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Abstract 

     This paper is concerned with studying the numerical solution for the discrete 

classical optimal control problem (NSDCOCP) governed by a variable coefficients 

nonlinear hyperbolic boundary value problem (VCNLHBVP). The DSCOCP is 

solved by using the Galerkin finite element method (GFEM) for the space variable 

and implicit finite difference scheme (GFEM-IFDS) for the time variable to get the 

NS for the discrete weak form (DWF) and for the discrete adjoint weak form 

(DSAWF) While,  the gradient projection method (GRPM), also called the gradient 

method (GRM), or the Frank Wolfe method (FRM)  are used to minimize the 

discrete cost function (DCF) to find the DSCOC. Within these three methods, the 

Armijo step option (ARMSO) or the optimal step option (OPSO) are used to 

improve the discrete classical control (DSCC). Finally, some illustrative examples 

for the problem are given to show the accuracy and efficiency of the methods. 
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Gradient Method, Gradient Projection Method, Frank Wolfe Method. 

   

الحلهل العددية لديطرة امثلية تحكمها مدألة قيم حدودية من نهع القطع الزائد غير خطية ذات 
 معاملات متغيرة باستخدام طريقة مدقط الانحدار ، طريقة الانحدار وطريقة فرانك فهلف.

 

 ايمان حدين مخلف الروضاني ، *مير علي الههاسيجميل ا
 قدم الرياضيات, كمية العمهم, الجامعة الطدتظصرية, بغداد, العراق

 الخلاصه
من الظطط الطقدم يحكطها مدألة قيم  دألة سيظرة امثمية تقميديةدراسة الحل العددي لطيتظاول هذا البحث       

طدألة الديظرة الامثمية التقميدية من الظطط ل حلايجاد التم   .ذات معاملات متغيرة خظيةغير حدودية زائدية  
لطتغير الفضاء وطريقة الفروقات الطظتهية الغير صريحة صر الطظتهية طريقة كاليركن لمعظامزج الطقدم بهاسظة 
الحل الطرافق من  من الظطط الطقدم  ةالطتقظعة لمصيغة الضعيف لايجاد الحل لطعادلة الحالةلطتغير الزمن 

او  فرانك فهلف او الانحدارطريقة  كل منمع كمك  لمحالةالظطط الطقدم لمصيغة الطرافقة لمصيغة الضعيفة 
من خلال ايجاد القيطة الصغرى لدالة  لايجاد سيظرة امثمية تقميدية من الظطط الطقدم دارالانحطريقة مدقط 

  قيطةلتحدين  الطثمىخظهة التم استخدام خظهة ارميجه او . ضطن هذه الظرق الثلاث, الهدف من الظهع الطقدم
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التهضيحية لمطدألة لأعهار العددية ديظرة التقميدية من الظطط الطقدم. في الظهاية, تم إعظاء بعض الأمثمة لا
 .دقة وكفاءة هذه الظرق 

1. Introduction 

     Optimization problems have wide applications in medicine, sciences and many other fields [1, 2]. 

These applications are usually governed by partial differential equations (PDEs) or ordinary 

differential equations (ODEs).  

     Many researchers investigated the numerical solution of optimal control problems (NSOCPs) 

governed by nonlinear elliptic PDEs [3], semilinear parabolic PDEs [4], one dimensional linear 

hyperbolic PDEs with constant coefficients(LHPDES) [5], two dimensional linear and nonlinear 

hyperbolic PDEs with constant coefficients [6-9], two dimensional linear hyperbolic PDEs but with 

variable coefficients [10], or by one dimensional nonlinear ODEs [11]. The outcomes of these works 

have driven us to focus our interest on investigating the NSDCOC governed by the VCNLHBVP. 

     In this paper, the continuous classical optimal control problem (COCOCP) described by the 

VCNLHBVP is discretized by applying the Galerkin finite element method (GFEM) for the space 

variable and implicit finite difference scheme (GFEM-IFDS) for the time variable to get the DSCOCP 

((the discrete weak form (DWF) for the VCNLHBVP and the discrete cost function (DGF)). To find 

such solutions, we should discuss the existence and the uniqueness theorem for the NS for the DWF. 

