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Abstract 

     In this article, we propose a Bayesian Adaptive bridge regression for ordinal 

model. We developed a new hierarchical model for ordinal regression in the 

Bayesian adaptive bridge. We consider a fully Bayesian approach that yields a new 

algorithm with tractable full conditional posteriors. All of the results in real data and 

simulation application indicate that our method is effective and performs very good 

compared to other methods. We can also observe that the estimator parameters in 

our proposed method, compared with other methods, are very close to the true 

parameter values. 

 

Keywords: Bayesian Bridge, Variable Selection, Ordinal Model, Scale Mixture Of 

Uniform. 

 

 انحدار بيزين برج التكيفي للنماذج الترتيبية مع التطبيق
 

 رحيم جبار ظاهر الحمزاوي ، *ضياء حازم قاسم الجابري 
 قسم الاحصاء، كمية الادارة والاقتصاد ، جامعة القادسيو، الديهانيو، العراق

 
 الخلاصه

في ىذه الطقالة، نقترح طريقة انحدار البرج البيزي التكيفي لمظطهذج الانحدار الترتيبي )الرتبي(. قطظا      
بتطهير نطهذج ىرمي جديد للانحدار الترتيبي في البرج البيزي التكيفي. الظيج البيزي بالكامل يظتج عظو 

من خلال الطحاكاة تشير  وأيضاطبيق الحقيقي لمبيانات خهارزمية جديدة. في ورقتظا ىذه جطيع الظتائج في الت
إلى أن طريقتظا فعالة وتؤدي أداءً جيداً مقارنة بالطرق الأخرى، ويطكظظا ملاحظة الطعمطات الطقدرة في طريقتظا 

الطقدرات الاخرى تكهن افضل في  وأيضاالطقترحة قريبة جداً مع قيم الطعمطات الحقيقية مقارنة بالطرق الأخرى، 
 طريقتظا مقارنة مع طرق الطقارنة.

1- Introduction 

     In statistical learning, there are two important goals; First, knowledge of important variables in the 

model. Second, ensuring the accuracy of the high prediction. Determination of the important 

predictors leads to reinforcing the prediction performance for the fitted model  [1]. The linear 

regression (LR) model, where   is the predictors and    is the observations, is written as follows: 

                                                                                                    ( ) 
     Where    (           )

                                       (              )
  is a vector of 

the coefficient to be estimated,   (            ) is the independent variable and    (        )
  is 

a vector of error with a mean of zero and a variance of one. Mallick and Yi [2] proposed that the 
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Bayesian bridge regression (BBR) was better in estimating than each of Lasso, ridge regression (RR) 

and bridge regression, while the estimator of BBR can be written as follow: 

   
 
(    ) (    )   ∑      

 

 

   

                                                       ( ) 

     The above formula contains special cases: RR when (   ), the Lasso estimator when (   ) and 

the best subset selection if (   )  [3,4]  .  

     Recently, researches showed the regularization approaches which uses the variable selection (VS) 

and found that the simultaneous estimation will be effective. These methods improve the prediction 

accuracy in the regression. In our current paper, we propose the Bayesian adaptive bridge regression 

for ordinal model (BABROM). This method included the desired properties such as sparsity, oracle 

and unbiasedness when (     ).  
The ordinal data are naturally arranged categories and  a type of the statistical data. This data is found 

in many fields such as climatology, political economy, economics, social sciences, psychology and 

medicine  [5-8]. One of the examples of ordinal data is the intelligence level of students (weak, 

medium, high). The categories weak, medium and high take the values of the order 1, 2, and 3, 

respectively. The high level is not a multiplier of the medium level. The outcome variable    takes one 

value of   values, where         . In this example, the last category equals    . The ordinal data 

model has the general shape of: 

  (    )   (  
  )                                                                     ( )    

     where F is the link function [9] . One of the main regression problems is when the number of 

covariates is increasing. The regression model may be containing many unimportant variables. 

Therefore, we will focus on the process of VS to get the appropriate model. The process of VS 

provides a perfect operator for selecting the effective variables and for estimating the parameters [10]. 

