Noori and Fahad Iragi Journal of Science, 2020, Vol. 61, No. 7, pp: 1791-1797
DOI: 10.24996/ijs.2020.61.7.28

B

1ragi
1
Journal of

SNcwence

N/
ISSN: 0067-2904

Factors Affecting Application Launch Time with Android OS

Khalid Sabah Noori*, Assmaa A. Fahad
Department of Computer Science, College of Science, University of Baghdad, Baghdad, Iraq

Received: 11/12/2019 Accepted: 15/3/2020

Abstract

Android OS is developing very fast, and because of being an open source OS, it
is vulnerable to many problems that are manifested to users directly or indirectly.
Poor application launch time is one of these problems. In this paper, a set of sixteen
experiments is established to distinguish the factors that have the most evident
effects on application launch time in Android mobiles. These factors are application,
launch and kill, events, and storage. Mann Kendall (MK) test, one way analysis of
variance (ANOVA), and Design of Experiment (DOE) are used to prove the
influence of factors statistically. As a result of the experiments, the application
factor, especially the third party applications level, has the most prominent effects
on application launch time, followed by launch and Kill and events, while storage
had the least influence.

Keywords: Launch time, Mann Kendal, one way ANOVA, DOE

gl Jaal) aUa% aa Gulal Jedd cdy Ao A5 A Jalgad)

2t s slaud, ‘@5 rlua A&
Gloal) olaiy Mok Aaala o lall LS sulal) o gle aud

dadal
LJSLaAl 538 (ye anly adaill ¢ DY) iy Cheia bl g gl dle A Cpestieall el)
Gadaill 38V iy e 1yil SV algal) cp asaill il Ljad e Fiw e degena il 128
Ole bl Ll 5, EIaa) L elgd) 5 e EY) iy, i) fa dalsal) o2 g 0] Citlga
sdgd dag Lilas) Jalgall sda 80 ClEY adiis Clail) et 5, 2n sl olat¥) cld ligh | Jug
Geknll ¢ Y) ey e il Y Gl Gaddl) clids (ggiae Lagad 5 Gakill dale el
Dl JY) Gl 5, claal) el g e DY)
1. Introduction
Mobile Operating Systems are OSs which are designed specifically for mobile phones, tablets, and
wearables. These OSs are basically a light weight systems which require low resources in terms of
power, storage space, CPU, RAM, etc. [1].
Android OS, just like other OSs, has many problems such as CPU utilization, power consumption,

and RAM shortage. However, rapid response time is one of the main features the users are looking for.
Poor response time, which is the representation of Software Aging (SA), is one of these problems. SA

*Email: khalidsn82@yahoo.com
1791

mailto:khalidsn82@yahoo.com

Noori and Fahad Iragi Journal of Science, 2020, Vol. 61, No. 7, pp: 1791-1797

detection can be performed through many approaches, such as using machine learning algorithms [2, 3]
or investigating OS metrics.

Poor application launch time can be perceived by users directly or indirectly. Direct perception is
represented when the user runs an application and takes a long time to launch. This is caused by
factors affecting the launch time of application, which are application, launch and kill, events, and
storage factor [4], which are on the focus of this paper. Indirect perception is represented by system
resource metrics that affect launch time of application. Some of these metrics include total free and
lost ram metrics related to RAM resource as well as sectors read and sectors written related to storage
resources [4].

2. Related Work

Application responsiveness is considered as one of the important concerns that is perceived directly by
Android users. Poor launch time of applications is a result of SA which leads the mobile to gradual
degradation over time. This paper aims to investigate the factors that have an influence on application
launch time through reviewing the related recent researches.

