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Abstract 

     This paper focuses on developing a strategy to represent the  -connected 

ominoes using an abacus. We use the idea of  -connected ominoes with respect to a 

frame in modelling nested chain abacus. Then, we formulate and prove the unique 

connected partition for any  -connected ominoes. Next, the topological structure of 

nested chain abacus is presented.  
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 البناء التبولوجي ل السلاسل المتداخله في المعداد
 

 فاضل محمدايمان 
 قدم الخياضيات، كلية التخبيه، الجامعه السدتشرخيه، بغجاد، العخاق

 
 الخلاصة

باستخجام السعجاد. في هحا   connected ominoes-  هحا البحث يخكد على تطهيخ طخيقة لتسثيل ال     
لانذاء مهديل  الدلاسل الستجاخلة واستخجام هحا السهديل  connected ominoes- ال البحث استخجمت فكخة 

الاشكال السختلفة وضحشا ا ويزاومن ثم اثبتشا على وحجانية هحا التسثيل  connected ominoes- في تسثيل ال 
  .الستجاخلة للسعجادل الحلقات 

 

1  Introduction 

     Abacus model, first introduced by D.G. James (1978), was used to give a new representation of any 

partition   of a positive integer t by using a sequence of positive integer numbers called beta numbers. 

The formal definition of James abacus model states that it is an abacus with e columns numbered 0, 1, ..., 

e-1 from left to right and a configuration of beta numbers which are present across them. On column k, 

the positions are labelled k, k+e, k+2e,... from top to down.  The abacus model was established to 

construct fundamental facts of partitions [1-3]. Futhermore, several identities such as Schur polynomials 

and Littlewood Richardson rule [4], lecture hall [5], and nested chain [6] were employing the idea of 

abacus model. However, the existing abacus model involves one or more empty columns or empty rows 

with each partition has     representation. Thus, in this paper we construct an abacus with a nested 

chain that is called nested chain abacus. The new abacus proposes a new partition on  -connected 

ominoes to design the connected partition. Hence, this paper aims to develop the structure of the nested 

chain abacus and derive properties related to the nested chain. The fundamental concept about the 

establishment of the nested chain abacus is then discussed in Section 2.  

2  Definitions and Terminologies 

    This section provides definitions needed to develop nested chain abacus.   
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Definition 2.1 

     The  -connected ominoes is a plane geometric figure formed by one or more ominoes (equal 

squares), such that there exists a path from one ominoes to another for any pair of ominoes which are 

internally connected and have holes. 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 1-A 7-connected ominoes. 

 

   Next, we define the graphical form of  -connected ominoes with respect to a minimal frame, which 

enables us to define ominoe positions and empty ominoe positions in terms of the rows and columns of 

the minimal frame.   

Definition 2.2 

     A minimal frame with   rows and   columns for any  -connected ominoes is such that there is at 

least one ominoes in each column and each row where     .  

Consider Figure- 1 where the minimal frame of 7-connected ominoes is as illustrated in Figure-2. 

 

 

 

  

 

 

 

 

 

 

 

Figure 2-7-connected ominoes in a minimal frame. 

 

Definition 3 

   Any  -connected ominoes in a minimal frame of     can be represented in a nested chain abacus 

with   beads where each bead position    is obtained using the function             , such 

that, if location       in the minimal frame contains an ominoes, then  

                        

     for           where   and   refer to the number of the rows and columns of the minimal 

frame, respectively. A nested chain abacus is an abacus with   columns,   rows,   chains and   

connected bead positions, which satisfy the following conditions:   

1. The columns are labelled from left to right as            .  

2. The rows are labelled from up to down as            .  

3. The placement of a bead on the new abacus in each position is given by  .  

4. The bead locations are labelled with numbers              across the rows from left to right, 

beginning from the number 0 in the top-leftmost location until the number      in the 

bottom-rightmost location.  

5. The chains are labelled          , and if     the chain is called outer chain while if     the 

     

     

     

     

     

 

 

   

   

   

 



Mohommed                                Iraqi Journal of Science, 2020, Special Issue, pp: 153-160  

155 

chains are called inner chains.  