One of the most popular method's criteria used for VS is the Akaike information criterion (AIC) that 

can be written as follows:  

                                                                                                   ( )   
     where ( ) is the probability function that is estimated in a maximum likelihood estimation, and   is 

the number of parameters in the model [11]. In this criterion, the best model of a set of candidate 

models is that with minimum AIC value [12]. When   size is large, the model will be  inconsistent 

[13]. Therefore, we will use the Bayesian information criterion (BIC) that can be written as follows: 

                                                                                                 ( ) 
we use this criterion to get the appropriate model with a probability of 1   [11,13].  

We organize this paper as follows: we will show the Bayesian adaptive bridge for ordinal model in 

section Two. In section Three, we show the Bayesian inference, prior elicitation, hierarchical 

representation and full conditional distributions (FCD). We elucidate the computation in section Four. 

We  apply the simulation study in section Five and real data application in section Six. The 

conclusions are presented in section Seven. 

-2 Bayesian adaptive bridge regression for ordinal model 

     In this section, we introduce the BABROM using different penalty parameters   . The formula of 

Bayesian adaptive bridge regression can be written as follows: 

    (    )
 (    )  ∑        

 

 

   

                                                   ( ) 

     where        ̂ 
   
 
   for           ,   is a positive constant [14]. Here,    will be different values 

of tuning parameters, where every regression parameter is a multiplication with different penalty 

parameter. We will give a large penalty parameter for the not important variables  [1,15,16]. The value 

of   in this paper is 0.5. 

     The ordinal data analysis is distinguished by relative simplicity in the frequentist approach. 

Although the approximate theory for ordinal regression (OR) model has been well studied, the 

Bayesian method enables exact estimation even when   is greater than    [17]. 
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In a simple univariate case, the response variable    takes one of the   ordered values, where   
        . If there is a normal distribution (ND) with the cumulative distribution function (cdf) Ф, we can 

write the probability (y) to be equal to   category through the following  [18]: 

  (   )  Ф(    )  Ф(  )                                                                 ( ) 
     where            are cut-points, which coordinates satisfy                     . 

Here      is the lower bound and    is the upper bound of the interval corresponding to response   
[19]; [7,19]. We can motivate the problem when assuming that the latent variable    depends on a p-

vector for covariates (  ) through the model      
        and the response variable is: 

                                                                                                ( ) 
The probability of       is conditional on   and   (        )

  and is given by   (         )  
  ( [     <   ][    ≤   ]) . So, we obtain: 

  (        )  Ф(     
  )  Ф(       

  )                                              ( ) 

Given that    (        )
 , we can write the likelihood function for the model as: 

 (     )   ∏∏,Ф(     
  )

 

   

  Ф(       
  )

 

   

- *    )                              (  ) 

     The indicator function is  *    + for the event      [6,20]. When     , it leads to the 

removal of the possibility of change distribution, with no shifting to the probability of observing    .  

         {

                    
                   
                  

                                                         (  ) 

     By fixing the cut-point and adding to                , the identification problem is typically 

corrected simply. In Bayesian inference, the steps to determine prior distribution for parameters are 

very important[7,21]. The prior distribution plays an important role  [22]. A prior must be selected 

with care, because some problems can occur if the prior distribution is used without care  [23]. 

3- Bayesian inference   

3-1 Prior elicitation 

     In this article, similar to Mallick and Yi [2], we consider the conditional generalized Gaussian (GG) 

prior specification: 

𝜋( ) ∏    *   (    )
 +

 

   

                                                                  (  ) 

      We will solve the proplem (formula 6) by using the Gibbs sampler (GS), that confirms 

construction of a Markov chain, which has a joint posterior for ( ) as a constant distribution  [11]. 

     We show a new practice, namely the BABROM, by using Scale Mixture of Uniform (SMU). To 

proceed with Bayesian analysis, we assume the generalized Gaussian distribution (GGD) which can be 

written as SMU. Following Mallick and Yi [2], the GGD can be adapted as: 

 
 

 
 

  (
 
 
  )

    *      
 +  ∫

 
 

 
 
  

  
 
   (

 
 
  )

 
 
      

      
                                         (  ) 

                 
    

 

  
                

   

∫
  
 
 

   
 
   .

 
 
  /

 
 
  
  
       

  
  

  
.
 
 
  /  

                                                             (  ) 

     In practice, we have found that the mixture representation (14) performs better than (13) in 

sampling the regression coefficients in terms of prediction accuracy. 

Albert and Chib (2001) proposed the logarithmic transformation in order sampling of the cut points  . 