Reference [5] suggested an approach to investigate the existence of SA indicators in Android
applications. According to its cumulative characteristic, SA occurs in systems that are running for a
long time period. A methodology was proposed that specifies memory leaking as an aging indicator in
Android applications. Memory leaking happens when a process allocates memory during its execution
and carries on allocating more memory in later executions without deallocating the previously used.
The methodology was as follows; the monitoring strategy was applied to collect measures of resource
consumption (memory utilization) of the mobile device. The workload generator was used to stress
test applications in the development stage. A shell script was created to automatize the workload
generation and was set to run at one second intervals. The data was collected every ten seconds
through executing Android Debug Bridge (ADB) shell script. The stress test included an initial test
which was performed for a short time to investigate any aging effect. If aging existed, a longer new
experiment was made. A testbed (desktop machine and mobile device) was setup to test the
effectiveness of the approach. ‘Foursquare’ Android application, which is a location-based social
networking website for mobile devices, was chosen for the experiment. Two experiments were made
to monitor the resource usage of ‘adb’ and ‘top’ processes. The results showed no significant increase
in resident memory and virtual memory utilization, which implies that the monitoring strategy did not
interfere in Android OS behaviour. The results affirmed the efficiency of the methodology and the
presence of SA in ‘Foursquare’ application running on the Android OS.

Reference [4] considered the problem of SA in Android mobile OS. An experimental methodology
was proposed that uses statistical methods to distinguish factors in the experiment plan that have
effects on application Launch time. The experimental plan consisted of a combination of factors at
each level, which are application set, device, workload and kill frequency, workload events
configuration, and storage space usage, that are used with resource utilization metrics (memory and
storage) with system operations (garbage collection and tasks) in relation with SA. As a result of
experiments, it was recommended that Android software rejuvenation should adopt a measurement-
based approach to be familiar with the workload conditions.

Reference [6] introduced an experimental study about SA manifestation in Android OS. These
aging-related bugs are shown up through injecting memory leaks into different heap areas (Dalvik
heap and Native heap) with processes having different priorities (cached, persistent). The results were
analyzed from two viewpoints; user viewpoint and system viewpoint. From user viewpoint, the
experiments showed that injecting memory leak in Dalvik heap, in case of not clearing recent task,
affects user perception. There was an increasing trend of response time as the time going through and
a failure of the application after running for a long time period. Also, the experiments showed that
injecting memory leak in Native heap in case of persistent process affects user perception. An
increasing of the response time for user’s actions after running for long time period was recorded, and
this phenomenon continues for a long time. From system’s viewpoint, the experiments on memory
information related to the whole system showed that injecting memory leak in Dalvik heap, in case of
not clearing recent task, leads to a decreasing trend of the Realfree indicator. This can be utilized to
indicate the existence of SA but not the failure of an application. Also, the experiments on memory
information related to the whole system showed that injecting memory leak in Native heap, in case of
clearing recent task, leads the Realfree and Memfree to exhibit a decreasing trend, from which the

1792

Noori and Fahad Iragi Journal of Science, 2020, Vol. 61, No. 7, pp: 1791-1797

Android OS can recover. Also, the results suggested that the swap space indicator cannot be used for
SA in Android. As a result, the experiments on specific memory information related to an Android
process (application process) showed that, when injecting memory leak in Dalvik heap in case of not
clearing recent task, the allocated Dalvik Heap size still exhibited an upward trend according to the
leak. However, the application crash could happen before the allocated Dalvik Heap memory of a
process raises to ultimate size. Also, the utilization percentage of Dalvik Heap showed an upward
trend according to the leak, which takes values higher than those in normal conditions.

Reference [7] investigated the SA indicators prediction concentrating on system’s free memory,
which represents system-level, and application’s heap memory, which represents application-level.
Long short-term memory neural network (LSTM NN) was utilized as a prediction method in
comparison with the traditional prediction methods such as linear regression, Autoregressive
Integrated Moving Average (ARIMA), Holt-Winter, and Multilayer Perceptron (MLP), as well as the
traditional metrics that included Mean Absolute Percentage Error (MAPE)\ Mean Squared Error
(MSE) and the proposed metrics that included trend accuracy (TA), fluctuation accuracy (FA), and
small of variations accuracy (SVM) of aging indicators. In the experiments setup, the ADB was used
for the communication between the computer and the mobile. To stress the Android OS, the Monkey
tool and Ul automator (testing framework) were applied to simulate user’s actions. The data collected
two types of aging indicators, namely the system-level aging indicator, which refers to system free
memory from ‘/proc’ virtual file system, and application-level aging indicator, which refers to utilized
heap memory of application by using ‘dumpty’s’ tool. The results under traditional and proposed
metrics revealed that LSTM has an outstanding performance compared with other prediction methods.
3. Factors Testing Tools
Factor tools that are used in the experiments to collect application launch time are Monkey tool [8],
Logcat tool [9], and ADB tool [10].

