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Abstract

This paper is concerned with studying the numerical solution for the discrete
classical optimal control problem (NSDCOCP) governed by a variable coefficients
nonlinear hyperbolic boundary value problem (VCNLHBVP). The DSCOCP is
solved by using the Galerkin finite element method (GFEM) for the space variable
and implicit finite difference scheme (GFEM-IFDS) for the time variable to get the
NS for the discrete weak form (DWF) and for the discrete adjoint weak form
(DSAWF) While, the gradient projection method (GRPM), also called the gradient
method (GRM), or the Frank Wolfe method (FRM) are used to minimize the
discrete cost function (DCF) to find the DSCOC. Within these three methods, the
Armijo step option (ARMSO) or the optimal step option (OPSQO) are used to
improve the discrete classical control (DSCC). Finally, some illustrative examples
for the problem are given to show the accuracy and efficiency of the methods.

Keywords: Numerical Classical Optimal Control, Galerkin Finite Element Method,
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1. Introduction

Optimization problems have wide applications in medicine, sciences and many other fields [1, 2].
These applications are usually governed by partial differential equations (PDEs) or ordinary
differential equations (ODEs).

Many researchers investigated the numerical solution of optimal control problems (NSOCPs)
governed by nonlinear elliptic PDEs [3], semilinear parabolic PDEs [4], one dimensional linear
hyperbolic PDEs with constant coefficients(LHPDES) [5], two dimensional linear and nonlinear
hyperbolic PDEs with constant coefficients [6-9], two dimensional linear hyperbolic PDEs but with
variable coefficients [10], or by one dimensional nonlinear ODESs [11]. The outcomes of these works
have driven us to focus our interest on investigating the NSDCOC governed by the VCNLHBVP.

In this paper, the continuous classical optimal control problem (COCOCP) described by the
VCNLHBVP is discretized by applying the Galerkin finite element method (GFEM) for the space
variable and implicit finite difference scheme (GFEM-IFDS) for the time variable to get the DSCOCP
((the discrete weak form (DWF) for the VCNLHBVP and the discrete cost function (DGF)). To find
such solutions, we should discuss the existence and the uniqueness theorem for the NS for the DWF.
The proof of the existence theorem for the discrete classical optimal control (DCOC) and the
necessary conditions of the problem are studied in a previous article [9] and they are all needed here.
On the other hand, the DSCOCP is found numerically by using the GFEM-IFDS to find the NS of the
DWEF and then the DCOC by solving the optimization problem (the minimum of DCF) by using,
separately, each one of the optimization methods; the GM, the GPM and the FWM. Within these three
methods, the ARSO or the OPSO are used ,separately, to get better direction of the optimal search.
Some illustrative examples for this problem are given to show the performance of each of these
methods.

2. Statement of the COCOCP [6]

Let K ¢ R? be a bounded open region, with boundary 9K, and let E = [0, T], 0<T<c be a time

space. The COCOCP governed by the VCNLHBVP, with control w = w(X,t) € L?( p) and state yp =

P, (X, t) € HE(K), is

Y —xp +aX )Y = g(X, P, t) + © — wg, V(X,t) €Ep =KXE X = (y,2) D)
With the conditions

Y, t) =0,V(X,t) € dp = K x [0,T] )

P(*,0) = YP°(X) VX € K 3)

Y (%,0) =yi(%), VX €K (4)

2
where y= Y 16%[%1(5& t) %], a(x,t) e L°(K),(Vo,t =1,2) are positive arbitrary
T,0= T

functions, w; = w4 (%, t) € L?(p) is a desired control and g € L?(p) is a given function.
The set of the admissible continuous classical controls is represented by W, 4, where
Waa = {w € L2(p)| w(X, t) € U, a.e. inp}, with U c R? is a convex and compact set.
The cost functional is defined by

Go(@)=[[; @ = Ya)* + 5 (@ — wg)?]dxdt (5)
where Y, = Y, (%,t) € L?(p) is the desired state.