    (             )             
     To eliminate high autocorrelation for cut-points, we use the transformation   ( 

 
        

   
)  

instead of    (             )
  to obtain the parameters of the tailored proposal in Metropolis-Hastings 
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(MH) for  . We assume that the prior of   is      ( 
 
    ). The prior of   is assumed as 

      (    ) where    is a beta distribution (BD). 
 

3-2 Hierarchical Representation 

The hierarchical representation for BABROM can be written as follows: 

                   
 

      (  
      )  

          ∏       

 

   

 ( 
 
 

 
 

 
 

 
 

  
 
 

 
 

 
 

 
 

)    

         ∏     

 

   

 (
 

 
      *   

        (    )  

   (      )  

       (    )                                                                     (  ) 
Where     (              )        (              )   

3-3 Full Conditional Distributions 

     Under the hierarchical representation in (  ), we write the (FCD) for the parameters as follows: 

The FCD of     as follows: 

  (        ) 
  (        )      (         )     (    )   

   *          + (      
      )                                                                (  ) 

The (FCD) of   is given by: 

               ( ̂   ( 
  )  )∏ 

 

   

{     
  

  

  
}                                           (  ) 

The FCD of    is given by: 

                ∏      (
 

 
      *   {          

 } 

 

   

                                           (  ) 

The FCD of     is given by: 

  |        (      ) {   
  

|  |
}                                                             (  ) 

The FCD of   by:  

 (       )   (      ) ( ) 

  ∏∑ (    ) (          ) (   ) 

 

   

 

   

                                     (  ) 

Where   *(                   )                       +  

Where  (.) is an indicator function.  

To calculate  , we assign a beta prior (    ) and the FCD of    is given by: 

𝜋(                    )      (   )   
 
 
 

* (
 
 
  )+ 

   {   ∑   
 
 
  

 

   

}           (  ) 

4- Computation  
     Firstly, we construct the Gibbs sampler for BABROM procedure by initiating the initial valuations 

for parameters  ,   ,   ,  ,   and  . Then we execute the algorithm as follows: 
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a- Sampling the latent variable     from the TND,   (  
     )  determined by (        ), for   

       and           
b- Updating β from a truncated multivariate normal distribution, where 

                  ( ̂      ( 
  )  )∏  { 

  

  
    

  

  
}

 

   

                        

c- Sampling      from the truncated gamma distribution, with a shape parameter (
 

 
  ) and a rate 

parameter ( ). 

d- Sampling        marginally out of  . Similar to Jeliazkov et al., [20], we generated the   . Here 

      (    ̂   ̂  ) and    is a t distribution  where  ̂          (      )  ( )    refers to the 

degree of freedom and  ̂ is the negative inverse Hessian. Given the current values of    and the 

proposed draw for values of   , we return x with the probability of: 

        *   
 (       ) (     )

 (      ) ((    )

  (    ̂   ̂   )

  (     ̂   ̂   )
 

e- Generating   from the truncated gamma distribution with an     shape parameter and a rate 

parameter  . 

𝜋(               )    
.    

 
 
/  
   *   (  ∑      

 )

 

   

+ {   
  

    
 
}          

f- Sampling   by forming a BD with the parameters ( ,  ), as follows:  

𝜋(                   )      (   )   
  
 
 

* (
 
 
  )+ 

   {    ∑   
 
 
  

 

   

}      

     The efficient GS is based on this full condition to extract samples from every full (cpd). The 

process of sampling will continue until all chains converge. 

5- Simulation study 

     In this section, the performance of the proposed method is illustrated by simulations. The proposed 

method is compared with Bayesian lasso median regression, ordered logistic regression and ordinal 

probit Regression, as in Jeliazkov et al. (2008). These methods are evaluated based on the median of 

mean absolute deviations (MMAD) over 100 replications and standard deviation (SD). The Bayesian 

estimates are posterior mean estimates using 11,000 samples of the Gibbs sampler after burn-in the 

first 1000 samples.  In this simulation, we set      . 

5-1 Simulation  

     In this simulation study, we generate 200 observations from the model       
     , where     is 

a vector of 10 covariates that are simulated from standard multivariate normal distribution, and    is 

simulated from standard normal distribution. We set   (                   ) and 

  (                            ). In the next simulation, we will consider the following values: 

Table 1-Summarized the MMAD and SD results for simulation. 

