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Abstract 

     Neuroimaging is a description, whether in two-dimensions (2D) or three-

dimensions (3D), of the structure and functions of the brain. Neuroimaging provides 

a valuable diagnostic tool, in which a limited approach is used to create images of 

the focal sensory system by medicine professionals. For the clinical diagnosis of 

patients with Alzheimer's Disease (AD) or Mild Cognitive Impairs (MCI), the 

accurate identification of patients from normal control persons (NCs) is critical. 

Recently, numerous researches have been undertaken on the identification of AD 

based on neuroimaging data, including images with radiographs and algorithms for 

master learning. In the previous decade, these techniques were also used slowly to 

differentiate AD and MCI symptoms from structure classification methods. This 

review focuses on neuroimaging studies conducted to detect and classify AD, 

through a survey based on Google Scholar content. We explore the challenges of 

this field and evaluate the performance of these studies along with their negative 

aspects. 

 

Keywords:  Alzheimer's Disease, Neuroimaging, Magnetic Resonance Images, 
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 دراسة بحثية: تصنيف المرضى الذين يعانون من مرض الزهايمر
 

 شيماء عبد المجيد ، محمد صبيح حمود التميمي*
 قدػ عمؽم الحاسؽب ، كمية العمؽم ، جامعة بغداد ، بغداد ، العراق

 الخلاصة:
عادة ما يكؽن الترؽير العربي إما ثنائي أو ثلاثي الأبعاد وذلغ لمنعام الحدي عند الإندان والتي تذمل      

بنية الدماغ ووظائفو التي سيتػ فحريا. إن الترؽير العربي ىؽ أداة واعدة لتذخيص الأمراض بذكل عام ، 
منعام الحدي البؤري. يعد الترنيف وىناك بعض الطرق التي يمكؼ لمخبراء الطبييؼ استخداميا لالتقاط صؽر ل

الدقيق لممرضى الذيؼ يعانؽن مؼ مرض الزىايمر أو المرضى الذيؼ يعانؽن مؼ ضعف الادراك الخفيف ، وىي 
المرحمة الاولى لمرضى الزىايمر ، أمر بالغ الأىمية لمتذخيص الدريري. لقد كان الاعتراف بمرض تعتبر التي 

ربي ، عمى سبيل المثال ، الأشعة الدينية بالاعتماد عمى التعمػ الآلي الزىايمر مؼ معمؽمات الترؽير الع
مؽضؽع بحث جدي في الآونة الأخيرة. علاوة عمى ذلغ ، تػ استخدام ىذه الإجراءات عمى مدار العقد الماضي 
بذكل تدريجي لتمييز علامات الزىايمر بطرق هياكل الترنيف. استعرضنا تطبيق دراسات الترؽير العربي 

مجال اكتذاف وترنيف مرض الزىايمر. كماعممنا عمى استكذاف الرعؽبات في ىذا المجال وتحديد  في
 صفات ىذا المرض والجؽانب الدمبية التي يجب تدؽيتيا.
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1. Introduction 

     Alzheimer's disease is named after Alois Alzheimer; the specialist who originally described's the 

disease as a physical illness influencing the brain. AD is the leading cause of dementia and defined as 

an accumulation of side effects that can influence the loss of memory and the thought capacity of the 

brain when the disease is damaging [1]. In the United States, AD is the sixth leading cause of death in 

the general population and the fifth among Americans age around 65 years. Deaths from stroke, heart 

disease and prostate cancer decreased between 2000 and 2017, while AD deaths increased by 145% 

[2].  

2. Brain Scanning Techniques 

     Cerebral changes caused by AD even precede the appearance of the amnestic side effects and they 

progress in a pattern that typically involves the temporal lobe and the hippocampus, as can be 

demonstrated by structural MRI imagery. An MRI scanner uses a powerful radio waves and magnetic 

field to produce digital images of tissues and structures in the brain that can detect abnormalities or 

tumors [3]. The performance of the nuclear resonance signals recuperated from various areas of the 

brain will improve the images. The relaxation times, i.e. T1 and T2, in addition to PD (proton density) 

are signal weighting parameters that are calculated after the pulse sequence of the scanner and are used 

to examine certain tissues in the brain (Figure-1) [4].  

 

 
Figure 1-Examples of T1 weighted, T2 weighted and PD weighted MRI images [5]. 

 

     Functional changes, connectivity, and metabolism may be detected with functional MRI (fMRI) by 

defining cerebral regions reacting to the patient into blood flow recordings. An fMRI scan is effortless 

and secure and can be performed routinely to monitor a patient's progress during treatment. 

Hemoglobin brings oxygen through the brain as oxyhemoglobin which is converted into 

deoxyhemoglobin once used. Where oxygen is "spent" close to an active location in the brain [6]. The 

image is then formed by looking at the proportion of small wave frequencies between these two states, 

while the patient is going to be treated, for example, by tapping the finger which is corresponding to 

the brain region in action, as shown in Figure-2. 

 
Figure 2- Axial TIWI in neurologic format with overlaid functional activation data demonstrate strong 

left dominance in the expressive speech area (yellow arrows) [7]. 
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     However, Figure-3 shows improvements in Fluoro-Deoxy-Glucose - Positron Emission 

Tomography (FDG-PET). 

  

 
Figure 3-FDG-PET of control, MCI, and mild AD individuals. FDG-PET shows reduced uptake of 

regional CMRgl in the temporal-parietal cortex (shown as arrows) in MCI and AD patients [8].                                                                             

 
Figure 4-Single SPECT scan of a patient showing right temporoparietal hypoperfusion [9]. 

                                                                  

     Single Photon Emission Computer Tomography (SPECT is a type of nuclear imaging that 

demonstrates how blood flows through tissues and organs, as shown in Figure 4. Experiments have 

shown that this can be more susceptible to brain damage than MRI scans, as it can recognize lower 

blood flow to damaged areas. This method is also useful in the diagnosis of spondylolysis and blood 

deprivation of the ischemic brain after stroke and tumors [10]. 

 

 
Figure 5-A DTI-derived tractography (1.5-T MRI scanner; diffusion gradients in 30 non-colinear 

directions [11].  
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3. Datasets  

     The image database is a crucial component for any recognition system because it contains 

photographs gathered from different sources or downloaded directly from multiple individuals using 

suitable tools. 

3.1 Alzheimer's Disease Neuroimaging Initiative (ADNI) Dataset 

     ADNI has been developed as a prospective multicenter to identify biomarkers for early 

physiologic, genetic, and biochemical detection. ADNI was founded by Dr. Michael W. Weiner in 

2003 as an independent private organization designed to determine the aggregation of serial MRIs and 

PETs, along with other natural markers and medical and neuropsychological assessments, to detect the 

development of MCI and early AD. ADNI includes different types of information, including medical, 

biological, rheumatoid, PET and biodiversity images (http://adni.loni.usc.edu/about/). 