The CCOCP is to obtain w € W,; which minimizes equation (5).
Now, the weak form (WF) of the problems (1-4) for p € H}(K) is formulated by

Wee, @) + Bt Y, ) = (&Y, 1), )k + (0, 9)x—(wq, @)k, Vo €S = H5(K) (6)
W(0),9) = W° ¢), VX €K (7)
(lpt(o)' (p) = (lle (P), V)_C) € K (8)

where ° € S, ! € L?(K) and the bilinear form is obtained by
2
B(t,Y,9) = X l(dgf (X, OV, Vo)k + (@ (X, )P, @)k
T,0=

Assumption A: For each ¢, € Sand t € E, the following inequality is satisfied
B Y, @)l <oy 1Y l11l @ Iy, where gy > 0
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(1) |B(t, @, 9)| = o, Il @ 113, where o, > 0.
Now, suppose that i, = , then equalities (6-8) can be rewritten as follows

(o) + Bt Y, 0) = (g(X, ¥, 8), @)k +(w, P)x—(wa, Pk, Y €S ©)
WY, 0) = ) (10)
(Wo, ) = ¥°,9), VX EK (11)
o) = @' 9),) VX EK 12)

3. Statement of the DSCOCP [6]: The COCOCP is discretized by applying the GFEM as follows:
First, consider B(., ., t) is dependent of t, the region K can be divided into subregions (a polyhedron)
for every integer (s), and Z7,i = 1, ...,n be an admissible regular triangulation of K i.e. K = UL, Z{.
Second, let Ef = [t7,t,,] be a subdivision of the interval E and for j = 0,1,...,m — 1, where each

interval has a same length ( At =% ). Let Sy c S be the space of continuous piecewise affine
mapping (CPAM) in K. The set of admissible discrete classical controls (DCC) is

o1 = {@0 = @° € Wyy|@(%,t) = @;; € US in p;;}, where p;j: = Z7 X E}
Now, V ¢ € S, and for j = 0,1, ..., m — 1, the DWF of (9-12) can be obtained by

(Go1 =G 0), + BB 11, 0) = BU(g(5.¥511), @), +At(0] — g (), 0) (13)
Wi — Vi )k = At(C;H; Pk (14)
W5 )k = @° 9k (15)
G Pk = @ @)k (16)

where 1§ = (t]), (;j. ={(t}) €S forj=0,1,..,m,¢° €S, and ' € L*(K).
The discrete cost functional (DCF) G§(w?) is given by
m-—1

G3w) =aL 3 (W51 — Ya(ti1))? + 5 (0f — wa(t)?]d2 (17)
Hence, the DSCOCP is to find @ € W, such that
Gy (@°) = minseys, G§(w®)
Assumption (B): (I) Suppose that the function g is defined on Z7 x Ejs X R continuous with respect
to ¥; and satisfies the following:
lg(Z. 67, 9541)| < @D + alyi, ] for j=01,..,m—1,H;& = H&t}) € L*(K)and a > 0.
|g(Z &8, 951) —g(Et5,95)| < Clpjyy =93], for (G=0,1,..,m—1) and C denotes the
Lipschitz constant for any j.
3.1 Theorem (Existence and uniqueness of the DWF) [9]: For any fixedj (0 < j <m — 1), and for
fixed DCC w* € Wj,;, the DWF (13-16) has a unique solution ¢} s = ¥° = (Y5, 95, ..., ¥5,), (for
sufficiently small At).
4. Existence of the DSCOCP:

The following assumptions are useful to study the existence of the DCC.

Assumption C: The cost functional is of Caratheodary type, and satisfies :

5 @51 = a(th0)” +Z(0f — 0a (@)’ < ¥ @ + 6,2 Vi =0,1,..,m— 1

where y7 (X) = y*(%,t;) € L*(K)and 6; = 0, ¥j = 0,1,...,m — 1.

The proofs of the following theorem and lemmas are shown in a previous article [9].

