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Abstract

In this article, we propose a Bayesian Adaptive bridge regression for ordinal
model. We developed a new hierarchical model for ordinal regression in the
Bayesian adaptive bridge. We consider a fully Bayesian approach that yields a new
algorithm with tractable full conditional posteriors. All of the results in real data and
simulation application indicate that our method is effective and performs very good
compared to other methods. We can also observe that the estimator parameters in
our proposed method, compared with other methods, are very close to the true
parameter values.

Keywords: Bayesian Bridge, Variable Selection, Ordinal Model, Scale Mixture Of
Uniform.
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1- Introduction
In statistical learning, there are two important goals; First, knowledge of important variables in the
model. Second, ensuring the accuracy of the high prediction. Determination of the important

predictors leads to reinforcing the prediction performance for the fitted model [1]. The linear
regression (LR) model, where p is the predictors and n is the observations, is written as follows:

yi=XiB+¢&. €Y

Where y; = (¥;, ..., yo)" is a vector of centered responses, B = (Bo. Pi. ... Bp—1)" is a vector of

the coefficient to be estimated, X = (xq,x,....x,) is the independent variable and &; = (&, oy €S

a vector of error with a mean of zero and a variance of one. Mallick and Yi [2] proposed that the
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Bayesian bridge regression (BBR) was better in estimating than each of Lasso, ridge regression (RR)
and bridge regression, while the estimator of BBR can be written as follow:

D
min(y - XB)' (v - XB) +ﬂ;|ﬁjl 5, 820 )

The above formula contains special cases: RR when (& = 2), the Lasso estimator when (6 = 1) and
the best subset selection if (6 = 0) [3,4] .

Recently, researches showed the regularization approaches which uses the variable selection (VS)
and found that the simultaneous estimation will be effective. These methods improve the prediction
accuracy in the regression. In our current paper, we propose the Bayesian adaptive bridge regression
for ordinal model (BABROM). This method included the desired properties such as sparsity, oracle
and unbiasedness when (0 < 6 < 1).

The ordinal data are naturally arranged categories and a type of the statistical data. This data is found
in many fields such as climatology, political economy, economics, social sciences, psychology and
medicine [5-8]. One of the examples of ordinal data is the intelligence level of students (weak,
medium, high). The categories weak, medium and high take the values of the order 1, 2, and 3,
respectively. The high level is not a multiplier of the medium level. The outcome variable y; takes one
value of s values, where s = 1, ..., S. In this example, the last category equals S = 3. The ordinal data
model has the general shape of:

pr(y; =s) = F(XiB). i=1,..,n, (3)

where F is the link function [9] . One of the main regression problems is when the number of

covariates is increasing. The regression model may be containing many unimportant variables.
Therefore, we will focus on the process of VS to get the appropriate model. The process of VS
provides a perfect operator for selecting the effective variables and for estimating the parameters [10].
One of the most popular method's criteria used for VS is the Akaike information criterion (AIC) that
can be written as follows:

AIC=2p—2log D, ©))

where (D) is the probability function that is estimated in a maximum likelihood estimation, and p is

the number of parameters in the model [11]. In this criterion, the best model of a set of candidate
models is that with minimum AIC value [12]. When p size is large, the model will be inconsistent
[13]. Therefore, we will use the Bayesian information criterion (BIC) that can be written as follows:

BIC=plogn—2logD, (5)
we use this criterion to get the appropriate model with a probability of 1 [11,13].
We organize this paper as follows: we will show the Bayesian adaptive bridge for ordinal model in
section Two. In section Three, we show the Bayesian inference, prior elicitation, hierarchical
representation and full conditional distributions (FCD). We elucidate the computation in section Four.
We apply the simulation study in section Five and real data application in section Six. The
conclusions are presented in section Seven.
2-Bayesian adaptive bridge regression for ordinal model

In this section, we introduce the BABROM using different penalty parameters ;. The formula of
Bayesian adaptive bridge regression can be written as follows:

p
ming(h — XB)*(h — XB) + Z MBI, 15,820, 6)
=1

~OLS _ . . . .
where }; = 7»|B]. - |¢for j = 1,..., p, c is a positive constant [14]. Here, A; will be different values

of tuning parameters, where every regression parameter is a multiplication with different penalty
parameter. We will give a large penalty parameter for the not important variables [1,15,16]. The value
of & in this paper is 0.5.