3.2 Open Access Series of Imaging Studies (OASIS) Dataset 

     The OASIS dataset was developed by Dr. Randy Buckner, from Howard Hughes Medical Institute 

(HHMI) at Harvard University, and it is a project to free the scientists ' communities from 

neuroimaging the brain data [12].  

4. Literature Survey 

     AD diagnosis requires several measures that begin with pre-treatment and a complete evaluation to 

identify neurodegenerative patients. 

4.1 Concatenation Features 

     Dukart et al. [13] reported 28 AD patients (Male / Female =19/9), 28 healthy controls 

(Male/Female = 20/8), and 56 individuals from the ADNI database. Knowledge research was carried 

out with their Leipzig cohort of 21 AD patients (Male / Female = 9/12) and 13 control subjects 

(Male/Female = 7/6). The FDG-PET and MRI pre-processing protocol included bias correction in the 

MRI results on inhomogeneous objects, partial volume-effect correction, masking in the FDG-PET 

data for non-gray material voxels, and the spatial normalization approach DARTEL to an average size 

model produced in all subjects. By drawing a circle of 5 mm diameter around the reporting co-

ordinates, six VOIs are derived from each modality and limited to non-zero intensities in the sphere. 

Then, the average voxel for a Support Vector Machine (SVM)-based AD category from a picked 

Region of Interest (ROI) was taken. For the ADNI data collection, an accuracy rate of almost 88 % 

was achieved, while that for the Leipzig cohort was up to 100 %. The Leipzig cohort was 

discriminated against by a classification trained on ADNI data with an accuracy of 91%. Moradi et 

al.[14] selected subjects from the ADNI database, classified as (i) 200 NC (Male/Female = 103/97), 

(ii) 231 NC (Male/Female = 119/112), (iii) 164 stable (Male/Female = 97/67) (iv) 100 progressive 

(PMCI) (Male/Female = 66/34). The SPM8 package and VBM8 toolbox were used for preprocessing. 

Biologically precise, standardized, and segmented magnetic pictures of the gray matter (GM), white 

matter (WM), and cerebrospinal fluid (CSF) have been revised. Besides, 29852 GM density values 

have been extracted from the GM chart for each subject and used as MRI features. There were two 

stages in the identification process. The first stage was the role selection to choose a subset of the MRI 

voxel in the Regularized Logistic Regression (RLR). Secondly, an LDS semi-monitored system based 

on the transductive SVM classification was used for categorization. Also, an MRI biomarker was 

extracted from the LDS classification, together with age and cognitive evaluation, as input data for a 

Random Forest (RF) analysis. The classification included an RF classification. The RF reliability was 

tested with 10 times cross-validation, showing an accuracy of almost 82 % of the MCI-to-AD 

conversion. Combining the MRI data with the findings of the mental assessments resulted in an 

increase of the MCI-to-AD precision. While this concatenation of knowledge is simple and desirable, 

the method has the advantage of treating all characteristics as equivalent, since the characteristics 

obtained from different modalities can not be distinguished. Another study [15] argued that the 

complementary knowledge provided by these methods could also be ignored. 

     Liu et al. [15] also collected information from the ADNI dataset, which was composed of 202 

people including 51 AD patients, 99 MCI patients (43 of which had been AD converters in one and a 

half year, whereas 56 were non-converters), and 52 NC patients. However, the use of integrated multi-

modal information could greatly enhance AD work in the previous studies reported by Dukart et al. 

[13] and Moradi et al. [14]. Liu et al. [15] proposed a novel multi-task selection method to maintain 

additional intermodal information by controlling each modality by restriction. After the selection of 

the function, a multi-kernel SVM was used to incorporate each classification modality. This technique 

http://adni.loni.usc.edu/about/
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resulted in 94.37% accuracy for the region under the REC or AUC curve of 0.9724 AD, 78.80% 

accuracy for the AUC of 0.8284 MCI classification, and 67.83% accuracy with AUC of 0.6957 for the 

isols of the RCI converters to AD and nonconverters. This shows the superiority of this technology 

over the other state-of-the-art classification strategies. 

     Hojjati et al. [16] used 34 patients with AD (average age 72.5 years, 18 female), 25 patients with 

MCI-C (average age 73 years, 11 female), 69 patients with MCI-NC (average age 72.9 years, 37 

female), and 49 HC (average age 74.4 years, 28 female) from ADNI database. The methodology 

includes the use of the graph theory to characterize different aspects of the rs-fMRI brain network by 

calculating measures of integration and segregation. The cortical and subcortical measurements, e.g. 

cortical thickness, were extracted from sMRI data. The rs-fMRI graph measures were combined with 

the sMRI measures to construct input features of a support vector machine (SVM) for classification. 

Two feature selection algorithms were used for feature reduction and selecting a subset of optimal 

features, namely the the discriminant correlation analysis (DCA) and sequential feature collection 

(SFC). The resulting accuracy values were 67 and 56% for three-group (AD, MCI-C, and MCI-NC  or 

MCI-C, MCI-NC, and HC) and four-group (AD, MCI-C, MCI-NC, and HC) classification, 

respectively, which were obtained with the SFC feature selection algorithm.  

4.2 Papers Utilized Different Classifiers with High Efficiency in Separating AD From MCI 

     The data from 345 AddNeuroMed cohort participants, comprising 116 AD patients, 119 MCI 

patients and 110 Cognitively Normal (CTL) individuals, were reviewed by Aguilar et al. [17] in 

2013. The purposes of this research were: first, to compare linear and nonlinear multivariate AD vs 

CTL techniques; second, to check subsequent CA transformation anticipating MCI, the prodromal 

phase of the disease; third, to evaluate the effects of age, education and the genotype of 

apolipoprotein E (APOE), in predicting AD against CTL; finally, to differentiate between the 

genetic effects in ageing, education, and APOE. Four supervised learning methods were used for 

characterizing AD patients and controls, as well as foreshadowing the transition from MCI to AD 

based on MRI tests. The MRI data was made available for FreeSurfer, which included Orthogonal 

Latent Structures Projects (OPLS), Decision Trees, Artificial Neural Network (ANN) and SVM, to 

analyze the classification performance. The classification assessments resulted in an effect of 83 % 

and a precision of 87 % for the best methods. They obtained an accuracy of almost 86% to predict 

the development of MCI patients into AD for a one-year follow-up. In the identification of MCI 

converters, the estimation of multivariate models derived from the AD-CTL classification also 

seemed robust and efficient.  

4.3 Deformation-Based Morphometry (DBM)-Based Studies 

     E. MRI and 18FDG-PET data were collected from 93 AD subjects, 204 MCI subjects including 76 

MCI-C convertors and 128 MCI non-converters (MCI-NC), and 101 NC subjects were used from 

ADNI dataset. The dataset was taken into consideration by March 18, 2007. Suk et al. [18] were the 

first who studied the usage of DBM to describe a sleeping trait from a volumetric patch and 

subsequently developed a strategy for defining a joint feature representation from the multi-modality. 