Method MMAD SD 

BABROM 0.44688 0.35022 

ORD (logistic) 3.68581 1.34067 

ORD (probit) 0.54191 0.56730 

 

Table 2-List parameter estimates for simulation. 

Method B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 

B (True) 3 2 0 0 3 0 0 0 0 0 

BABROM 3.110 2.110 0.033 0.022 3.012 
-

0.011 

-

0.033 

-

0.002 
0.051 0.004 

ORD 

(logistic) 
6.2 4.066 0.051 0.027 6.243 

-

0.053 

-

0.153 

-

0.025 
0.147 0.02 

ORD 

(probit) 
3.507 2.299 0.042 0.02 3.523 

-

0.024 

-

0.076 

-

0.008 
0.08 0.004 
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We can see from the results of our proposed method that BABROM has smallest MMAD and SD.  

The estimates of our proposed method are close to the B (True) compared with the other methods. 

In Table- 2, we list cut-point estimates for simulation. 

Method                           

  (True) 0 0.5 1.5 2 

BABROM -0.161 0.476 1.423 2.052 

ORD (logistic) 0.007 0.967 2.984 4.012 

ORD (probit) 0.008 0.551 1.685 2.258 

     The estimates of BABROM are very close to   (True) compared with the other methods in 3 cut-

points of 4. 

 

Table 4-MSE for the cut-points of simulation 2 

Method                         

BABROM 0.05611 0.04311 0.0622 0.10011 

ORD (logistic) 0.1816 0.40203 2.52907 4.57999 

ORD (probit) 0.05629 0.06157 0.13191 0.22358 

From Table-3, we can see that our proposed method, BBROMR, has the smallest MSE in all cut-

points. 

     Figure-0 shows that the sampler is moving from a point to another in relatively few steps. Figure-1 

illustrates that the conditional posteriors (CP) are in fact the desired stationary truncated univariate 

normal distributions. 

 

Figure 1-The trace plot in simulation. 
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Figure 2-Posterior histograms for the variables in simulation. 

 

6- Real data application 

     In this section, we apply our proposed method by using real data. The real data was collected 

through a questionnaire for employees and workers of the Oil Products Distribution Company in Thi-

Qar- IRAQ. The questionnaire was about the management of the company and how to deal with 

employees. Sample size is 150 observations and the number of the covariates is 17. 

     For real data, we estimated the parameters for our proposed method and the comparison methods. 

The results indicated that our proposed method is better than the other comparison methods. 

 

Table 5-Parameters estimation 

covariate 
Method 

BABROD ORD (logistic) ORD (probit) 

   0 0 0 

   0.02 0.49 0.26 

   0 -0.05 -0.03 

   0.04 0.63 0.31 

   -0.07 -0.53 -0.31 

   0 0.12 0.05 

   0 0.03 0.02 

   -0.04 -0.09 -0.07 

   0.09 0.31 0.19 

    0.06 0.42 0.31 

    0.03 0.06 0.02 

    -0.04 -0.03 -0.01 

    0.08 0.08 0.06 

    0.07 0.13 0.07 

    0.18 0.6 0.32 

    -0.03 -0.32 -0.17 

    0.17 0.98 0.53 
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Figure 3-Trace plots of the real data. 

 
Figure 3-Histograms based on posterior samples of the real data. 

 

     We computed the Deviance Information Criteria (DIC) for the three models (BABROM, ORD 

(logistic), and ORD (probit)). The values were 350.8743, 389.2391 and 378.2251, respectively. The 

results of deviance information criteria show that our proposed methods perform better than the ORD 

(logistic) and ORD (probit) method. 



Al-Jabri and Al-Hamzawi                              Iraqi Journal of Science, 2020, Special Issue, pp: 170-178 

      

067 

7- Conclusion 

     In this paper, we developed a Bayesian adaptive bridge regression for ordinal model in the 

univariate case. Our method is based on a conditional conjugate prior distribution for regression 

parameters. We developed a new hierarchical representation for our method. To estimate the ordinal 

regression parameters, we introduced a Gibbs sampler for generating samples from the posterior 

distribution. In a simulation study, we found that the MMAD, SD, MSE, the cut-point and DIC 

indicated that our proposed method is better than the comparison methods. The studies showed that, in 

comparison with existing ORD (logistic) and ORD (probit), the Bayesian ordinal regression method 

by using the conjugate prior distribution generally performs better than the other methods. 
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