The ordinal data analysis is distinguished by relative simplicity in the frequentist approach.
Although the approximate theory for ordinal regression (OR) model has been well studied, the
Bayesian method enables exact estimation even when p is greater than n [17].
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In a simple univariate case, the response variable y; takes one of the s ordered values, where s =
1,..., S. If there is a normal distribution (ND) with the cumulative distribution function (cdf) @, we can
write the probability (y) to be equal to s category through the following [18]:

Pr(y =s) = ®(¥s+1) — (1), (7

where v,...., ¥s are cut-points, which coordinates satisfy —oo =y, <y; <+ <ys_1 < ys = .

Here y,_; is the lower bound and y, is the upper bound of the interval corresponding to response s
[19]; [7,19]. We can motivate the problem when assuming that the latent variable h; depends on a p-
vector for covariates (x;) through the model h; = x!B + ¢;, and the response variable is:

yi=sifysq <h <ys. 8
The probability of y; = s is conditional on g and y = (y1....¥s)" and is given by p,(y; = s|B.y) =
Pr( [¥s—1 < kN[ h; <¥s]) . So, we obtain:

pr(yi = sIB.y) = O(¥s — x{B) — ©(vs-1 — x{B). 9
Given that y = (y4, ... )¢, we can write the likelihood function for the model as:
n N
roBn = | [ [100: -8 - 005 - xip10w=9, (10)

i=1 s=1
The indicator function is 1{y; = s} for the event y; = s [6,20]. When y; = 0, it leads to the
removal of the possibility of change distribution, with no shifting to the probability of observing y;.
1 ifyy<h <y
where y; = {S ifys 1 <h<ys , s=2,.,5—1. 11D
S if yso1 <h; <ys
By fixing the cut-point and adding to y, = —o0 and ys = oo, the identification problem is typically
corrected simply. In Bayesian inference, the steps to determine prior distribution for parameters are
very important[7,21]. The prior distribution plays an important role [22]. A prior must be selected
with care, because some problems can occur if the prior distribution is used without care [23].
3- Bayesian inference
3-1 Prior elicitation
In this article, similar to Mallick and Yi [2], we consider the conditional generalized Gaussian (GG)
prior specification:

n(B)ocl_[ exp{~1,(B;D%}. j=1....p. here 1,52 0. (12)

We will solve the proplem (formula 6) by using the Gibbs sampler (GS), that confirms
construction of a Markov chain, which has a joint posterior for (8) as a constant distribution [11].

We show a new practice, namely the BABROM, by using Scale Mixture of Uniform (SMU). To
proceed with Bayesian analysis, we assume the generalized Gaussian distribution (GGD) which can be
written as SMU. Following Mallick and Yi [2], the GGD can be adapted as:

1 1

’11'g 5 ’Ijngl Lk
——exp(-4 }=f ke dk (13)
20T +1) k=g zmr(g +1)

Letg = /Ik:>k>|ﬂ| :>/1 > 8P :>g>ﬂ|,8|
J

f L g(%ﬂ)_1 e 9dg. (14)
T<p<? Zgﬁl“(% +1)

In practice, we have found that the mixture representation (14) performs better than (13) in
sampling the regression coefficients in terms of prediction accuracy.
Albert and Chib (2001) proposed the logarithmic transformation in order sampling of the cut points y.

v=In(ys, ... Vs—1), 2<s<S—1.

To eliminate high autocorrelation for cut-points, we use the transformation y = (v, ..., \us_l)t

instead of ¥ = (y,, ..., ¥s—1)¢ to obtain the parameters of the tailored proposal in Metropolis-Hastings
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(MH) for y. We assume that the prior of y is y~ N(y,, o). The prior of & is assumed as
6 ~ Be(t, @) where Be is a beta distribution (BD).

