
Noori and Fahad Iraqi Journal of Science, 2020, Vol. 61, No. 7, pp: 1791-1797

 DOI: 10.24996/ijs.2020.61.7.28

*Email: khalidsn82@yahoo.com
1791

Factors Affecting Application Launch Time with Android OS

Khalid Sabah Noori*, Assmaa A. Fahad
Department of Computer Science, College of Science, University of Baghdad, Baghdad, Iraq

Received: 11/12/2019 Accepted: 15/3/2020

Abstract
 Android OS is developing very fast, and because of being an open source OS, it

is vulnerable to many problems that are manifested to users directly or indirectly.

Poor application launch time is one of these problems. In this paper, a set of sixteen

experiments is established to distinguish the factors that have the most evident

effects on application launch time in Android mobiles. These factors are application,

launch and kill, events, and storage. Mann Kendall (MK) test, one way analysis of

variance (ANOVA), and Design of Experiment (DOE) are used to prove the

influence of factors statistically. As a result of the experiments, the application

factor, especially the third party applications level, has the most prominent effects

on application launch time, followed by launch and Kill and events, while storage

had the least influence.

Keywords: Launch time, Mann Kendal, one way ANOVA, DOE

 العوامل التي تؤثر على وقت تشغيل التطبيق مع نظام التشغيل أندرويد

 أسماء عبدالله فهد,*اح نوري خالد صب

 العراق, بغداد جاهعة بغداد,قسن علوم الحاسوب, كلية العلوم,

 الخلاصة

يتطهو بذكل سخدع. كهنو نظام مفتهح المرجو, ىحا جعمو عخضة لمعجيج من المذاكل نجويدج نظام الا
ياحج من ىحه المذاكل. ضعف يقت الاقلاع لمتطبيق التي تظيخ لممدتخجمين بذكل مباشخ اي غيخ مباشخ.

ىحا البحث, مجمهعة من ستة عذخ تجخبة أنجدت لمتمييد بين العهامل الاكثخ تأثيخاً عمى يقت الاقلاع لمتطبيق
في ىهاتف الانجويدج. ىحه العهامل ىي: التطبيق, يقت الاقلاع ي الانياء, الاحجاث, ي الخدن. أختباو مان

يم التجاوب تدتخجم لاثبات تأثيخ ىحه العهامل إحرائياً. نتيجة ليحه كنجل, أنهفا ذات الاتجاه الهاحج, ي ترم
التجاوب, عامل التطبيق ي خرهصا مدتهى تطبيقات الذخص الثالث الأكثخ تأثيخا عمى يقت الاقلاع لمتطبيق,

 ثم الاقلاع ي الانياء, الاحجاث, ي الخدن الاقل تأثيخاً.
1. Introduction

 Mobile Operating Systems are OSs which are designed specifically for mobile phones, tablets, and

wearables. These OSs are basically a light weight systems which require low resources in terms of

power, storage space, CPU, RAM, etc. [1].

 Android OS, just like other OSs, has many problems such as CPU utilization, power consumption,

and RAM shortage. However, rapid response time is one of the main features the users are looking for.

Poor response time, which is the representation of Software Aging (SA), is one of these problems. SA

ISSN: 0067-2904

mailto:khalidsn82@yahoo.com

Noori and Fahad Iraqi Journal of Science, 2020, Vol. 61, No. 7, pp: 1791-1797

1792

detection can be performed through many approaches, such as using machine learning algorithms [2, 3]

or investigating OS metrics.

 Poor application launch time can be perceived by users directly or indirectly. Direct perception is

represented when the user runs an application and takes a long time to launch. This is caused by

factors affecting the launch time of application, which are application, launch and kill, events, and

storage factor [4], which are on the focus of this paper. Indirect perception is represented by system

resource metrics that affect launch time of application. Some of these metrics include total free and

lost ram metrics related to RAM resource as well as sectors read and sectors written related to storage

resources [4].

2. Related Work

Application responsiveness is considered as one of the important concerns that is perceived directly by

Android users. Poor launch time of applications is a result of SA which leads the mobile to gradual

degradation over time. This paper aims to investigate the factors that have an influence on application

launch time through reviewing the related recent researches.

 Reference [5] suggested an approach to investigate the existence of SA indicators in Android

applications. According to its cumulative characteristic, SA occurs in systems that are running for a

long time period. A methodology was proposed that specifies memory leaking as an aging indicator in

Android applications. Memory leaking happens when a process allocates memory during its execution

and carries on allocating more memory in later executions without deallocating the previously used.