6. Each column and row have at lest one bead position.  

Table-1 shows the placement of position numbers on the nested chain abacus with    positions.  

  

Table 1-Nested chain abacus with    bead positions. 

colu.1 colu.2 colu.3 ... colu. e-1 

 1 2 ... e-1 

e 2e+1 2e+2 ... 3e-1 
. . . ... . 
. . . ... . 
. . . ... . 

e(r-2) e(r-2)+1 e(r-2)+2 ... e(r-1)-1 
e(r-1) e(r-1)+1 e(r-1)+2 ... re-1 

 

     Every bead position will be represented by a circle ( ) (Figure-2) , while the empty bead position 

will be represented by a dashed circle. 

     A connected partition        is a sequence of non-increasing positive integer numbers 

(  
     

         
  )  such that     represents  connected bead positions and ∑   

          where   is 

the number of parts in the connected partition.  Next, we will construct an algorithm for the 

connectedness of bead positions.  

2.Nested chain abacus 

     A new representation of  -connected ominoes, called nested chain abacus, has been constructed. 

We use     to explain the algorithm for nested chain abacus.  

Step 1: Establishing a graphical form of  -connected ominoes 
Consider Figure-1(a) for 7-connected ominoes and 1(b) for the 7-connected ominoes in a minimal 

frame.  

 

 

 

 

 

  

 

 

 

 

 

 

Figure  1-(a) 7-connected ominoes and (b) 7-connected ominoes in a minimal frame of 3 rows and 3 

columns. 

 

Step 2: Creating a direction of  -connected ominoes w.r.t minimal frame 
     In this step, we created a direction to obtain nested chain abacus with respect to the minimal frame. 

We begin with the top-leftmost positions, from left to right, and from top to bottom in the minimal 

frame. Consider Figure- 1.b where we begin from bead position A which is located in row 1 and column 

1, then bead position B in row 1 and column 2. The third, fourth,... positions for the minimal frame for 

 -connected ominoes are substituted with the remaining positions C, D, E, F, G, respectively. 

Subsequently, we can also observe that there are two empty positions: The first empty position is in row 

1 and column 3, and the second in row 2 and column 3. 

Step 3: Creating  -connected bead positions 
     In this step, we followed the Definition 2 in creating bead positions on the nested chain abacus. 

Consider the 7-connected ominoes in Figure-1.b, to find    for   1, in which we inspected the 

location in row 1 and column 1. Since this location contains omino A, we calculate    by applying the 

function   where m=1 and j=1. Then                         . After that, we 
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increment   by 1 so that the next application of the function   would yield    where           
              . 

    The inspection process is continued in the same manner and subsequently function   would only be 

applied accordingly to obtain     ,     ,     ,     and     . Consider Definition 2 in 

which the positions of the 7 beads in the nested chain abacus are as shown in Figure-2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  2-(a) The bead positions              in the nested chain abacus (b) Nested chain abacus 

with 7-beads.  

 

Step 4: Developing a connected partition of nested chain abacus 

     Using the   ’s obtained from step 3 we produce a partition called the connected partition which 

represents the nested chain abacus for  -connected ominoes with   columns and   rows for   
         . The transformation process of the   ’s into the connected partition        is as follows:  

     ,                     , where         

Then        (  
     

          
  ) is a connected position with e columns and r rows, where       

       and ∑   
         . 

Consider Figure-2, where we illustrates the process of finding connected partition        for 

7-connected ominoes. Since                ,      =                then,                  . 

     Based on the algorithm discussed earlier, we present a unique expression for n-connected ominoes, 

as shown in the Theorem 1. To prove it, we need Proposition 1 and Lemma 1. 

Proposition 1: Let         be defined by                    .   is  injections 

where   and   are positive integers for       and      .   

Proof. For every       and         where        and    are positive integers for       and 

     . Suppose that       =        . If      or      then       =        . If      

and      then   
    

    
   . This is a contradiction, therefore       =        .  