The proposed method resulted in 95.35% AD versus NC, 85.67% MCI versus NC, and 75.92% MCI-C 

versus MCI-NC classification accuracies. The approach requires a significant number of 

generalization training samples, which are not feasible, especially as neuroimaging studies take time 

with many parameters associated with DBM. The resulting representations of the features are hard to 

understand with only few data samples. Thus, DBM could not claim to provide useful clinical data. 

4.4 Multi-Atlas Based Morphometry 

     In order to suggest a multi Atlas-based morphometry technique that calculates the morphometric 

representations of the same picture in different spaces of multiple atlases, Min et al. [19] tested a 

sample of 459 subjects consisting of 97 AD, 117 progressive MCI (p-MCI), 117 stable MCI (s-MCI), 

and 128 NC patients from ADNI databases. Their data are recorded in several atlases, in which 

adaptive regional characteristics are extracted. The relationships and the critical scheme follow a final 

identification with the SVM are all elements from different atlases. The results showed rating 

reliability values of 91.64% for AD / NC and 72.41% for p-MCI/s-MCI, which exceeded the values 

from previous methods based on the single atlas. The derived characteristics of each atlas were 

combined to fully represent the brain of the subject. The features created from the different atlases, 

which could include redundant information from similar atlases and contribute to high-dimensional 

representations, were however considered for the AD classification. Liu et al. [20] clarified that a 
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subject could be seen from the front and side pictures via multiview face recognition. Since the images 

contain distinctive information about the same person, the use of different sets of features from more 

than one perspective can maximize the individual's representation, which is a preferred way of 

learning in comparison to strategies with single views. Likewise, multiple atlases can be viewed in 

brain morphometry as various perspectives of the same brain. Hence, an image created from a specific 

atlas can be seen as a brain profile and used to collect valuable data from other atlases with different 

representations (i.e. views). The authors argued that the features isolated from K adaptive ROI sets are 

representations of the same subject separately, so they should not be related, as previously stated in 

Min et al. [19]. They reported the subjects to various selected atlases as a solution.   

4.5 DTI Based Studies 

     Dyrba et al. [21] used European DTI Dementia Contemplates (EDSD) specimens, including 137 

clinically probable AD (MMSE 20.6±5.3 of Minimal State Examination patients and 143 healthy 

elderly controls). In order to achieve the criterion for choice of discriminatory voxels and use the 

diffusion ratios of fractional anisotropy (FA), maximum density (MD), and the anisotropy mode of the 

chosen voxels as features for SVM-based AD distinction and the Naïve Bayes (NB) classification, the 

primordial components of the analysis (PCA) and entropy-based results were used. Proportions of 

80% for FA and 83% for MD were reached by SVM. The SVM-NB accuracies were lower by 68 % 

and 75 %. This type of research supports the idea that machine learning algorithms allow for robust 

identification of information collections available from various scanners, regardless of whether 

another information collection from the scanner was not in the workout sample. Nir et al. [22] 

conducted a medical visualization study on 200-piece samples comprising 50 CTLs, 113 mild-

cognitive impaired subjects, and 37 AD-patients. To evaluate the value of the white matter, a modern 

fiber-tract display technique was used. Tractography was used to locate fibers and then classify them 

into 18 fiber classes based on the 18 areas detected in the probabilistic WM tract atlas of the Johns 

Hopkins University. It used the shortest path map to reduce the fiber pack to a small, low dimension 

image based on the Maximum-Density Path (MDP) approach to determine the number of fibers 

passing through each voxel. The thickness map was measured. All MDPs were reported in various 

areas and FA and MD diffusiveness metrics measured in all MDPs were used for the classification of 

SVM-based AD and MCI. Overall, the MD features were higher than those of the FA and the 

precision was improved by increasing the dimension of selecting the average MDP points passing the 

FIS. Dyrba et al. [23] analyzed EDSD data, a model studies 13,17,32–34 that involved eleven 

European Centers with 35 negative MCI (Aβ42–MCI), 35 positive MCIs (Aβ42+ MCI-Aβ), as well as 

25 Healthy Controls (HC). The subsequent information included the Early shifts in their particular 

WM white tissue which were identified iin the AD patients. In the predementia step of the MCI, they 

tested WM modifications with DTI. The DTI, the volumetric magnetic resonance imaging data, and 

the fractional anisotropy, which is consisted of an MD and anisotropy mode maps derived from DI, 

were linked to an SVM cluster. The classification was taken into account by a comparison based on 

the volumes of GM and WM dark tissue produced by their positive or negative amyloid weight. The 

results revealed a precision for MO of up to 68 % and for MCI-Aβ42 − and MCI-Aβ42 + of up to 63 

%. The classifier was up to 77% accurate to MD, with an impressive 68% lower value for the GM 

volume, for the isolation of MCI-Aß42+ from HC. The reliability of the multimodal classification was 

not higher than the precision of the current methodology. 

     M. DTI scans of 150 subjects in the ADNI database were examined by La Rocca et al. [24] to 

compare the nested and unnestled features in the same dataset. The first work was to measure the 

distinctively unknown characteristic distribution and to extract from each subject the main white 

matter fiber tracts with the FA and MD values of every voxel in the skeleton. Approximately 120,000 

voxels were required for each subject guide. The Relief algorithm was then applied according to the 

principle of evaluating the characteristics following the discrepancy between their values in the 

neighboring data instances within an unregulated and nestled process. After that, the characteristics 

were identified and sorted in order to decrease. Fifteen reduced datasets were created for each 

classification task by selecting an increasing numbers of voxels, which are most selective based on the 

performance of the feature selection presently. The study and classification cycle were completed with 

random forest algorithms. The findings showed that the voxel-based approach did not improve the 

grading process achieved with other methodological methods other than what the AUC did with HC 
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and AD segregation using FA. These findings suggest that DTI data offer better accuracy in 

predementia DA for predicting GM scale.  

4.6 ROI Type Study 

     Patients from ADNI were identified by Eskildsen et al. [25] along with 226 age-matched CN 

patients. The pMCI subjects were defined by time periods which included 6, 12, 24, or 36 months, 

and each class was classified by sMCI subjects. The pMCI subjects had their ratings. Preprocessing 

opertations eliminated noise from the images with the determination of the approximate standard 

noise variance, bias field rectification, registration at the Montreal Imaging Industry (MNI) 

standard storage, skull removal, and Face Accurate Cortex Extraction (FACE) cortical thicknesses. 

Cortical divisions were manually checked by a specialist for errors; if errors were found in any 

picture at preprocessing, subjects were omitted from the dataset. The validation technique of Leave 

One Out (LOO) was used to create a classification model in which one subject is evaluated. In 

total, 876 MCI step categorized feature sets were identified, 388 pMCI–sMCI features were 

identified, and maximum relevance minimal-redundancy reduction (MRMR) was introduced. For 

the classification, Linear Discriminant Analysis (LDA) resulted in prediction accuracies which 

were artificially inflated between 73% and 81%. This study showed that the reliability of the 

transition from MCI to AD can be enhanced by studying the atrophy patterns of the different 

disease stages. 