The methodology was as follows; the monitoring strategy was applied to collect measures of resource

consumption (memory utilization) of the mobile device. The workload generator was used to stress

test applications in the development stage. A shell script was created to automatize the workload

generation and was set to run at one second intervals. The data was collected every ten seconds

through executing Android Debug Bridge (ADB) shell script. The stress test included an initial test

which was performed for a short time to investigate any aging effect. If aging existed, a longer new

experiment was made. A testbed (desktop machine and mobile device) was setup to test the

effectiveness of the approach. „Foursquare‟ Android application, which is a location-based social

networking website for mobile devices, was chosen for the experiment. Two experiments were made

to monitor the resource usage of „adb‟ and „top‟ processes. The results showed no significant increase

in resident memory and virtual memory utilization, which implies that the monitoring strategy did not

interfere in Android OS behaviour. The results affirmed the efficiency of the methodology and the

presence of SA in „Foursquare‟ application running on the Android OS.

 Reference [4] considered the problem of SA in Android mobile OS. An experimental methodology

was proposed that uses statistical methods to distinguish factors in the experiment plan that have

effects on application Launch time. The experimental plan consisted of a combination of factors at

each level, which are application set, device, workload and kill frequency, workload events

configuration, and storage space usage, that are used with resource utilization metrics (memory and

storage) with system operations (garbage collection and tasks) in relation with SA. As a result of

experiments, it was recommended that Android software rejuvenation should adopt a measurement-

based approach to be familiar with the workload conditions.

 Reference [6] introduced an experimental study about SA manifestation in Android OS. These

aging-related bugs are shown up through injecting memory leaks into different heap areas (Dalvik

heap and Native heap) with processes having different priorities (cached, persistent). The results were

analyzed from two viewpoints; user viewpoint and system viewpoint. From user viewpoint, the

experiments showed that injecting memory leak in Dalvik heap, in case of not clearing recent task,

affects user perception. There was an increasing trend of response time as the time going through and

a failure of the application after running for a long time period. Also, the experiments showed that

injecting memory leak in Native heap in case of persistent process affects user perception. An

increasing of the response time for user‟s actions after running for long time period was recorded, and

this phenomenon continues for a long time. From system‟s viewpoint, the experiments on memory

information related to the whole system showed that injecting memory leak in Dalvik heap, in case of

not clearing recent task, leads to a decreasing trend of the Realfree indicator. This can be utilized to

indicate the existence of SA but not the failure of an application. Also, the experiments on memory

information related to the whole system showed that injecting memory leak in Native heap, in case of

clearing recent task, leads the Realfree and Memfree to exhibit a decreasing trend, from which the

Noori and Fahad Iraqi Journal of Science, 2020, Vol. 61, No. 7, pp: 1791-1797

1793

Android OS can recover. Also, the results suggested that the swap space indicator cannot be used for

SA in Android. As a result, the experiments on specific memory information related to an Android

process (application process) showed that, when injecting memory leak in Dalvik heap in case of not

clearing recent task, the allocated Dalvik Heap size still exhibited an upward trend according to the

leak. However, the application crash could happen before the allocated Dalvik Heap memory of a

process raises to ultimate size. Also, the utilization percentage of Dalvik Heap showed an upward

trend according to the leak, which takes values higher than those in normal conditions.

 Reference [7] investigated the SA indicators prediction concentrating on system‟s free memory,

which represents system-level, and application‟s heap memory, which represents application-level.

Long short-term memory neural network (LSTM NN) was utilized as a prediction method in

comparison with the traditional prediction methods such as linear regression, Autoregressive

Integrated Moving Average (ARIMA), Holt-Winter, and Multilayer Perceptron (MLP), as well as the

traditional metrics that included Mean Absolute Percentage Error (MAPE)\ Mean Squared Error

(MSE) and the proposed metrics that included trend accuracy (TA), fluctuation accuracy (FA), and

small of variations accuracy (SVM) of aging indicators. In the experiments setup, the ADB was used

for the communication between the computer and the mobile. To stress the Android OS, the Monkey

tool and UI automator (testing framework) were applied to simulate user‟s actions. The data collected

two types of aging indicators, namely the system-level aging indicator, which refers to system free

memory from „/proc‟ virtual file system, and application-level aging indicator, which refers to utilized

heap memory of application by using „dumpty‟s‟ tool. The results under traditional and proposed

metrics revealed that LSTM has an outstanding performance compared with other prediction methods.

3. Factors Testing Tools

Factor tools that are used in the experiments to collect application launch time are Monkey tool [8],

Logcat tool [9], and ADB tool [10].

4. Factors Statistical Methods

Several statistical methods can be used to analyse the application launch times that are collected over

the experiment time. Some of statistical methods that are used in this paper are Mann Kendall (MK)

[11] test, one way analysis of variance (ANOVA) [12], and Design of Experiment (DOE) [13, 14].