Lemma 1: For every nested chain abacus   for  -connected ominoes with   beads,   columns,   

rows and   chains. Then, there exists a unique connected partition representing   where   
              .   

Proof. Suppose that       ,        are two connected partitions represented by   with   beads,   

columns and   rows. Since           
     

         
    represents   then, 

     ,        ,...,    
        . 

          ,              ,...,    
        . 

. 

. 

. 

          ,                  ,...,    
        . 

Additionally, we assume that           
     

         
    represents  , therefore,  

     ,        ,...,    
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         ,              ,...,    
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. 

. 

          ,                  ,...,    
        . 

Thus           
     

         
    is a connected partition represented by the nested chain abacus with   

columns,   rows and   bead positions, such that                 . Meanwhile,    
     

         
    

is a connected partition representing the nested chain abacus with with   columns,   rows and   of 

beads positions. Hence,   is an associator with exactly one connected partition.  

Theorem 1: For any form of  -connected ominoes, there exists a unique connected partition        

representing it with rows     and columns    .   

Proof. On the contrary, suppose that    and    are two nested chain abacus with   columns,   rows 

and   beads representing one form of  -connected ominoes. Based on the algorithm in step 2, there 

exist         such that                     where    ,     and      . 

Since    represents a  -connected ominoes w.r.t minimal frame with   columns and   rows, so 

         . Meanwhile,    represents an  -connected ominoes w.r.t minimal frame with   

columns and   rows, then          
  where       is a location in the minimal frame containing an 

omino,       and       for            . Based on Proposition 1,   is injections so 

     
 . Thus, any form of  -connected ominoes is represented by exactly one  . Based on Lemma 

3, there exists a unique connected partition represented by  , thus there exists a unique connected 

partition that represents  -connected ominoes.  

     Previously, there was no representation for every shape of  -connected ominoes. However, by 

using nested chain abacus, we can associate each of the four shapes of  -connected ominoes with a 

connected partition using the nested chain abacus. The result of the representation is shown in Figure-3 

where each shape is represents by a unique connected partition.   

 

 
Figure  3-Representation of the 4 shapes of a family of tetromino. 
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3. Topological Structure of Nested Chain Abacus 

     In this section, three design structures of the nested chain abacus are introduced; rectangular nested 

chain abacus, rectangle-path nested chain abacus, and square-singleton nested chain abacus. We begin 

by discussing the construction of rectangular nested chain abacus. 

3.1  Rectangular nested chain abacus 

     The rectangular nested chain abacus consists of rectangular chains. Theorem 2 clarifies the 

construction of rectangular chains in nested chain abacus.    

Theorem 2 

     Let there     matrix   that represents bead positions and empty bead positions in the nested 

chain abacus with   columns,   rows and   chains. Then,   

1. A vertical rectangular chain is an arrangement of the bead positions and empty bead positions in a 

vertical rectangular format in the nested chain abacus, such that the element chain is 

                                                      

where   is an even number and     for      .   

2. A horizontal rectangular chain is an arrangement of the bead positions and empty bead positions in a 

horizontal rectangular format in the nested chain abacus, such that the elements chain is 

{                                                    } 

where   is an even number and     for      .  

Proof. 

    1.  A vertical rectangular chain starting from the  th column will start at the  th
 row because rows 1 

to       will be covered by the vertical rectangular chains starting from rows 1, 2,....,     . After 

the starting point, we will come down along the same column so the row numbers will be changing and 

will come down till the  th row from the end, so that it will be the        th
 row from the beginning. 

Now, in the  th row, we go to the        th
 column and then we should cover the chain by coming 

down till the        th
. So, two vertical columns have been covered. Now, from the starting point in 

the  th row, we should cover up the chain on the right of it on that row till the        th
 column; so 

that the  row will remain fixed and the columns will vary till we reach        th
 column in the  th 

row and cover the chains in the        th
 row by keeping the row fixed and varying the columns 

from   to        . 

This is basically how it is done: 

               then       ’                     to form the two vertical chains, and then to cover 

the rest;                 and                    ’        ’  . 