The proof of the existence theorem for the discrete classical optimal control (DCOC) and the 

necessary conditions of the problem are studied in a previous article [9] and they are all needed here. 

On the other hand, the DSCOCP is found numerically by using the GFEM-IFDS to find the NS of the 

DWF and then the DCOC by solving the optimization problem (the minimum of DCF) by using, 

separately, each one of the optimization methods; the GM, the GPM and the FWM. Within these three 

methods, the ARSO or the OPSO are used ,separately, to get better direction of the optimal search. 

Some illustrative examples for this problem are given to show the performance of each of these 

methods. 

2. Statement of the COCOCP [6]  

     Let      be a bounded open region, with boundary   , and let   ,   -  0<T<  be a time 

space. The COCOCP governed by the VCNLHBVP, with control    ( ⃗  )    (  ) and state   
  ( ⃗  )    

 (  ), is 

        ̿( ⃗  )   ( ⃗    )      ,  ( ⃗  )        , ⃗  (   )                  (1)      

With the conditions 

 ( ⃗  )   ,  ( ⃗  )         ,   -                                                                              (2) 

 ( ⃗  )    ( ⃗),  ⃗                                                                                                          (3) 

  ( ⃗  )   
 ( ⃗),   ⃗                                                                                                        (4) 

     where    
     

  

   
0 ̅  ( ⃗  )

 

   
1,  ̿( ⃗  )    ( ) (        ) are positive arbitrary 

functions,      ( ⃗  )   
 ( ) is a desired control and     ( ) is a given function.  

The set of the admissible continuous classical controls is represented by    , where 

     *    
 ( )|  ( ⃗  )   , a.e. in  }, with      is a convex and compact set. 

The cost functional is defined by 

  ( )=∫ ,
 

 

 

 
(    )

  
 

 
(    )

 -  ⃗                                                                         (5) 

where      ( ⃗  )   
 ( )  is the desired state. 

The CCOCP is to obtain       which minimizes equation (5). 

Now, the weak form (WF) of the problems (1-4) for     
 (  )  is formulated by  

〈     〉   (     )  ( ( ⃗    )  )  (   )  (    )          
 (  )             (6)  

( ( )  )  (    ),   ⃗                                                                                                    (7) 

(  ( )  )  ( 
   ),   ⃗                                                                                                   (8) 

 where      ,      (  ) and the bilinear form is obtained by 

   (     )   
     

 

( ̅  ( ⃗  )     )   ( ̿ ( ⃗  )   )   

Assumption A:  For each       and    , the following inequality is satisfied 

(I)  (     )            , where      
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(II)   (     )        
 , where     . 

Now, suppose that     , then equalities (6-8) can be rewritten as follows 

〈 
 
  〉   (     )  ( ( ⃗    )  )   (   )  (    )                                        (9) 

〈    〉  〈   〉                                                                                                                      (10) 

 (    )  ( 
   ),   ⃗                                                                                                     (11) 

( 
 
  )  (    ), ),  ⃗                                                                                                    (12) 

3. Statement of the DSCOCP [6]: The COCOCP is discretized by applying the GFEM as follows: 

First, consider  (     ) is dependent of t, the region   can be divided into subregions (a polyhedron) 

for every integer (s), and    
          be an admissible regular triangulation of  ̅ i.e.  ̅  ⋃   

  
   . 

Second, let   
  ,  

      
 -  be a subdivision of the interval   and for             , where each 

interval has a same length (    
 

 
 ). Let       be the space of continuous piecewise affine 

mapping (CPAM) in  . The set of admissible discrete classical controls (DCC) is  

   
  * ̅   ̅     | ̅( ⃗  )   ̅     

        }
 
  where        

    
  

Now,       , and for            , the DWF of (9-12) can be obtained by 

. 
   
   

 
   /

 
    (    

   )    ( (  
      

 )  )
 
   (  

    (  
 )  )

 
            (13) 

(    
    

   )    (    
   )                                                                                          (14) 

(  
   )  (  

   )                                                                                                             (15) 

( 
 
   )  (  

   )                                                                                                              (16) 

where   
   (  

 ) ,  
 
   (  

 )       for          ,   
     and   

    ( ). 