5. The Experiment Designed Module

The experimental module of the paper designed to distinguish factors is partitioned into subsections:

the experiment setup, the experiment design, and the experiment factors and levels.

A. The Experiment Setup: the following represents a complete view of the experiment platform which

consists of several parts:

•The experiment testbed: Samsung Note3 mobile equipped with three giga bytes of RAM and thirty

two giga bytes internal storage is used for conducting experiments. A 5.0 Lollipop OS is installed on

the phone. For generating and injecting events into the mobile, A PC computer with eight giga bytes

RAM and five hundred giga bytes hard disk is used to collect the desired data. The OS installed on the

PC is 64-bit Ubuntu 18.04.1 LTS (Long Term Support).

•Experiment user events generator: Monkey tool is used to generate user events such as touch, motion,

and trackball, with 10,000 events are injected into the mobile using five hundred milli seconds as a

delay between each group of events.

•Experiment test applications: In the conducted experiments, two sets of applications are used: third

party applications, and system applications.

•Experiment Data collection: sixteen experiments are conducted with different combinations of factors

at each level. Each experiment lasts for one hour. During each experiment, five applications (third

party applications or system applications) are launched and killed periodically according to launch and

kill factor. A bash script is developed in order to launch and kill applications, generate events, collect

data, and save the collected data to files in order to analyse them later using statistical methods. The

collected data is made of applications‟ LTs every five and sixty seconds.

B.The Experiment Design

 The experiment design is passing through many steps. Applications‟ LTs are collected every five

and sixty seconds. The MK test is applied to the median value of the collected LTs of applications at

each time period to check for upward or downward trends. The one way ANOVA is applied to the

median values of the collected LTs of applications in order to detect the most influencing factors on

launch time.

Noori and Fahad Iraqi Journal of Science, 2020, Vol. 61, No. 7, pp: 1791-1797

1794

C.The Experiment Factors and Levels

 The tests are run under many different configurations and stress applications, which represent the

factors of the experiment plan. Four factors are considered in this paper, and the experiment plan is

derived by varying the combinations of levels of these factors according to DOE (Table- 1) [4]. A full

factorial design of the experiments conducted on the mobile is adopted (Table- 2).

Table 1- The experiment factors and level.

Factor Level Description

Application

third party

applications

- io.faceapp

- com.google.android.applications.translate

- com.newpower.apkmanager

- com.infraware.office.link

- org.videolan.vlc

System

applications

- com.sec.android.applicationpopupcalculator

- com.sec.android.applicationclockpackage

- com.samsung.helphub

- com.android.mms

- com.sec.android.applicationmusic

Launch &

Kill

High Kill and re-launch every five seconds

Low Kill and re-launch every sixty seconds

Events
Events

Monkey tool sends touch, motion, trackball, navigation,

majornavigation, systemkeys, switch, anyevent, flip, and pinchzoom

None Monkey tools is not sending events (not used)

Storage
Normal Default storage space

Full Ninety percent storage space

Table 2- The experiment plan.

Application Launch&Kill Events Storage

third party applications High Events Normal

System applications High None Normal

System applications High None Full

System applications High Events Normal

System applications Low None Full

third party applications High Events Full

System applications Low Events Full

System applications Low None Normal

System applications Low Events Normal

third party applications High None Normal

third party applications Low Events Normal

third party applications Low None Normal

third party applications High None Full

third party applications Low Events Full

third party applications Low None Full

System applications high Events Full

6. Results and discussion

 After collecting LTs of the workload applications every five and sixty seconds and finding the

median value of the LTs at each time period across the experiment, a statistical method, which is

Mann Kendal test, is used to check for trends of the LTs of the applications. The existing of trend

(increasing or decreasing) means that the LTs are affected by the combinations of factors at each level

across experiments. Table- 3 displays Mann Kendal test trends for applications.

The significance level that is determined in the experiments is 95%, which means α=0.05. If the P-

value is less than 0.05, this means that there is a trend. The positive or negative Z-value means an

increasing or decreasing trend, respectively.

Noori and Fahad Iraqi Journal of Science, 2020, Vol. 61, No. 7, pp: 1791-1797

1795

Table 3- Mann Kendal test trends for applications.