4.1 Theorem: The operator w® ~ ¥* = 3 s is continuous on L?(K).

4.2 Lemma: The DCF is continuous with respect to (w.r.t.) the DCC on L?(p).

4.3 Lemma: If the DCC w® ,@° are bounded in L?(p), and corresponding to the DSCCs w; and
w; = wj +Awj, then the discrete states are ¥; , 1/_)]5 =1j + Ay;, respectively, then (Vj =
0,1,..,m):

I A3 IE< c Il Aw® IIZ and || AC IR<cllAw® 13

Or Il Ay} I2< ¢, and Il AC;, IZ< @

5. The Necessary conditions for DCCOCP

The following theorem deals with the necessary conditions of the DCCOCP governed by
VCNLHBVP.
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5.1 Theorem: Assume that DCF (17) is given and the DAWF (for the state equation) n;s = n° =
Mo, N3, i1y isgiven (forj =m —1,m — 2,...,0) by
(6501 — 85,0), + 8t B(n5,0) = At (n59ys,, (&, ¢f+1),<p)K +

At (Y51 = Pa(tn) 9), (18)
N1 —nj = At gy (19)
M = fm =0 (20)

where n3, ¢; € Sg (Vj = 0,1, ...,m). Then the Fréchet derivative of DCF is given by
m—1

(DG (w) 0 —w) = At T (Hes (6 ¥fun ) ), 005
j:O J K

m—1
= At ZO (] + @ (w] — wa (), Awj)k (21)
]=

where wf, w} € WSy, Awf = o — w$ for (j=0,1,..,m), and H* is called the Hamiltonian.
5.1 Corollary: The inequality

m—1
At ¥ (1] + @(w] — wy(8)), Awf)x = 0,Vw; € Wy, (22)
j=0
is equivalent with the minimum principle blockwise vj = 0,1,..m — 1
(77]5 + @ (w; — wd(tjs)),a)js)Ti = wggli/il/ls (r)JS + @ (wj — wd(tjs)),ij)T. (23)
ad t

6. Main results (Solution methods):

This section is devoted to present our method which is used to solve the DCCOC governed by the
VCNLHBVP, the DWF (and the DAWF) are solved by using the mixed GFEM-IFDS, while the
minimum values for the DCF and the DCOC are found by using ,separately, each one of the GM,
FWM, or GPM. Within each of these three methods, the ARSO and the OPSO are used, separately,
to improve the value of the DCOC. The following algorithm shows the steps of this method in details.
6.1 ALGORITHIM: Let,c € (0,1), {6°} be a sequence with §° € (0,), or §° € (0,1], for each s.
u > 0.and let w® € U be an initial control.

Stepl: Sets: = 0.
Step 2: Solve the DWF (13-16) (the DAWF (18-20)) by using GFEM-IFDS to get the state ° (the
adjoint solution n* ), and then calculate G(w®) and DG (w®) from (17) and (21), respectively.
Step 3: Find a new direction (new control) uS € U (i.e. a directionu® — w%), by applying the
following methods, separately:
(@) GM: Find u® € U, suchthat: u’=w"— iDG (w*%)
(b) FWM: Find u® € U, such that: (DG (w®),u® — %) = meilr]l(DG (w%),u — w%)
u
(c) GPM: Find u’® € U , such that:
& = (DG (w%),u’ — w%) +§ | us —ws |12 = min(DG (), u - °) +§ Il u— s |I?
u
Step 4: Solve the DWF (13-16) to find the state solution y° corresponding to the new u?.
Step 5: Calculate £° = (DG (w5),u® — w5), (&5 = —% Il DG (w®) I*> Z in the GM)

If €5 = 0, then stop the process . (where [I-]| is the norm-2 with respect to vector space Q).
Step 6: Choose 6° by using one of the following methods:
ARSO: Assume an initial value §° € [0, +o0)(or §° € [0,1]). If §° satisfies the inequality

Xs(6%) = G(ws + 85U’ — %)) — G(w®) < §5hES
we set § := §/c, and choose the last§ € (0,) forss, that satisfies the above inequality. If not
satisfied, we denote & := §c, and choose for §° the first 65 € (0,0) (or §° € (0,1] in GM) that
satisfies the above inequality.