     Xu et al. [26] used ADNI information, which included 113 AD patients, 110 MCI and 117 NC 

subjects and focused on extending the algorithm of multi-methodology by separating AD / MCI 

with a strategy assessment. Their approach suggested using the characteristics of GM size, regional 

average FDG-PET rate, and flowerbetapir images. Alternatively, they proposed employing a Sparse 

Representation-Based Classification (SRC) technique to a get-together of different weights to the 

different methods of classification of AD versus MCI and pMCI versus sMCI subjects. The 

accuracy of classification using Weighted Multi-Modality SRC (wmSRC) was 74.5%  for AD 

versus NC and  for MCI versus NC,  whereas it was 94.8% for MCI versus NC and for pMCI 

versus sMCI . Zu et al. [27] used ADNI regular MRI and FDG-PET imaged data, which included 

51 ADs, 99 MCIs and 52 NCs in 202 baselines MRI and FDG-PET registers. This work introduced 

a new model to learn how to define AD versus MCI multimodally by exploring the relationship 

between modalities and topics. The strategy involved the selection and multimodalizing of 

etiquette multi-tasks, where the selection of features is based on a range of modalities, and a group-

sparse regularizer is needed to jointly select a subset of features. Next, an SVM multi-kernel 

combines the features selected for final classification from the multi-modality findings. The 

proposed strategy obtained 95.95, 80.26 and 69.78 % accuracies with respect to AD vs. NC, MCI 

vs. NC and MCI-C vs. MCI-NC, respectively. Jie et al. [28] utilized data from 51 AD, 99 MCI (43 

MCI converters and 56 MCI non-converters), and 52 NC patientsfrom the ADNI database. 

Consequently, a multifunctional, regularized multi-tasking method of training was proposed, in 

order to both safeguard the characteristic relation of the different data modalities and to overcome 

the drawbacks of current multimodality techniques, ignoring the information distribution in every 

methodology that is necessary for. They were able to extract global topology and local connectivity 

features from the graph, while a multi-kernel SVM for the MCI class was used for the least 

absolute shrinkage and selection operator. The results showed that the technique could improve 

recognition and help to find the brain sites required for the diagnosis of disease.  

     Liu et al. [20] employed datga from 459 subjects from ADNI (97 AD, 117 progressive MCI, 

117 s-MCI, and 128 NC). They suggested a new, vision-centralized, multitasking technique of 

employing useful evidence from multiple atlases in different representations. The brain pictures 

were captured separately in multiple atlases to obtain representations of features in each atlas 

region. With additional guidelines from various atlases, the proposed multi-atlas list method 

focuses upon the most restrictive features for each atlas. The SVM classifier then used the function 

chosen in every space of the atlas. Finally, the results from the SVM classifiers were taken together 

to make the final selection. This process achieved reliability of 92.51% with AD compared to NC 

and 78.88% with pMCI versus sMCI. Ota et al. [29] studied 80 individuals who underwent the 

systemic RIM, and 18 FDG-PET baseline scans with the amnesty RIM (40 of whom developed DI 

within three years) of an enhanced image-oriented prediction of transition from mild cognitive 

disability to DA. The selection of biomarkers for early detection of AD was important in that 
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approach. The functions were derived from the baseline data MRI and FDG PET using the 

Automatic Anatomical Labeling (AALs) and the LONI Probabilistic Brain Atlas (LPBA40) for 

each area of concern, which reflect gray density and relative brain metabolic levels for glucose. 

The identification output was evaluated by a linear SVM ensemble with bagging and a determined 

region under the ROC curve. The feature score was calculated using multiple SVM recurred role 

deletion (SVM-RFE). The resullts showed that the multimodal inclusion offers a clear 

improvement and that FDG-PET performed better than MRI in AD prediction, based upon the 

variance analysis of the average AUCs for eight sets of features. Evidence from the three ADNI 

cohorts and from the Australian Biomarkers Imaging and Lifestyle (AIBL) study were used in a 

paper by Sørensen et al. [30]. They tested the hypothesis of early cognitive impairment beyond 

those associated with volumetric changes as the hippocampal texture. The double-sided hippos are 

classified by using a delicate SVM edge with a radial Gaussian kernel based on their texture. The 

real-life decision-making feature for SVM was described as a single texture. The sign indicates 

whether the SVM classifies the patient as a commitment (+) or a command (-), and the sum is 

equal to the distance between the two classes and the selection limit. This research proposed and 

tested the hippocampal framework as a potential AD biomarker for early structural MRI detection. 

The data from the ADNI datasets were used by Lama et al. [31] with 214 sub-themes, including 70 

NCs, 74 MCIs not modified in the AD, and 70 ADs. They used SVM and Import Vector Machine 

(IVM) along with Extremely Regularized Research Machine (RELM) with structural magnetic 

resonance imaging to discriminate against AD, MCI and HC subjects. The greedy feature selection 

strategy based on score chose main feature vectors and complex data distributions were performed 

by kernel-based discriminative methodologies. Studies of ADNI datasets showed that RELM 

substantially improves the accuracy of AD classification from MCI and HC subjects with the 

feature-selection methodology. In evaluating their strategy on 807 subjects, including 186 AD, 395 

MCI, and 226 NC, Cheng et al. [32] used ADNI database. They conducted a collaborative research 

in multi-ailway environments and objective areas with a technique incorporating a new structure 

for early diagnosis of Multi-Domain Transfer Learning (MDTL). There were two sections in this 

method; First, an MDTFS model that selects the most useful subset of features from MDTF data. 

Second, MDTC model to classify early AD disease conditions in MDTC (Multidomain Transfer 

Classification). The results showed that multi-auxiliary domain information could be used in the 

MDTL technique to promote learning in the objective domain.  

     The ADNI and AIBL visualization systems, as well as software aided diagnosis of dementia 

(caddentia), were used by Sørensen et al. [33] for both freely accessible ADNI datasets. With 

several combined individual MRI biomarkers, including measurements of cortical thickness, 

volumetric measurements, the form of the hippocampus and hippocampus texture, their approaches 

included a biomarker that uses more information than a single biomarker method in the structural 

MRIs. By incorporating all biomarkers into the LDA classifier as a feature, they combined 

calculation of various MRI biomarkers which provided a Multi-CA value of 62,7 % on the datasets. 

In the CADDementia challenge, which was held in the event, a comparable CA of 63.0% was 

achieved. Rathore et al. [34] however noted that ROI forms of AD-related research rely only on 

early learning in order to control the selection of ROIs and features. This may lead to a propensity 

to see new information without taking into consideration changes in the brain outside the regions 

studied. With locally linear embedding (LLE) studies which unattend MRI features and can detect 

changes in the brain without direct feedback on the way the disease spread, Liu et al. [35] argued 

that LLE) has a benefit over various ROI approaches. Such inquiries included subjects chosen from 

the ADNI list, including 413 topics from 137 CN, 93 S-MCI, 97 c-MCI and 86 AD, collected 

between 2005 and 2008. LLE transformed the volume and cortical thickness information of local 

cerebrums into a locally linear space requiring less measurement, as well as the global nonlinear 

data structure. Embedded brain features were then used in the preparation of the classification 

calibrations, such as the RLR, SVM, and LDA. The findings were 68 % right, 80 % sensitive and 

56 % special. 