The discrete cost functional (DCF)    
 (  ) is given by 

  
 (  )     

   

   

∫  
 

 
,
 

 
(    

    (    
 ))  

 

 
(  

    (  
 )) -  ⃗                               (17) 

Hence, the DSCOCP is to find  ̅     
 , such that 

  
 ( ̅ )           

    
 (  )  

Assumption (B): (I) Suppose that the function   is defined on    
    

    continuous with respect 

to   
  and satisfies the following: 

| ( ⃗   
      

 )|    ( ⃗)        
   , for              ,   ( ⃗)   ( ⃗   

 )    ( ) and    . 

(II)| ( ⃗   
      

 )   ( ⃗   
    

 )|        
    

   , for  (           ) and   denotes the 

Lipschitz constant for any  . 
3.1 Theorem (Existence and uniqueness of the DWF) [9]: For any fixed   (       ), and for 

fixed DCC        
 , the DWF (13-16) has a unique solution    

     (  
    

      
 ), (for 

sufficiently small   ). 
4. Existence of the DSCOCP:  

The following assumptions are useful to study the existence of the DCC. 

Assumption C: The cost functional is of Caratheodary type, and satisfies : 

|
 

 
(    

    (    
 ))

 
 
 

 
(  

    (  
 ))

 
|    

 ( ⃗)    (  
 )  ,              

where   
 ( ⃗)    

 ( ⃗   )   
 ( ) and     ,               

The proofs of the following theorem and lemmas are shown in a previous article [9]. 

4.1 Theorem: The operator          
  is continuous on   ( ). 

4.2 Lemma: The DCF is continuous with respect to (w.r.t.) the DCC on   ( ). 
4.3 Lemma: If the DCC    , ̅  are bounded in   ( ), and corresponding to the DSCCs   

  and 

 ̅ 
    

      
 , then the discrete states are   

  ,  ̅ 
    

      
 , respectively, then (    

       ): 
    

   
        

   
  and    

 
   

        
   

  

Or     
   

   ̅, and    
 
   

    ̅                                                                                                    

5. The Necessary conditions for DCCOCP 

 The following theorem deals with the necessary conditions of the DCCOCP governed by 

VCNLHBVP.  
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5.1 Theorem: Assume that DCF (17) is given and the DAWF (for the state equation)      
  =    

(  
    

        
 ) is given (for              ) by 

(    
    

   )
 
     (  

   )    .  
      

 (  
      

 )  /
 
  

                                                            (    
    

 (    
 )  )

 
                                            (18) 

    
    

       
                                                                                                                  (19) 

  
    

                                                                                                                           (20) 

where   
    

     (            )  Then the Fréchet derivative of DCF is given by 

(D  
 (  

 )   
     

 )     
   

   

.   
 
 (  

      
    

    
 )    

 /
 

 

                                        
   

   

(  
   (  

    
 (  

 ))    
 )                                          (21) 

 

      where   
     

      
 ,    

    
     

 
 
  for (         )  and    is called the Hamiltonian.                                                                                                                                               

5.1 Corollary: The inequality  

   
   

   

(  
   (  

    
 (  

 ))    
 ) 

 

       
     

                                                      (22) 

is equivalent with the minimum principle blockwise             

 (  
   (  

    
 (  

 ))   
 )
  
    
  
     

 
(  
   (  

    
 (  

 ))   
  )
  

                          (23) 

6. Main results (Solution methods):  
     This section is devoted to present our method which is used to solve the DCCOC governed by the 

VCNLHBVP, the DWF (and the DAWF) are solved by using the mixed GFEM-IFDS, while the 

minimum values for  the DCF and the DCOC are found by using ,separately,  each one of the GM, 

FWM, or GPM. Within each of these three methods, the  ARSO and the OPSO  are used, separately, 

to improve the value of the DCOC. The following algorithm shows the steps of this method in details.  

6.1 ALGORITHIM: Let     (   ), *  + be a sequence with    (   ), or    (   -, for each  . 
   . and let       be an initial control. 

Step1: Set     . 

Step 2: Solve the DWF (13-16) (the DAWF (18-20)) by using GFEM-IFDS to get the state     (the 

adjoint solution    ), and then calculate  (  ) and     (  ) from (17) and (21), respectively. 

