thus either a € anngH or r € anngH. If r € anngH, then rH = 0,
which is a contradiction. Thus, a € anngH.

(2) = (3) Clear.

(3) > (4) Let ab € annk(d) and suppose that b € anng(d). Thus abd = 0 and bd = 0, which
implies that a € anng(bd). But by (3), a € anng(d).

Proposition6. Let H be proper submodule of an R-module D. Thus, the following are equivalent:

1. His SQP submodule of D.

2. [H:g U] is small prime ideal of R for each submodule U of D where [H:g W] = {h € H, hWc H}.
3. [Hig (d)] = [H:g W] foreachd € D,r € R, [H:g (d)]
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Proof: (1) = (2) Let H be a SQP submodule of D. Thus [H:g (d)] is small prime ideal of R, for each
d € D. Then [H:g (d)] is asmall prime ideal for each d € W and [H:x W] is a small prime ideal of R.
(2) = (3) ltis clear that [H:g (d)] € [H:g (wd)]. Let x € [H:g (wd)] for each w € [H:g (d)] and
d € D. Hence x(wd) < H. It follows that xw € [H:g (d)] which is a small prime ideal by (2). But
w € [H:ig (d)] thus x € [H:g(d)]. Then, [H:gx(wd)] € [H:g(d)]. Therefore, [H:gx(d)]=
[Hig (wd)].

(3) = (1) Letd € Dand x,y € R such that xy € [H:g (d)]. Suppose that y € [H:g (d)], thus by (3),
[H:g (yd)] = [H:g (d)]. But x € [H:g (yd)], then x € [H:x (d)] and hence H is a SQP submodule.
Proposition7. An R-module D is SQP iff (0) is a SQP submodule of D.

Proof: Since D is SQP R-module, thus by Theorem5, anng(d) is small prime ideal of R for every
d € D. But anng(d) = [0:g (d)] V d € D, then by prop.6, we get that (0) is a SQP submodule of D.
Proposition8. Assume that D is a scalar SQP R-module. Thus D is ESQD R-module, and R is ESQD
ring.

Proof: First: Assume that g € Endg (D), 9 # 0. To prove that Kerg <. D/But D is a scalar

R-module, thus 30 =V € R such that g(w) =vw, Vv We D. Suppose that Ker g <. D, thus for any
0#2deD, 3 0#seR such that 0=sd e Kerg. Hence g(sd) =0; that is vsd = 0, so

vseann,(d).ButDis  a SQP R-module, impliesann, (d) is a prime ideal of R, thus either

veann,(d) or seann,(d); thatis either vd = 0 or sd = 0. But SO # 0, therefore vd = 0 for

any d € D. Thus, g =0, which is a contradiction. Thus, Kerg «.D and then D is an ESQD R-
module.
Second: Since D is a SQP R-module, thus by Prop.7, (0) is a SQP submyﬁule of D and hence (0) is a
semiprime ideal of R. Then R is a semiprime ring. Thus, as previously shown [2, Prop. 9], R is
ESQD ring.

A submodule H of an R-module D is small invertible if H"1H = D, where H"! = {r€ Ry: rH « D
} and Ry is the localization of R at T in the usual sence, T = {g € G: gd = 0 for some d € D, then d =
0}, where G is the set of all nonzero divisors of R[2].

An R-module D is small quasi-invertible if Hom(D/H, D) =0, v 0 # H <« D [2].

An R-module D is small quasi-Dedekind (SQD) if every non zero submodule H of D is small
quasi-invertible [2].

Aring R is SQD if R is SQD R-module [2].
Theorem 9. Assume that D is a faithful multiplication R-module. Then D is ESP R- module iff R is
ESQD ring.
Proof: <) Let H <, D. But M is a faithful multiplication R-module, thus by a previous article [6],

3 W <, R, such that H = WD. It is clear that ann,(H) =ann,(W). Since R is an ESQD ring,
then W is a small quasi-invertible ideal of R, thus anny(W)=0. It follows that

ann, (H)=0=ann, (D). Then D is ESP R-module.

=) Follows a previous work [5, Prop26 ].

Proposition 10. Assume that D is a multiplication R-module. If End, (D) is an integral domain then
D is a SQD R-module.

Proof: Letg € End, (D), 9 # 0 since End, (D) is an integral domain, g is nonzero divisor. But

D is a multiplication R-module, so g is monomorphism, as shown previously [7, Lemma 2.2]. Then D
is a SQD R-module.

Proposition 11 Assume that D is an ESP R-module with anng (D) = anng (D), thus D isan ESP
R-module.

Proof: Let H <« D.Since D Ke D implies 0=H ND «, D.LetU < DU=O0, <o
U <D. Thus, (HAD)NU %0, so (HND)«, D. But D is an ESP R-module, thus

ann,(H nD)=anny(D) .But ann,(H)+ann, (D) < ann, (H M D) hence
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ann, (H) +ann (D) c ann, (D) , then ann, (H) +ann, (D) < anng (D) , s0
ann, (H) cann, (D). But ann, (D)  ann, (H) which implies that

ann, (H) = ann, (D) . Then D is an ESP R-module.
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