OPSO: Find an 6° € [0,1], such that: (DG (w®),u’ — w®) = 5Sré1[ion1] (DG (w%),u — w®)

Step 7: Set ws*! = w® + §(u® — w®), s: = s + 1 and we go to step 2.
7. Numerical examples
This section contains some illustrative examples which show the activity of the methods which are
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given in algorithm (6.1). MATLAB software is used to achieve the above algorithm. The GFEM-
IFDS is used in step (2) to find the DS y° (%), withn =9 (h = 0.1), m = 20, (At = 0.05). In the
GM, GPM and FWM, the parameters take the values of b = ¢ = 0.5 and u = 0.5.

7.1 Example: Consider the following COCOCP governed by the VCNLHBVP:

Yo =2 [en 2] - 2?2 + ™ Ep = g (£ 1) + Sin@) ~sina) + 0 —wg, VED Ep,
E =[01],K=[01] x [0,1], & ¥ = (¥, 2).
Y&, t) =0,V(X,t) € dp=0K x[0,T].

Y(#,0) = 0,and P.(%,0) = 0.75yz(1 — e*A"D)(1— y), VX€K
3 7 eZsi (~zz-1)-1 .
ze sm(t)(e ) —eV (Zy e(—z(z— 1))Sin(t)(22 —1) (3 y E) +

where gix,t) = 5 PR

2y z (2= D)gin(t) (% - %) — yze(-2@=D)gin(r)(2z — 1)2 (%y - %)) + yz sin(t) (3Ty -

2) (et~ 1) — 1)y ze™ = Dsin()((3y)/4 — 3/4)(e(7E= D) - 1)
The control constraint is U = [—0.5,1] and the cost function (5) with
Ya(%,t) = 0.75 yz(1 — y)(1 — e?A=9)sin(—t), V(X,t) € p, and
0.25 ,for0<t<0.5
—-0.25 ,for05<t<1
with the initial control
wo(X,t) = 0.35 — (2te™") ,V(%,t) € p.
First, depending on the above initial control and its corresponding state, the following results are
obtained according to the optimization methods with ARSO .
() In the GM: the optimal control and the corresponding state are obtained after 11 iterations. The
results are: G,(w*)=4.6678e-06, o, =9.5e-03, and &,=1.1e-03
where g, and g are the discrete maximum errors for the state and control, respectively.
The optimal control and its corresponding state are obtained at t = 0.5 by the following figures.

O)d(J_C), t) =

Figure 1- The optimal control Figure 2- The Corresponding state

(1) In the FWM: the optimal control and corresponding state are showed after 117 iterations, the
results are: G, (w*)=7.0095e-06, o, =9.8e-03, and £,=9.9¢-03
The following figures show the optimal control and its corresponding state at t = 0.5:

0.2

0 o

Figure 3- The optimal control Figure 4- The Corresponding state
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(111 In the GPM: the optimal control and corresponding state are obtained after 4 iterations. The
results are: G, (w*®)=4.6450e-06, o, =9.5e-03, and &,=7.7140e-04
The following figures of this method are also shown at t = 0.5.

Figure 5- The optimal control Figure 6- The Corresponding state

Second, the following results are obtained by using the optimization methods with OPSO:

(1) In the GM and GPM: the optimal control and corresponding state are given after 3 iterations
The results in this case are: G,(w*)=4.5746e-06, o, =9.5e-03, and ,=1.5e-03.

The optimal control and its corresponding state are shown at t = 0.5 by the following figures.

Figure 7- The optimal control Figure 8- The Corresponding state

(1) In the FWM: the optimal control and corresponding state are given after 60 iterations. The results
are: Go(w*)=7.8110e-06, o5 =9.7e-03, and £,=9.8e-03
The following figures show the optimal control and its corresponding state at = 0.5.