Step 3: Find a new direction (new control)       (i.e. a direction      ), by applying the 

following methods, separately: 

(a) GM: Find      , such that:           
 

 
   (  ) 

(b) FWM: Find      , such that: (   (  )      )     
   

(   (  )     
 ) 

(c) GPM: Find       , such that: 

       (   (  )      )  
 

 
             

   
(   (  )     )  

 

 
        

Step 4: Solve the DWF (13-16) to find the state solution    corresponding to the new   . 

Step 5: Calculate    (   (  )      ) , (     
 

 
    (  )    Z in the GM)  

If     ,  then stop the process . (where     is the norm-2 with respect to vector space  ). 

Step 6: Choose    by using one of the following methods: 

ARSO: Assume an initial value    ,    )(or    ,   -). If    satisfies the inequality  

  ( 
 )   (     (     ))   (   )   

     
we set     ⁄ , and choose the last     (   ) for  ,  that satisfies the above inequality. If not 

satisfied, we denote     , and choose for    the first     (   ) (or     (   - in GM) that 

satisfies the above inequality. 

OPSO: Find an     ,   -, such that: (   (  )      
 )     

   ,   - 
(   (  )     )  

Step 7: Set          (     ),        and we go to step 2. 

7. Numerical examples 

    This section contains some illustrative examples which show the activity of the methods which are 
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 given in algorithm (6.1). MATLAB software is used to achieve the above algorithm. The GFEM-

IFDS is used in step (2) to find the DS    (   ), with     (     )     , (        ). In the 

GM, GPM and FWM, the parameters take the values of         and       . 

7.1 Example: Consider the following COCOCP governed by the VCNLHBVP: 

    
 

  
0   

  

  
1  

 

  
0  

  

  
1          ( ⃗  )     ( )     (  )      ,  ( ⃗  )   , 

  [0,1],   ,   -  ,   - , &  ⃗  (   ). 
 ( ⃗  )   ,  ( ⃗  )           ,   -.   

 ( ⃗  )   , and     ( ⃗  )        (   
 (   ))(    ) ,     ⃗          

where   ( ⃗  )  
         ( ). (  (     ))   /

 
    (    (  (    ))   ( )(     ) .

   

 
 
 

 
/  

       (  (    ))   ( ) .
  

 
 
 

 
/       (  (    ))   ( )(      ) .

  

 
 
 

 
/)         ( ) .

    

 
 

 

 
/ (  (  (    ))   )    (      )   ( )((  )        )(  (  (    ))    )            

The control constraint is   ,      - and the cost function (5) with 

  ( ⃗  )         (   )(   
 (   ))    (  ),  ( ⃗  )   , and 

  ( ⃗  )  {
                          
                             

  

with the initial control 

  ( ⃗  )       (   
  ) ,  ( ⃗  )   . 

First, depending on the above initial control and its corresponding state, the following results are 

obtained according to the optimization methods with ARSO . 

(I) In the GM: the optimal control and the corresponding state are obtained after    iterations. The 

results are:   ( 
 )=4.6678e-06,    9.5e-03, and   =1.1e-03 

where    and    are the discrete maximum errors for the state and control, respectively. 

The optimal control and its corresponding state are obtained at        by the following figures. 

 
Figure 1- The optimal control                   Figure 2- The Corresponding state 

 

(II) In the FWM: the optimal control and corresponding state are showed after     iterations, the 

results are:   ( 
 )=7.0095e-06,    9.8e-03, and   =9.9e-03  

The following figures show the optimal control and its corresponding state at      : 

 
                  Figure 3- The optimal control                  Figure 4- The Corresponding state 
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 (III) In the GPM: the optimal control and corresponding state are obtained after   iterations. The 

results are:   ( 
 )=4.6450e-06,    9.5e-03, and   =7.7140e-04  

The following figures of this method are also shown at      . 

 
               Figure 5- The optimal control                   Figure 6- The Corresponding state 

 

Second, the following results are obtained by using the optimization methods with OPSO: 

(I) In the GM and GPM: the optimal control and corresponding state are given after   iterations  

The results in this case are:   ( 
 )=4.5746e-06,    9.5e-03, and   =1.5e-03. 

The optimal control and its corresponding state are shown at       by the following figures. 