     Liu et al. 2013 [35] argued that classifications that use embedded MRI features usually 

outweigh original classifications. In the three types of linear classification widely used for SVMs 

and LDA, changes in the classifications with LLE performed equally well. This finding showed 

that the benefit of LLE was important and not limited to a certain class of classifiers. Moreover, 
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and clinically important, LLE considerably increased the separation between the MCI subjects who 

changed into AD within three years of the MRI base and those persons who remained stable. 

Contrary to conventional dimensional reduction methodologies such as global linearity of PCAs or 

unique kernel shapes in supervised learning calculations such as LLE, a separation performed in 

the absence of LLE generated results worse than those from traditional models for supervised 

learning calculations. 

4.7 Parameter Tuning 

     An ADNI database of 185 AD and 225 HC, which were arbitrarily assigned to training and 

testing datasets, was used by Lebedev et al. [36]. By monthly convert to dementia (based on four 

years of follow-up), 165 individuals with MCI were also reported. This study examined the 

efficiency of forest randegroups, trained with and without neuroanatomic detection limitations 

using different structural MRI measures, and the precision and intercohort robustness of AD 

prediction. The 1.5-T MRI structural scans using freesurfer segmentation and cortical 

reconstruction were processed. AD versus HC classifiers, including template tuning, were trained 

from the performance and evaluated using an off-bag estimate. The classifiers were therefore 

validated with the AD vs HC test set to foresee the transformation of MCI to AD. The ADNI 

dataset combined cortical thickness with volume measurement to ensure the best AD vs HC 

sensitivity and specificity, which had values of 88.6 % and 92.0 %, respectively, for test set. In 

comparison to the reference classifier Linear Support Vector Machine (L-SVM), this random forest 

model produced significantly more accuracy. The detection sensitivity of the transformation MCI-

to-AD (but not the performance of the AD-to-HC classification) was also increased by a 

combination of morphometric measurements with a genotype and demographics (e.g., age, sex, and 

education) from 79.5% and 75%, respectively, to 83.3% and 81.3%. The typical subset in the 

ADNI data base was used with 170 subjects incorporating 54 AD patients, 58 MCI and 58 NC, by 

Beheshti et al. [37]. They proposed a combination of Voxel-based morphometry (VBM) and 

texture analysis to separate the more discriminatory characteristics to adapt the SVM-RFE with a 

covariation technique to choose a powerful sub-set of characteristics to overfit the combination of 

features. For AD and NC classification, the technique achieved a rating precision of 92.86% for 

MCI and NC, a rating accuracy of 97.22%, an accuracy of 91.18% for AD from the MCI, and a 

range accuracy of 85.59% for three-way classification. No optimal technique was identified for 

relegating the SVM1 parameter to the number of features which should have been selected in the 

SFS procedure. 

     Li et al. [38] included ADNI database from 113 AD patients, 111 MCI patients, and 117 CU 

subjects for the classification of AD versus Cognitively Unimpaired (CU), MCI versus CU, and 

AD versus MCI. The emphasis was on recognizing AD or MCI from the CUs topics based on a 

new technique called Dictionary Learning (DL). In addition to an active implementations in past 

acceptance, it was based on a Multi-Feature Kernel Supervised Within Class-Similar 

Discriminative Dictionary Learning (MKSCDDL), SMRI, FDG-PET, and florbetapir-PET. This 

merged approach was adopted in order to differentiate AD, MCI, and CU. The results from 

MKSCDDL were promising for the classification and determination of neuroimaging data diseases, 

which gave ratings accuracy of up to 98.18% of AD versus CU, 78.50% of MCI versus CU, and 

74.47% of AD versus MCI. These results were better than those achieved from other state-of-the-

art approaches, such as Multiple Kernel Learning (MKL) and Joint Regression. However, the 

drawback of these studies  is that parameter tuning is important. 

4.8 Radial Basis Function (RBF) Kernel 

     In order to introduce a new approach to statistic function reduction and selections in high 

dimensional MRI data based on the Probability Distribution Function (PDF), Beheshti et al. [39] used 

3T MRI images obtained from the ADNI database. They selected the optimum number of bins in the 

intensity distribution between AD-and CN subjects used by the Fisher maximization criterion, which 

were then used to classify ADs for an SVM (i.e. SVM with a linear and RBF kernels). The results 

showed that the PDF-based selection methodology is a sound strategy that is highly competitive in the 

classification of DC from high-dimensional sMRI tests with other state-of-the-art technologies. 

Because vector machines support and various models that use the kernel method are not well suited to 

numerous training tests or features at the input space, there have been some approximations to the 

RBF kernel. 
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4.9 DMAF-Based Strategies 

     Möller et al. [40] had a dataset with 89 patients who visited the Alzheimer Centre, Vrije 

Universiteit of Amsterdam (VU) Medical Center or  Erasmus Medical Center in Rotterdam, from 

September 2009 to October 2011, in addition to 53 patients with a behavioral variant 

Frontotemporal Dementia (bvFTD) and 53 patients with a Subjective Cognostic Deficits (SCDs). 

The findings of the machine-learning classification of AD versus bvFTD revealed a GM density 

map value for the SVM AD group, which is 88 % higher for patients who receive AD versus 

control subjects, 85 % higher for patients with bvFTD versus control items, and 82 % higher for 

patients with AD versus patients with AD. Nonetheless, Rathore et al. [33] reported that the 

number of features is generally larger than, or equal to, the number of subjects available, as 

features or DMAF-based strategies suffer as a consequence of dimensionality disadvantage. 

Overspent and unattended methods to minimize complexity have not been  tested. 

4.10 Neural Systems 

     In 2013, Mamood and Ghimire investigated the reliability of the system's diagnosis by 230 

analyzed RMIs collected by means of the OASIS MRI database and tested by the professional neural 

systems on all 457 MRIs [41]. Current AD diagnosis strategies rely on a mental disability 

examination, which is not effective until the patient has progressed to a moderate AD. The approach, 

which relies on scientific and image management strategies, was devised to better classify AD using 

the PCA's research system computerized category model to increase the dimensionality of MRI 

images. A multi-organized, mixed class feed-forward neural network was then equipped with reduced 

dimensional information to accept the AD aspect in the MRI. Comprehensive OASIS MRI data 

collection experiments were correctly separated by an 89.22 % classification, since the system uses a 

neural network. Ram [42] used longitudinal MRI images from 138 subjects, including 68 patients with 

CN, and the ADNI database for 70 AD patients. Instead of looking for stable patterns in CN subjects 

or AD patients, the goal was to demonstrate the degeneration process in various areas of the brain 

from individual MRI images. The Apps relied on brain volumes at the Automatic Anatomic Labeling 

(AAL) atlas at such locations. To each subject with a smaller longitudinal model, the covariance 

values processed by SICE has to be determined using these qualities to prepare the deep neural 

structure. The findings showed the strategy's effectiveness, with 94% accuracy, to identify certain 

patterns for grouping CN and AD subjects, which exceeded the performance of previous strategies. 