4. Factors Statistical Methods

Several statistical methods can be used to analyse the application launch times that are collected over
the experiment time. Some of statistical methods that are used in this paper are Mann Kendall (MK)
[11] test, one way analysis of variance (ANOVA) [12], and Design of Experiment (DOE) [13, 14].

5. The Experiment Designed Module

The experimental module of the paper designed to distinguish factors is partitioned into subsections:
the experiment setup, the experiment design, and the experiment factors and levels.

A. The Experiment Setup: the following represents a complete view of the experiment platform which
consists of several parts:

*The experiment testbed: Samsung Note3 mobile equipped with three giga bytes of RAM and thirty
two giga bytes internal storage is used for conducting experiments. A 5.0 Lollipop OS is installed on
the phone. For generating and injecting events into the mobile, A PC computer with eight giga bytes
RAM and five hundred giga bytes hard disk is used to collect the desired data. The OS installed on the
PC is 64-bit Ubuntu 18.04.1 LTS (Long Term Support).

*Experiment user events generator: Monkey tool is used to generate user events such as touch, motion,
and trackball, with 10,000 events are injected into the mobile using five hundred milli seconds as a
delay between each group of events.

*Experiment test applications: In the conducted experiments, two sets of applications are used: third
party applications, and system applications.

*Experiment Data collection: sixteen experiments are conducted with different combinations of factors
at each level. Each experiment lasts for one hour. During each experiment, five applications (third
party applications or system applications) are launched and killed periodically according to launch and
kill factor. A bash script is developed in order to launch and kill applications, generate events, collect
data, and save the collected data to files in order to analyse them later using statistical methods. The
collected data is made of applications’ LTs every five and sixty seconds.

B.The Experiment Design

The experiment design is passing through many steps. Applications’ LTs are collected every five
and sixty seconds. The MK test is applied to the median value of the collected LTs of applications at
each time period to check for upward or downward trends. The one way ANOVA is applied to the
median values of the collected LTs of applications in order to detect the most influencing factors on
launch time.

1793

Noori and Fahad Iragi Journal of Science, 2020, Vol. 61, No. 7, pp: 1791-1797

C.The Experiment Factors and Levels

The tests are run under many different configurations and stress applications, which represent the
factors of the experiment plan. Four factors are considered in this paper, and the experiment plan is
derived by varying the combinations of levels of these factors according to DOE (Table- 1) [4]. A full
factorial design of the experiments conducted on the mobile is adopted (Table- 2).

Table 1- The experiment factors and level.

Factor Level Description
- io.faceapp
third party |~ com.google.android.applications.translate
applications | - com.pewpower.ap_kma_nager
Application - com.|_nfraware.off|ce.llnk
- org.videolan.vic
- com.sec.android.applicationpopupcalculator
- com.sec.android.applicationclockpackage
System
applications | - com.samsu_ng.helphub
- com.android.mms
- com.sec.android.applicationmusic
Launch & High Kill and re-launch every five seconds
Kill Low Kill and re-launch every sixty seconds
Monkey tool sends touch, motion, trackball, navigation,
Events - S - . .
Events majornavigation, systemkeys, switch, anyevent, flip, and pinchzoom
None Monkey tools is not sending events (not used)
Storage Normal Dgfault storage space
Full Ninety percent storage space
Table 2- The experiment plan.
Application Launch&Kill Events Storage
third party applications High Events Normal
System applications High None Normal
System applications High None Full
System applications High Events Normal
System applications Low None Full
third party applications High Events Full
System applications Low Events Full
System applications Low None Normal
System applications Low Events Normal
third party applications High None Normal
third party applications Low Events Normal
third party applications Low None Normal
third party applications High None Full
third party applications Low Events Full
third party applications Low None Full
System applications high Events Full

6. Results and discussion

After collecting LTs of the workload applications every five and sixty seconds and finding the
median value of the LTs at each time period across the experiment, a statistical method, which is
Mann Kendal test, is used to check for trends of the LTs of the applications. The existing of trend
(increasing or decreasing) means that the LTs are affected by the combinations of factors at each level
across experiments. Table- 3 displays Mann Kendal test trends for applications.
The significance level that is determined in the experiments is 95%, which means 0=0.05. If the P-
value is less than 0.05, this means that there is a trend. The positive or negative Z-value means an
increasing or decreasing trend, respectively.