 
                  Figure 7- The optimal control                  Figure 8- The Corresponding state 

 

 (II) In the FWM: the optimal control and corresponding state are given after    iterations. The results 

are:   ( 
 )=7.8110e-06,    9.7e-03, and   =9.8e-03  

The following figures show the optimal control and its corresponding state at     . 

 
                 Figure 9- The optimal control                    Figure 10- The Corresponding state 

 

7.2 Example: Consider the following CCOCP governed by the VCNLHBVP: 

     
 

  
0(    )

  

  
1  

 

  
0(   )

  

  
1     ( ⃗  )     ( )     (  )      ,  ( ⃗  )  

    [0,1],    ,   -  ,   - ,   ⃗  (   )   



Al-Hawasy and Al-Rawdanee                        Iraqi Journal of Science, 2020, Special Issue, pp: 161-169 

      

161 
 

 ( ⃗  )   ,  ( ⃗  )           ,   -.   
 ( ⃗  )   , and    ( ⃗  )    (   )(   ),   ⃗    

where  ( ⃗  ) =      ( )(     )(     )–         ( )(     )       ( )(     )(     )  
       ( )(    )(    )        ( )(     )(    )         ( )(     )(     )  
       ( ) (    )         ( )(    )(    ) 
The control constraint is   ,    - and the cost functional (5), with 

  ( ⃗  )    (   )(   )    ( ),  ( ⃗  )   , and 

  ( ⃗  )  {
                          
                          

  

with the initial control 

  ( ⃗  )  {

                          
                             
                             
                         

 ,  ( ⃗  )   . 

First, depending on the above initial control and its corresponding state, the following results are 

obtained according to the optimization methods with ARSO. 

(I) In the GM: the optimal control and corresponding state are obtained after    iterations. The results 

are:   ( 
 )=6.6397e-06,    5.8e-03, and   =5.5014e-04. 

The optimal control and its corresponding state at       are shown by the following figure. 

 
                 Figure 11- The optimal control                  Figure 12- The Corresponding state 

 

(II) In the FWM: the optimal control and corresponding state are obtained after    iterations. The 

results are :  ( 
 )=7.8843e-06,    6.1e-03, and   =4.1e-03.  

The following figures show the optimal control and its corresponding state. 

 
                  Figure 13- The optimal control                   Figure 14- The Corresponding state 

 

(III) In the GPM: the optimal control and corresponding state are obtained after   iterations The results 

are:   ( 
 )=6.6369e-06,    5.8e-03, and   =3.9563e-04.  

The following figures show the optimal control and its corresponding state. 
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                  Figure 15- The optimal control                  Figure 16- The Corresponding state 

 

Second, the following results are obtained by using the optimization methods with OPSO: 

(I) In the GM and GPM: the optimal control and corresponding state are given after   iterations, with 

the results in this case are:   ( 
 )=6.6890e-06,    5.7e-03, and   =3.6205e-04. 

The optimal control and its corresponding state are shown by the following figures. 

 
       

                 Figure 17- The optimal control                Figure 18- The Corresponding state 

  

(II) In the FWM: the optimal control and corresponding state are given after    iterations. The results 

are:   ( 
 )=1.0879e-05,    6.7e-03, and   =9.0e-03.  

The following figures show the optimal control and its corresponding state at      .   

 
                Figure 19- The optimal control                  Figure 20- The Corresponding state 

 

Conclusions: The GFEM-IFDS is applied to solve the DWF of VCNLHBVP as well as the DAWF to 

find the NS, using thestep length of the space variable         and step length of the time variable 

       , along with the  parameters (       ,       and       ) in the ARSO. From the results 

of the two examples above we can point out the following conclusions: 

 (I) The GFEM-IFDS (according to the use of the values   and    ) is an accurate, appropriate and fast 

method to solve the DWF and DAWF. 
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(II) The results obtained by applying the GPM with ARSO are better than those  obtained by using the 

GM On the other hand, the results obtained by these two  methods are better and faster than those 

obtained by applying the  FWM with ARSO.  

(III) The results obtained by the GPM and GM with OPSO method are better and faster than those 

obtained by using the FWM with the OPSO method. 

(IV) For the OPSO and the ARSO, which were used inside the GPM, although the GM method was 

faster than the FWM one, i it cannot be used in general, since it is only suitable  for a quadratic cost 

function.     
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