3-2 Hierarchical Representation
The hierarchical representation for BABROM can be written as follows:
yi =sifys.g <h <vs

hilB~N(x. 1).
1
p 1
| 9;
Blg, 8~1_[un1form -—
j=1 828
j

p
1
glr o~ 1_[ Gamma (g +1, kj>,

j=1
Aji~Gamma(c, d),
WNN(\IIO, (0):
d~Be (1, ). (15)
Where 4; = (/11, A2seres ﬂp) and g; = (91, 92 9p)-
3-3 Full Conditional Distributions
Under the hierarchical representation in (15), we write the (FCD) for the parameters as follows:

The FCD of h; as follows:

pr(hi| ﬁ: Y)
pr(hil B.y) « pr(yil hi, v) pr(hilB),
o Hys—y < hy <¥IN(hi; xiB. 1). (16)
The (FCD) of B is given by:
P
~ _ gj
B|y,X: g’ A’NNP(BOLS(XtX) 1)1_11{| ﬁ]|8 </1_J} (17)
j=1 ]
The FCD of g is given by:
14
1
gly. x. g, 1~| [ Gamma (g +1, x]-) H{gi > 4 16;P). (18)
j=1
The FCD of 4; is given by:
2j|Bi~Gamma(c + 1, d)I {/1 < 8 |} (19)
J

The FCD of y by:
p(v,ly, h)cp(ylh, w)p(y)
S

n
o HZ 10 = )1(y,_, < hi <y )1y € T). (20)
i=1s=1
Where T = {(\Vmin’ R ST \Vmax)Nlmin < V1 <. < Vs-1 < \Vmax}’
Where I(.) is an indicator function.
To calculate 8, we assign a beta prior (t, ¢) and the FCD of & is given by:

w3l h, X, B, g, N)oc 8 1(1 =&)L }L ———exp{—A Z |B| (21)
TG+ DY
4- Computation
Firstly, we construct the Gibbs sampler for BABROM procedure by initiating the initial valuations
for parameters , v, A, y, 6 and w. Then we execute the algorithm as follows:
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a- Sampling the latent variable h; from the TND, NT(xfﬁ, 1), determined by (ys_q1,7s), for i =
1,..,nandj=1,..,p.
b- Updating g from a truncated multivariate normal distribution, where

Blh. X. g. A~Nu(Bovs. (X'X)™ 1)1_[ { Z<B; < ‘i’}
] )

c- Sampling g; from the truncated gamma distribution, with a shape parameter (% + 1) and a rate
parameter (A).

d- Sampling v |y, marginally out of h. Similar to Jeliazkov et al., [20], we generated the y . Here
yt ~ft(y [, {,u) and ft is a t distribution, where { = argmax f(y|B, y) f(y), u refers to the
degree of freedom and { is the negative inverse Hessian. Given the current values of y and the
proposed draw for values of y*, we return x with the probability of:

9y, = ming1 FOIB.VOF B, wh) ft(w W, 3, u)
MH T FOIBW(B, W) FE(yt 9,8, w)

e- Generating A from the truncated gamma distribution with an p 4+ ¢ shape parameter and a rate
parameter d.

A X. B, g.8) o A,PHIE) exp—a,(1 + 5 1{ Ji }
7k X, B, 9.8) exp{~2;( Zlﬁ] M <

f- Sampling & by forming a BD with the parameters (1, ), as follows
P

A5
n(3lh, X. B, g, Decs™ (1= 8)r " —L— 2 By1°
rG+ Dy

The efficient GS is based on this full condition to extract samples from every full (cpd). The
process of sampling will continue until all chains converge.
5- Simulation study

In this section, the performance of the proposed method is illustrated by simulations. The proposed
method is compared with Bayesian lasso median regression, ordered logistic regression and ordinal
probit Regression, as in Jeliazkov et al. (2008). These methods are evaluated based on the median of
mean absolute deviations (MMAD) over 100 replications and standard deviation (SD). The Bayesian
estimates are posterior mean estimates using 11,000 samples of the Gibbs sampler after burn-in the
first 1000 samples. In this simulation, we set 6 = 0.5.
5-1 Simulation

In this simulation study, we generate 200 observations from the model w; = x!g + &, where x; is
a vector of 10 covariates that are simulated from standard multivariate normal distribution, and &; is
simulated from standard normal distribution. We set y = (0, 0.5, 1.5, 2) and
B =@,2,003,0,0,0,0,0). In the next simulation, we will consider the following values:
Table 1-Summarized the MMAD and SD results for simulation.

Method MMAD SD
BABROM 0.44688 0.35022
ORD (logistic) 3.68581 1.34067
ORD (probit) 0.54191 0.56730

Table 2-List parameter estimates for simulation.