1794

Noori and Fahad

Iragi Journal of Science, 2020, Vol. 61, No. 7, pp: 1791-1797

Table 3- Mann Kendal test trends for applications.

Experiment No. Z —value P - value

1 1.6569 0.0975

2 0.9939 0.3203

3 0.6501 0.5156

4 -5.7047 1.1654e-08
5 2.8318 0.0046

6 2.4786 0.0132

7 -1.2069 0.2275

8 1.3011 0.1932

9 -3.9990 6.3621e-05
10 -5.4298 5.6405e-08
11 -3.3484 8.1276e-04
12 1.0268 0.3045

13 19.5658 0

14 -3.5051 4.6268e-04
15 0.4847 0.6279

16 0.8496 0.3955

After checking the trends, one way ANOVA statistical method is performed on LTs of applications
every five and sixty seconds to distinguish the affecting factors. The results showed that the factor that
has the strongest influence on LT is the application factor, based on the largest F-value it has (Table-4).
The level of the application factor that has the strongest influence is the third party applications, based
on the largest mean value it has (Table-5). The next most influence factors after the applications factor
are launch and kill, events, and storage, respectively.
Table 4- Results of one way ANOVA (tests of between-subjects effect)

Tests of Between-Subjects Effects

Dependent Vansble: sunchbme

Typ= IV Sum of

Scurce Sgusres af Mean Sgusre = Sig.
Corrected NModel 8238.707" 15 <£15.880 34 315 .OCO
Intercept 751.480 1 5751.480 474 443 000
applications 1688.547 1 1888.547 139.220 .0CO
lsunckandiail 3C5.257 1 305.257 25 121 .0co
events 2865.4849 1 265.4849 21.982 Ralole]
storage 255.486 1 255.486 21.075 .0CO
applications ~ lsunckandia] 130.186 1 130.186 10.740 00C1
applications ~ events 14.852 1 14.852 1.225 288
aspplications ~ storage 84.687 1 54.687 5336 021
launckandiall = events 301.347 1 301.347 24 858 000
launckandiall = storage 158.789 1 158.782 13 098 0CcOo
events ~ storage 218.110 1 218.110 17.692 .OCOo
aspplications ~ lswnckandiall ~ 115.701 1 115.701% o 544 .0ocz
events

applications *~ lsunckandicl ~ 182.656 1 1232.656 15.CSs8 00O
storage

applications * events = 20.317 1 29117 2227 O73
storage

launckandial = events * 183.319 1 123.319 15122 000
storsge

applications ~ jaunckandiall ~ 221.517 1 221.517 18273 .0CcOo
~events * storage

Error 56454.685 <857 12.123

Tots! 73437.815 <873

Comrected Totsl 826894.402 <872

1795

Noori and Fahad Iragi Journal of Science, 2020, Vol. 61, No. 7, pp: 1791-1797

Table 5- Results of one way ANOVA (descriptive statistics)
Decoriptive Efatictioc

Dependem Vanab ke auncntime

appications Beackandul avanas SO age Mean Sid Dearactuicx ™~
thirdpartyjacp= higlz v nomsl 235022 1 .0841 '-'; L6
ful 1 85737 &£ 122475 487
Totad 1 S10688 3 as855cCe 533
none nomaad 2.39764 338185% 54
Tulk 2857849 385692 720
Totad 25428 38H292 1374
Tod nomesd 2.39577T 4254HE4 ALY
ful 2.35122 2 686376 1207
Tofad 2 36767 2.13462% 1907
o ol nomaal 2492923 2 685924 80
ful 7. 7S590 25 6175227 o0
Tobss 5. 13257 18.188724 120
nane nomsol 255015 137427 50
Tul 2 5970_2_ 153762 #0
To 2.57858 143284 120
Toaod nomad 252969 1 B79887 120
ful 5.18148 1HDB&HEZ 120
Totsd 385557 12.808&88S8 240
Tood oVeras oomesd 24228 212387 08
ful 2.51437 85 398077 5&7
TNH 250276 8 54334(3 553
oone nomesad 241130 325405 714
ful 2857222 373583 780
TC-_(BI 254752 ITAHB3 1454
Tox nomsl 241537 g18306 820
Tulk 2850716 & 038577 327
Totad 2.53301 4 778450 21487
Wy Stom apps high avarts nomasd 41883 FE11CE o690
Tus 408488 8 172887 199
Tosad S4572 3053184 868
nona nomaal G23HT D&as4a7s F20
ful 57582 D3IDDEE T20
Tobss S2335 paavary 1440
Tot nomeal 5?',5‘23« 533432 1385
ful 75590 2.887357 29198