Prásad et al. [43] examined 200 subjects in an ADNI-2 component, following up the ADNI database 

project where the MRI standard protocol was applied to diffusion imaging (amongst other outputs). 

The dataset included MRI disseminations from 50 NC monitors, 74 Early MCI subjects and 38 Late 

MCI subjects, as well as 38 AD subjects. Their method produced two communication networks that 

rely on the regional characteristics of the number and fiber flow. The SVM-based classification of the 

early and late-MCI subjects was used to include raw connectivity matrices and other network 

measures, such as global efficiency, transitivity, trajectory length, modularity, radius, and diameter. 

The results showed that, for the FI(N)  and FL(N) controllers, the highest accuracy set was detected at 

78.2 %, while the instance t-tests were used (p > 0.05). For the controls versus eMCI classifier, FI(N 

+M) had the highest accuracy of 59.2 %, but this was not the case for FI(N + )  FL(N +M). For the 

controls vs. LMCI, FL(N) was 62.8 % more accurate and much more desirable than any other function 

set. The best performance for EMCI versus LMCI was 63.4%, with FI(N) and FL(N), and it was 

significantly different from all other feature sets. Neural systems, however, have the drawback of the 

parameter tuning requirement. The machine learning techniques used by most of the present works 

relied on one classifier, with the most common classifier being the SVM, a binary classifier that is 

suitable for high-dimensional applications with few examples. Additionally, groups that combine the 

outputs of several classifiers to test the optimal combination of apps or models, otherwise randomly 

selected, are an alternative to a single classifier. After that method, Cabral et al. [44] used the ADNI 

database in several classifiers including subjects chosen from a class-adjusted subset of 177 volumes 

of the FDG-PET. They suggested an alternative approach in the organization of AD, MCI and CN 

cases in PET brain images to address the three-class problem. The study aimed to recognize FDG-PET 

brain images of CN, MCI, and AD through a ternary classification problem for the best group of RF 

and SVM classifiers. Their combination effectively overrated the corresponding SVM group’s single 

classifier, with the best result being 66.78%.  
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4.11 PET Scanners 

     Two databases including fMRI and SPECT brain images, as well as PET brain metaphors, were 

tested by Dinesh et al. [45]. In order to implement a computer-aided diagnostic (CADx) tool, the 

collection of PET data was collected from the ADNI. Only Normal (NOR) and AD groups of l05 

subjects were given in the SPECT database. Their approach suggested a nonnegative matrix 

factorization (NMF) combination to be used for the production of assisted AD analyzes, as well as the 

reduction and the SVM classification. The results of the validation of that strategy showed high 

sensitivity and specificity more than 85 %, up to 91 % classification accuracy, respectively. Li et al. 

[46] applied their proposed deep learning model consisting of 51 AD patients, 99 MCI patients, and 52 

normal controls to an overall society of ADNI data. They identified a comprehensive learning system 

for different stages of AD patients, which were pre-processed for the extract of characteristics, based 

on MRI and PET scans. The next move was to use PCA to acquire the PC in new features and to 

choose the most efficient features using stabilization selection techniques together with Lasso, the 

least absolute shrinkage and selection operator. The deep learning architecture subsequently treated 

these features. Unattended learning and finely tuned AD patient tags initialized template weights into 

the deep structure. The decomposition enhanced the generalization ability of the template during the 

fine-tuning process. Finally, an AD versus MCI classification by an SVM was applied to the learned 

functionality representation. The results showed that the classification accuracy was improved by 

5.9% on average as compared with traditional deep learning methods, with 91.4% for AD versus the 

HC, 77.4% for the MCI versus the HC, 70.1% for AD versus the MCI, and 57.4% for the MCI versus 

the MCI.NC. Nonetheless, for clinical applications, PET scanners are more costly and a scanner for 

generating SPECT images is more reliable than a PET scanner. 

4.12 Whole-Brain Analysis 

     A research of 202 MRI and structural MRI results from 16 sites between the United States and 

Canada was conducted by Zhan et al.[47], based on information collected from ADNI2. The brain 

networks were measured use 9 methods based on entire-brain tractography including the Functional 

Correlation Tensor (FCT) method, the Runge-Kutta second-order (RK2), SL and the Tensorline (TL), 

two FAD-focused deterministic orientation (FACT and RK2), and two ODF-based probabilistic 

approaches (Hough and PICo) within the main implementation for the four tensor-based deterministic 

Fiber assignment (FACT). The approach adopted five methods of selection of nine brain-wide 

tractography from brain networks for 3 classification tasks. Three possible factors might affect the 

accuracy of the classification, including the diagnostic complexity, the feature extraction method and 

the algorithm for tractography. The findings of the classification accuracy shown by the work team 

were closely associated using the diagnostic problem. Liu et al. [48] published a study of MRI images 

of 710 subjects from the ADNI list (200 AD, 120 MCIc, 160 MCInc, and 230 HC). Due to the noise 

and limited sample size of the available RIM images, they employed a wholly-brained hierarchic 

network (WBHN), as depictions of a single or multiple ROI may not be sufficient to reveal the 

anatomic distinctions underlying the groups of disease sufferers and the HC structures. Using a 

technique involving dividing each subject's entire brain into regions using the AAL atlas, the 

connectivity between each pair of regions was developed and calculated using Pearson's correlation 

coefficient. Instead They selected those with higher F-notes to reduce the dimensionality of the 

features. While, the classification process was based on a Multiple Kernel Boosting (MKBoost). The 

results showed an accuracy of 94.65% and an AUC-ROC of 0.954% for the AD vs. HC, an accuracy 

of 89.63% and an AUC of 0.907% for the AD vs. MCI, an accuracy of 85.79% and an AUC of 

0.826% for the AUC vs. HC, and of 72.08% and a AUC of the MCIc vs. MCInc of the CVs. Using 

ADNI server information with a set of 427 topics, Long et al. [49] indicated an automated learning 

system to distinguish AD or MCI patients from stable elderly patients by recording and analyzing 

regional morphological differences of the brain across various classes for the expectation of AD 

transfer in MCI patients. After the separation of each combination of subjects was determined, a range 

matrix was constructed to integrate the idea of transforming the distance matrix into a cross-product 

matrix, where a Multi-Dimensional Scaling (MDS) algorithm was used. Thus, they were able to find 

their decomposition to obtain a PCA. The MATLAB ' libsvm' toolbox was used to implement an SVM 

with a linear kernel. separation accuracy values of 96.5% for AD versus healthy elderly, 91.74% for 

progressive MCI versus strong older, and 88.99% for progressive MCI versus healthy MCI, were 

demonstrated by the proposed algorithm. Wang et al. [50] noted that full-brain research relies heavily 
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on mathematical honesty and can not be carried out only by computer scientists after the facts are 

labeled as AD or safe by physicians. The study downloaded an open-access database of 126 examples 

(28 DBs and 98 HCs) including a variety of imaging studies. They tried to develop a new AD brain 

detection technique based on a method based on the 3D (DF) estimate between participants in the 

stable elderly control and AD classes. Three AD-related characteristics which are the distance of 

Bhattacharyya, the student's T-test, and Welch t-test (WTT) were identified for this 3D-DF. For 

classification, two non-Parallel SVMs, a generalized proximal SVM of its value, and a Twin SVM 

(TSVM) were then applied. The results showed that the “3D-DF+WTT+TSVM” combined value was 

best achieved with 93.05±2.18% accuracy, 93.57±3.80% sensitivity, 93.18±3.35 specificity, and 

79.51±2.86 precision.  