Thus the element chain will be: 

                                                      

where   is an even number and     for      .  

    2.  Now, at the horizontal rectangular chain, the same situation arises so we cover the     row 

chain starting from the  th column and  th row, then we cover up the chains in the     ’    th
 row and 

follow the same procedure to cover up the chains. 

This is basically how it is done: 

               then                           to form the two horizontal chains, and then to cover 

the rest;              ’   and                              . 

and thus the element chain will be; 

                                                      

where   is an even number and     for      . 

3.2 Rectangle-path nested chain abacus 

   The rectangle-path nested chain abacus consists of rectangular chains and a one path chain. Theorem 

3 clarifies the construction of rectangle-path chain in nested chain abacus.    

Theorem 3 

     Let the     matrix A represents bead positions and empty bead positions in the nested chain 

abacus with   columns and   rows. Then,   

1.  A vertical-path chain is an arrangement of some bead positions and empty bead positions in column 
   

 
 in the nested chain abacus, such that the elements in the chain are  
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where    ,   is odd and   is a positive integer.  

2. A horizontal-path chain is an arrangement of some bead positions and empty bead positions in the 

row 
   

 
 in the nested chain abacus, such that the elements in the chain are  

   

 
    

 
   

 
  

  
   

 
   

      

 
  

where    ,   is odd and   is a positive integer.  

Proof. Each chain covers two rows and two columns, namely the  th column and the        th
 

column, and for the vertical-path chain the  th column and the        th
 column become the same, 

and thus we get;         or,   
   

 
 , and similarly for the horizontal-path chain   

   

 
 . So 

the vertical path chain will be in column 
   

 
 and will start from  th column and  th row and   here is 

   

 
 so the rows start from the 

   

 
  th row. and now it will continue till the        th

 row.  By 

putting the value of   we get;   
   

 
  =

      

 
 so the last row will be 

      

 
 and thus we have the 

chain 
   

 
 =   

  
   

 
 
 
   

 
   

      

 
  where    ,   is odd and   is a positive integer. The 

same method is applied for the horizontal-path chain.  

    From Theorem 3, there are two design structures of the rectangle-path nested chains abacus.The 

vertical rectangle-path nested chains with   vertical rectangular chains and one vertical-path chain is a 

nested chain abacus with     and   is odd, where   and   are the number of the columns and rows, 

respectively.  Example 3.3 provides the illustration of this design structure.  

Crollary 1 

     Let   be a nested chain abacus with   column,   rows and   rectangular chains. Then   is the 

arithmetic sequence for the number of positions in the nested chains abacus, with    as the common 

difference of successive terms where    is the number of positions in chain   and       
             

 
  for     .   

Proof. Let      and    represent the number of positions in chain     and chain  , respectively, 

where          , where   
 

 
 if the nested chain abacus is a vertical nested chain abacus and   

 

 
 

if the nested chain abacus is a horizontal nested chain abacus, as mentioned in Theorem  2. Thus  

                                      .  

3.3  Singleton nested chain abacus 

   The singleton nested chain abacus consists of rectangular chains and a singleton chain. Theorem 4 

clarifies the construction of Singleton chain in nested chain abacus. 

Theorem 4 

     Let the     matrix A represents bead positions and empty bead positions in the nested chain 

abacus with   columns and   rows, where     and   is odd. Then, singleton chain is a position 

 
  

   

 
 
 located in column 

   

 
 and row 

   

 
.   

Proof. Each chain covers two rows and two columns, the  th column and the(      th
 column, and 

for the singleton chain the  th column and the (      th
 column become the same, and thus we 

obtain         or,   
   

 
 and similarly for the rows.   

5. Conclusion 

     We have developed an algorithm for the construction of a nested chain abacus, as a representation 

of the previously described  -connected ominoes [7,8,9]. At this stage, two questions can be asked:   

• Could we use the topological stracture of nested chain abacus to classify classes for  -connected 

ominoes?  

• Could we use the design structure of nested chain abacus to construct the generating function for 

 -connected ominoes?  
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