7. Conclusions

After conducting the sixteen experiments, it is concluded that the applications factor is the strongest
affecting factor on launch time, according to its F-value (largest value). Specifically the third party
applications have the strongest influence according to the mean value. The next most affecting factors
on LT are launch and kill, events, and storage, respectively, according to their F-values.
According to the experimental results, the paper recommends:
- Each conducted experiment should not be limited with a specified time and should continue
until the device is in an unsteady state and not reacting to user actions. This gives a lot of information
which makes the statistical results more accurate.
- In design of the experiments, it is preferred to conduct the experiment in a full factorial design
but at the expense of time and cost. When the number of experiments is not too large, it is better to
implement them in a full factorial design (taking all aspects of the factors (levels)) instead of fractional
factorial design (taking part of the experiments) to discover their influence on LT.
As a future work, we will further investigate the effects of Android mobile resources on launch time of
the applications.

1796

Noori and Fahad Iragi Journal of Science, 2020, Vol. 61, No. 7, pp: 1791-1797

References

1.

2.

3.

10.

11.

12.
13.

14.

Woukkadada, B. Nambiar, R. and Nair, A. 2015. “Mobile Operating System: Analysis and
Comparison of Android and iOS”, International Journal of Computing and Technology, 2(7).
Ayad R. Abbas, A. And Kareem, R. 2018. “Age Estimation Using Support Vector Machine”, Iraqgi
Journal of Science, 59(3C): 1746-1756.

Inas A., Sumaya S. And Safa A. 2016. “Using One-Class SVM with Spam Classification”, Iraqgi
Journal of Science, 57(1B): 501-506.

Cotroneo, D., Fucci, F., lannillo, A.K., Natella, R. and Pietrantuono, R. 2016. "SA Analysis of the
Android Mobile OS," IEEE 27th International Symposium on Software Reliability Engineering
(ISSRE), Ottawa, ON, pp. 478-489.

Araujo, J., Alves, V., Oliveira, D., Dias, P., Silva, B. And Maciel, P. 2013. "An Investigative
Approach to SA in Android Applications,” IEEE International Conference on Systems, Man, and
Cybernetics, Manchester, pp. 1229-1234.

Qiao, Y., Zheng, Z. and Qin, F. 2016. "An Empirical Study of SA Manifestations in
Android,” IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW), Ottawa, ON, pp. 84-90.

Qiao, Y., Zheng, Z. and Fang, Y. 2018. "An Empirical Study on SA Indicators Prediction in
Android Mobile," IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW), Memphis, TN, pp. 271-277.

Ul/Application Exerciser Monkey | Android Developers. 2019. Retrieved 31 October 2019, from
https://developer.android.com/studio/test/monkey

Logcat command-line tool | Android Developers. 2019. Retrieved 31 October 2019, from
https://developer.android.com/studio/command-line/logcat#alternativeBuffers

Android Debug Bridge (adb) | Android Developers. 2019. Retrieved 31 October 2019, from
https.//developer.android.com/studio/command-line/adb#IntentSpec

Gilbert, Richard O. 1987. “Statistical Methods for Environmental Pollution Monitoring”, Van
Nostrand Reinhold Company Inc.

Weiss, N. A. 2017. “Introductory statistics”, Pearson Education Limited.

Montgomery, D. C. 2013, “Design and Analysis of Experiments”, John Wiley & Sons Inc., eighth
edition.

Wagner, J. R., Mount ,E. M. and Giles,H. F. 2013. “Extrusion”, Elsevier Inc.

1797

https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/command-line/logcat%23alternativeBuffers
https://developer.android.com/studio/command-line/adb%23IntentSpec