Experiment No. Z – value P - value

1 1.6569 0.0975

2 0.9939 0.3203

3 0.6501 0.5156

4 -5.7047 1.1654e-08

5 2.8318 0.0046

6 2.4786 0.0132

7 -1.2069 0.2275

8 1.3011 0.1932

9 -3.9990 6.3621e-05

10 -5.4298 5.6405e-08

11 -3.3484 8.1276e-04

12 1.0268 0.3045

13 19.5658 0

14 -3.5051 4.6268e-04

15 0.4847 0.6279

16 0.8496 0.3955

 After checking the trends, one way ANOVA statistical method is performed on LTs of applications

every five and sixty seconds to distinguish the affecting factors. The results showed that the factor that

has the strongest influence on LT is the application factor, based on the largest F-value it has (Table-4).

The level of the application factor that has the strongest influence is the third party applications, based

on the largest mean value it has (Table-5). The next most influence factors after the applications factor

are launch and kill, events, and storage, respectively.

Table 4- Results of one way ANOVA (tests of between-subjects effect)

Noori and Fahad Iraqi Journal of Science, 2020, Vol. 61, No. 7, pp: 1791-1797

1796

Table 5- Results of one way ANOVA (descriptive statistics)

7. Conclusions

 After conducting the sixteen experiments, it is concluded that the applications factor is the strongest

affecting factor on launch time, according to its F-value (largest value). Specifically the third party

applications have the strongest influence according to the mean value. The next most affecting factors

on LT are launch and kill, events, and storage, respectively, according to their F-values.

According to the experimental results, the paper recommends:

- Each conducted experiment should not be limited with a specified time and should continue

until the device is in an unsteady state and not reacting to user actions. This gives a lot of information

which makes the statistical results more accurate.

- In design of the experiments, it is preferred to conduct the experiment in a full factorial design

but at the expense of time and cost. When the number of experiments is not too large, it is better to

implement them in a full factorial design (taking all aspects of the factors (levels)) instead of fractional

factorial design (taking part of the experiments) to discover their influence on LT.

As a future work, we will further investigate the effects of Android mobile resources on launch time of

the applications.

Noori and Fahad Iraqi Journal of Science, 2020, Vol. 61, No. 7, pp: 1791-1797

1797

References

1. Wukkadada, B. Nambiar, R. and Nair, A. 2015. “Mobile Operating System: Analysis and

Comparison of Android and iOS”, International Journal of Computing and Technology, 2(7).

2. Ayad R. Abbas, A. And Kareem, R. 2018. “Age Estimation Using Support Vector Machine”, Iraqi

Journal of Science, 59(3C): 1746-1756.

3. Inas A., Sumaya S. And Safa A. 2016. “Using One-Class SVM with Spam Classification”, Iraqi

Journal of Science, 57(1B): 501-506.

4. Cotroneo, D., Fucci, F., Iannillo, A.K., Natella, R. and Pietrantuono, R. 2016. "SA Analysis of the

Android Mobile OS," IEEE 27th International Symposium on Software Reliability Engineering

(ISSRE), Ottawa, ON, pp. 478-489.

5. Araujo, J., Alves, V., Oliveira, D., Dias, P., Silva, B. And Maciel, P. 2013. "An Investigative

Approach to SA in Android Applications," IEEE International Conference on Systems, Man, and

Cybernetics, Manchester, pp. 1229-1234.

6. Qiao, Y., Zheng, Z. and Qin, F. 2016. "An Empirical Study of SA Manifestations in

Android," IEEE International Symposium on Software Reliability Engineering Workshops

(ISSREW), Ottawa, ON, pp. 84-90.

7. Qiao, Y., Zheng, Z. and Fang, Y. 2018. "An Empirical Study on SA Indicators Prediction in

Android Mobile," IEEE International Symposium on Software Reliability Engineering Workshops

(ISSREW), Memphis, TN, pp. 271-277.

8. UI/Application Exerciser Monkey | Android Developers. 2019. Retrieved 31 October 2019, from

https://developer.android.com/studio/test/monkey

9. Logcat command-line tool | Android Developers. 2019. Retrieved 31 October 2019, from

https://developer.android.com/studio/command-line/logcat#alternativeBuffers

10. Android Debug Bridge (adb) | Android Developers. 2019. Retrieved 31 October 2019, from

https://developer.android.com/studio/command-line/adb#IntentSpec

11. Gilbert, Richard O. 1987. “Statistical Methods for Environmental Pollution Monitoring”, Van

Nostrand Reinhold Company Inc.

12. Weiss, N. A. 2017. “Introductory statistics”, Pearson Education Limited.

13. Montgomery, D. C. 2013, “Design and Analysis of Experiments”, John Wiley & Sons Inc., eighth

edition.

14. Wagner, J. R., Mount ,E. M. and Giles,H. F. 2013. “Extrusion”, Elsevier Inc.

https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/command-line/logcat%23alternativeBuffers
https://developer.android.com/studio/command-line/adb%23IntentSpec