0 o

Figure 9- The optimal control Figure 10- The Corresponding state

7.2 Example: Consider the following CCOCP governed by the VCNLHBVP:

Yu-5 [0+ DI - 2@+ DI+ = g& 0 +sin@) - sinWa) + @ —wa,  V(ED) €
p,E =[0,1], K=1[0,1] X [0,1], ¥ = (,2)
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WYX, t) =0,V(%t) € dp=0K x[0,T].
Y(x,0)=0,and Y. (X,0) =yz(1—y)(1 —2),VX €K
where g(x,t) = y2sin(t)(y — 1)(z — 1)- yzsin(t)(z — 1) — ysin(t)(y — D)(z — 1) —
2y sin(t)(y — D(z+ 1) — zsin(t)(y — D(z— 1) — 2zsin(t)(y + 1)(z — 1) —
yzsin(t) y — D — yzsin()(y - D(z—- 1)
The control constraint is U = [—6,5] and the cost functional (5), with
Ya(%,t) = yz(1 —y)(1 — z)sin(t), V(¥,t) € p, and
3.

w3, t) = 25 ,for0 <t <0.5
’ -3 ,for05<t<1
with the initial control
( 3.35 ,0<t<0.2
<
o= {2 RIS e
\ 2.45 07<t<1

First, depending on the above initial control and its corresponding state, the following results are
obtained according to the optimization methods with ARSO.

() In the GM: the optimal control and corresponding state are obtained after 10 iterations. The results
are: Go(w*)=6.6397e-06, o, =5.8e-03, and &,=5.5014e-04.

The optimal control and its corresponding state at t = 0.5 are shown by the following figure.

Figure 11- The optimal control Figure 12- The Corresponding state

(1) In the FWM: the optimal control and corresponding state are obtained after 80 iterations. The
results are :G,(w*)=7.8843e-06, o, =6.1e-03, and &,=4.1e-03.
The following figures show the optimal control and its corresponding state.

Figure 13- The optimal control Figure 14- The Corresponding state

(11) In the GPM: the optimal control and corresponding state are obtained after 7 iterations The results
are: Go(w*®)=6.6369e-06, o, =5.8e-03, and £,=3.9563e-04.
The following figures show the optimal control and its corresponding state.
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Figure 15- The optimal control Figure 16- The Corresponding state

Second, the following results are obtained by using the optimization methods with OPSO:

() In the GM and GPM: the optimal control and corresponding state are given after 4 iterations, with
the results in this case are: G, (w*®)=6.6890e-06, o, =5.7e-03, and &,=3.6205e-04.

The optimal control and its corresponding state are shown by the following figures.

Figure 17- The optimal control Figure 18- The Corresponding state

(11 In the FWM: the optimal control and corresponding state are given after 42 iterations. The results
are: Go(w*)=1.0879e-05, o, =6.7e-03, and £,=9.0e-03.
The following figures show the optimal control and its corresponding state at t = 0.5.

Figure 19- The optimal control Figure 20- The Corresponding state

Conclusions: The GFEM-IFDS is applied to solve the DWF of VCNLHBVP as well as the DAWF to
find the NS, using thestep length of the space variable h = 0.1 and step length of the time variable
At = 0.05, along with the parameters (b = 0.5, ¢ = 0.5 and ¢ = 0.5) in the ARSO. From the results
of the two examples above we can point out the following conclusions:

() The GFEM-IFDS (according to the use of the values h and At ) is an accurate, appropriate and fast
method to solve the DWF and DAWF.
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(1) The results obtained by applying the GPM with ARSO are better than those obtained by using the
GM On the other hand, the results obtained by these two methods are better and faster than those
obtained by applying the FWM with ARSO.

(1) The results obtained by the GPM and GM with OPSO method are better and faster than those
obtained by using the FWM with the OPSO method.

(IV) For the OPSO and the ARSO, which were used inside the GPM, although the GM method was
faster than the FWM one, i it cannot be used in general, since it is only suitable for a quadratic cost
function.
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