5. Validation Techniques 

     In order to test the proposed technique of a random forest classifier, Selvathi and Emala [51] used 

416 subjects (healthy and pathological) from Open Access Series of Imaging Studies (OASIS) 

database to differentiate brain MRI-influenced patients from AD subjects. The unsubsampled 

contourlet transforms the input picture into several subgroups and distinguishes features from both 

input pictures and transformed images. The characteristics were given to compare the execution of 

algorithms to the random forest grade and the SVM. The results revealed that both the random forest 

classifiers are superior to the SVM classifier and other previous works in terms of accuracy, sensitivity 

and specificity. The identification precision values of the OASIS-G1, OASIS-G2, OASIS-G3, and 

OASIS-G4 datasets were 81.58%, 86%, 73% and 85%, respectively. While, the accuracy vallues of 

the random forest classification were 84.21%, 89%, 83% and 87% for OASIS-G1, OASIS-G2, 

OASIS-G2, and OASIS-G4 data, respectively. Lebedeva et al. [52] used two cohorts, the first was 

from the Prognosis of depression in the elderly (PRODE) that included 169 ADNI patients and 185 

HC, whereas the second included ADNI patients (n=225). Their project aimed to test whether MCI or 

dementia could be predicted one year before diagnosis in structural brain MRIs in Late-Life 

Depression (LLD). Structural brain measurements were collected from T1-weighted brain MRI 

pictures using Freesurfer Technology (v.5.1). Random forest classification was based on MRI 

discriminated against patients with MCI and dementia who improved after a one-year follow-up and 

those with LLD who remained cognitively intact. In the LLD dataset, 185 patients with cognitively 

stable AD vs 22.5 elderly people from ADNI were also tested on a previously established random 

forest model. The study found that LLD patients with MCI or dementia who were diagnosed one year 

ago were classified with 76 % accuracy from those cognitively healthy LLD patients, using structural 

brain measurements. The best model calculated the MCI status alone with SVM and MMSE values, 

which were 89%, 85%, and 90%, respectively. 

     Ardekani et al. [53] used information from the ADNI database to assess 164 subjects with a 

progressive (n=86) and stable (n=78) diagnosis in two groups based on their possible transition into 

probable AD. The random forest category algorithm was used to determine the usefulness of 

Hippocampal Volumetrial Integrity (HVI) in the detection of healthy and dysfunctional MCI patients. 

The resulting identification accuracy was measured at 82.3% at a tolerance of 86.0%, 78.2% with 

considerably higher accuracy 89.1% than that for men 78.9% for women. This increased precision for 

women is the most commonly reported result of thhe use of AD machines in MCI. Nonetheless, they 

are not yet strong enough for routine clinical work, even with these enhanced studies. In order to 

understand the characteristics which are present in the iris, Hernández et al. [54] obtained real data 

from the foundation in Quito, which collaborated with coworkers to collect samples. The technique 

used a MATLAB- developed mathematical model to identify iris characteristics by specifying AD 

parameters or patterns. The first image was standardized by a Fourier transform, and then transformed 

to find circles. Specific training methods were used, including ZeroR, Naïve Bayes and Multi-layer 

Perceptron, using three multi-layer classifiers. Their analysis found that the best-results classification 

tool was Naïve Bayes with 61.96% accuracy, 74% probability that a sick patient will receive a positive 

diagnosis, and a 47.62% accuracy that the healthy person is considered not to be in a medical state. 

The data obtained by the Naïve Bayes prediction classifier required feedback on the method of 

generating the modeled function. Nevertheless, a technique of validation, such as that of 10-fold 

validation, was not included. 
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6. Multi-Kernel Learning 

     Data collected from the ADNI databases, including N-MCI (n= 120) and P-MCI (n= 139), were 

also used by Korolevet al. [55]. In this analysis, the multivariate prediction approach MCI-to-dementia 

was applied using a technique based on cortical and subcortical quantities, cortical thickness and 

surface area, as well as the structural MRI curvature, medical measurements and plasma measures, to 

resolve the perceptions of improvement in AD. The criterion for shared knowledge (MI) was used for 

the selection of functions and the classification of probabilistic multi-kernel learning (pMKL). The 

best model was to combine mental and functional markers with morphometric MRI measurements that 

projected development with a precision of 80% (83%, 76%, and AUC = 0.87). In this experiment, 

MKL had little impact on model execution, because it did not improve classification accuracy, but 

rather the multi-source display calibration, when using five kernels in Gaussian. The limited number 

of kernels (3-5), as in other recent studies, could explain the limited benefit observed, while further 

improvement in the predictive performance can be achieved with a larger number of kernels. 

7. Heterogeneity 

     Varol et al. [56] used an ADNI dataset made up of 123 AD patients and 177 T1-weighted 

magnetic resonance volumetric frames. The genetic information set comprised 103 AD patients and 

139 controls with a single nucleotide polymorphism information. The presentation of a new non-

linear algorithm for simultaneous binary classification and subtype identification, Heterogeneity 

Through Discriminative Analytics (HYDRA). By defining the non-linear limits of classification 

developed by using various linear hyperplanes, HYDRA isolates two classes. The polytope calls 

the revealing diversity by assignment to various hyperplanes of subgroups of patients. HYDRA can 

be general in dealing with imaging and non-imaging data and can find applications beyond the 

clustering of brain images in exploratory investigations. Their results showed the ability of 

neuroimaging and genetic research to approach map disease heterogeneity. Heterogeneity in future 

research lines is important with this enticing promise. 