Method | BL | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B9 | BLO
B(True) | 3 2 0 0 3 0 0 0 0 0
BABROM | 3.110 | 2.110 | 0.033 | 0.022 | 3.012 0'611 0'633 0'602 0.051 | 0.004
(I(%';tDic) 62 | 4066 | 0.051 | 0027 | 6243 | (' | (7o | gop | 0147 | 002

(p?('fgt) 3507 | 2.299 | 0042 | 0.02 | 3523 | 0o | 0076 | 0008 | 008 | 0004
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We can see from the results of our proposed method that BABROM has smallest MMAD and SD.
The estimates of our proposed method are close to the B (True) compared with the other methods.
In Table- 3, we list cut-point estimates for simulation.

Method Y1 V2 V3 Va

Y (True) 0 0.5 15 2
BABROM -0.161 0.476 1.423 2.052
ORD (logistic) 0.007 0.967 2.984 4.012
ORD (probit) 0.008 0.551 1.685 2.258

The estimates of BABROM are very close to y (True) compared with the other methods in 3 cut-
points of 4.

Table 4-MSE for the cut-points of simulation 2

Method V1 Y2 Y3 Ya
BABROM 0.05611 0.04311 0.0622 0.10011
ORD (logistic) 0.1816 0.40203 2.52907 4.57999
ORD (probit) 0.05629 0.06157 0.13191 0.22358
From Table-4, we can see that our proposed method, BBROMR, has the smallest MSE in all cut-
points.

Figure-1 shows that the sampler is moving from a point to another in relatively few steps. Figure-2
illustrates that the conditional posteriors (CP) are in fact the desired stationary truncated univariate
normal distributions.
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Figure 1-The trace plot in simulation.

175



Al-Jabri and Al-Hamzawi

-
=

15

10

0o 05

Iraqi Journal of Science, 2020, Special Issue, pp: 170-178

1344

01

= s

n
in

.

00 04 08

il

o
T

-

134

5 3.5
T T T
-5 0.2
e il
.'_;‘r E
T T

01

I Y

00 10 20 30

01234

-5 -0.4 -0

al.
x
o
T T

=z

T 1
—0.Z oo o2 0.4 0.6

1 T T T T 1
-0z oo

Figure 2-Posterior histograms for the variables in simulation.

6- Real data application

In this section, we apply our proposed method by using real data. The real data was collected
through a questionnaire for employees and workers of the Qil Products Distribution Company in Thi-
Qar- IRAQ. The questionnaire was about the management of the company and how to deal with
employees. Sample size is 150 observations and the number of the covariates is 17.

For real data, we estimated the parameters for our proposed method and the comparison methods.
The results indicated that our proposed method is better than the other comparison methods.

Table 5-Parameters estimation

. Method
covariate
BABROD ORD (logistic) ORD (probit)

X, 0 0 0

X, 0.02 0.49 0.26
X5 0 -0.05 -0.03
X, 0.04 0.63 0.31
Xs -0.07 -0.53 -0.31
X, 0 0.12 0.05
X5 0 0.03 0.02
Xg -0.04 -0.09 -0.07
Xo 0.09 0.31 0.19
X10 0.06 0.42 0.31
X141 0.03 0.06 0.02
X1 -0.04 -0.03 -0.01
Xi3 0.08 0.08 0.06
Xi4 0.07 0.13 0.07
X1 0.18 0.6 0.32
Xi6 -0.03 -0.32 -0.17
X1y 0.17 0.98 0.53
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Figure 4-Histograms based on posterior samples of the real data.

We computed the Deviance Information Criteria (DIC) for the three models (BABROM, ORD
(logistic), and ORD (probit)). The values were 350.8743, 389.2391 and 378.2251, respectively. The
results of deviance information criteria show that our proposed methods perform better than the ORD
(logistic) and ORD (probit) method.
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7- Conclusion

In this paper, we developed a Bayesian adaptive bridge regression for ordinal model in the
univariate case. Our method is based on a conditional conjugate prior distribution for regression
parameters. We developed a new hierarchical representation for our method. To estimate the ordinal
regression parameters, we introduced a Gibbs sampler for generating samples from the posterior
distribution. In a simulation study, we found that the MMAD, SD, MSE, the cut-point and DIC
indicated that our proposed method is better than the comparison methods. The studies showed that, in
comparison with existing ORD (logistic) and ORD (probit), the Bayesian ordinal regression method
by using the conjugate prior distribution generally performs better than the other methods.
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