8. Landmark-Based Feature Extraction Method 
     Zhang et al. [57] used ADNI server subjects consisting of all ADNI-1 MR images, including 

199 AD and 229 matched-age HC images. The two sets were divided randomly; the D1 (100 AD 

and 115 HC) and the D2 (99 AD and 114 HC). Then, they proposed a pioneering approach of 

extraction to overcome the non-linear registration and tissue segmentation constraint. A pre-trained 

model for detecting landmarks in each test image was used for detecting AD landmarks. The linear 

SVM classifier then classifies a sample picture as HC or AD with characteristic morphological 

features from the training frames. The findings showed that the method had a grade accuracy of 

83.1%. This approach, therefore, depends on the size of training datasets, so that the lower number 

of subjects adversely affects the reliability of recognizing landmarks and hence the learned seminal 

might not be sufficiently relevant for a new subject. ADNI1 information packages comprising a 

total of 207 HCs, 154 AD, and 346 MCI subjects were employed by Zhang et al. [58]. In this 

research, a novel extractor method for AD diagnosis was implemented using longitudinal, simple 

MR images. These observed landmarks removed peculiar spatial features and associated statistical 

properties. In particular, a word packing method removes abnormal state spatial features so that 

large spatial variations are obtained from all scanning times and are therefore invariant with the 

number of longitudinal scans as well. Finally, AD and MCI classification with these spatial and 

longitudinal characteristics is achieved by the linear SVM classification. Experimental results 

showed 88.30 % accuracy for AD versus HC and 79.02 % accuracy for MCI versus HC 

classifications. Zhang et al.[57] focused on offering a significant twofold approach to the discovery 

of anatomical landmarks. The proposed approach, as a result of its landmark conclusion design, is 

neither expected for non-linear imaging nor for brain tissue divisions. Also, they used a two-layer 

forest regression model that provides an efficient and reliable way to handle AD characteristics. 

While they often suggested a different technique to extract features based on the anatomy of space 

and longitudinal features, the main characteristics of this work are the adoption of a Bag of Word 

system to create high-level space characteristics for MR boards, where the normalized longitudinal 

deformations are used for supporting the MR images. 
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9. Kernel Weights Choice 

     Tong et al. [59] used ADNI database which included 37 AD patients, 75 MCI patients, and 35 

NC patients. They introduced a multi-methodology classification system for the effective use of the 

multi-modal information complementarity. For each method, the similarity of regional MRI 

volumes, voxel-based FDG-PET signal intensities, CSF-biomarker measures, and categorical 

genetics information is calculated separately for each methodology. Different similarities of 

modalities can then be combined to generate a single graph for final classification in a non-linear 

graph fusion process. The accuracy of the API classification was 98.1% between AD subjects and 

NC, 82.4% between MCI subjects and NC, and 77.9% in three-way classification. This 

methodology is based on an AUC classification. Nevertheless, it is very time-consuming to pick 

the optimal kernel weights. 

10. Classifying Using CDR Scale 

     Sivapriya et al. [60] acquired ADNI data that includeed neuropsychologic information, 

combined baseline, and composite data. In conjunction with the Merit Merge (CPEMM) process, 

the features selected for the proposed ensemble classifier C4.5 were better than those of SVM, NB, 

and random forest classifiers. The suggested collection from the CPEMM function showed the best 

subset of characteristics that distinguish normal people from patients with mild cognitive 

impairments and 98.7 % with Alzheimer's disease. Hon and Khan [61] tested the problem of 

reliance on a variety of training images using OASIS MRI datasets. They pursued the need to 

carefully refine the design of deep networks with transfer learning, state-of-the-art architectures 

such as the Visual Geometry Gruppe (VGG), and the release of pre-trained weights from large 

benchmark object datasets. The fully connected layer will then be re-trained with just a few MRI 

images with almost ten times less than state-of-the-art training. In assessing 150 members, 

including 75 NC and 75 early-stage AD patients, Cai et al. [62] used the OASIS database. They 

examined the sulcal width and three more important morphological measures of neuroimaging in 

order to differentiate early-stage AD. The IG technique selects a subset of features for a large data 

set for the separation of individuals from the NC and early-stage AD. In order to compare the 

classifications performance, three types of classifiers, Naïve Bayes, Logtical Regression and SVM 

were applied to each of the four modals, including sulcal measurement, cortical thickness, cortical 

volume, and subcortical volume, along with the combination of the various measures. Their results 

indicated that sulcal tests are higher than or similar to the other classification measures. The global 

Sulcal Index (g-SI) and Sylvian fissure width were two of the most important sulcal measurements 

which served as beneficial neuro anatomic markers for the identification of early-stage AD. When 

using similar neuroanatomic functions, there was no significant difference between the three 

groups. One drawback of this study is the identification of people with a Clinical Dementia Rating 

(CDR).  

11. Voxel-Wise Studies 

     Gray et al. [63] selected a dataset of 147 ADNI subjects from 37 AD (14 women), 75 MCI 

patients from 34 sMCI (12 women), 41 advanced to AD (12 women), and 35 HC (12 women). All 

participants had 1.5 T MRI, fdg-PET and CSF analyzes in the baselineand movement-corrected by 

the structural MRI and FDG-PET objects. The MRI collected 83 field volumetric features and 

obtained 239,304 FDG-PET voxels. CSF-derived Aβ, tau, and ptau measurements were included in 

the biological features. Furthermore, a genetic variant of the ApoE genotype was used. In 

classification purposes (AD vs HC, MCI vs HC and sMCI vs pMCI), the random forest was 

developed with regional GM volumetric controls, CSF biomarkers, FDG-PET-intensities which are 

dependent on voxels, and APOE-genotype, for the identification of AD and MCI. The researchers 

measured similarities among pairs of RF classification examples and applied a multi -modality 

approach to data learning. Accuracy, tolerance, and particularity were tested with 100 tests, 

splitting the dataset into randomly selected training sets (75%) and test sets (25%). In the AD vs 

HC with data from FDG-PET, the single-mode score results were 86.4%, in addition to MCI vs Hc 

with data from genes and the sMCI vs pMCI, 73.8% with data from MRI, in the AD vs HC 

multimodality rating, 89% and in MCI vs HC, 75%. Those results are similar to those presented in 

other recent multi-kernel learning studies. Ségovia et al. [64] analyzed ninety seven SPECT images 

taken in a recent study containing AD1 possible AD, AD2 possible AD, and AD3 being definite 

AD, from Virgen de las Nieves hospital in Granada (Spain). There were 41 NORs (male / female, 
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46–85 years old), 30 AD1s (male / female, 23–81 years old), 22 AD2s (male / female, 46–86 years 

old) and 4 A D3s (male / female, 69–83 years old). Then the SPECT images were normalized by a 

general affinity with the SPM code and further standardized with respect to the maximum intensity 

by intensity. The partial least square algorithm (PLS) and the bag-out error were employed in order 

to select scores to identify characteristics for rating vector extraction. The class of the images was 

determined by an SVM-based classifier. This technique yielded precision values of 91.6%, 

sensitivity of 92.7% and accuracy of 91.1%. Nonetheless, the researchers used a small sample size, 

so that the input data for the majority of cases were transformed into small vectors in order to 

reduce the problem of small sample size. 

     Salvatore et al. [65] used 162 cognitually healthy elderly monitors in the ADNI database, 137 

patients diagnosed as AD, 76 patients diagnosed as MCI converters with MCI in a year and a half , 

and 134 diagnosed MCI converters (MCIcs) in a year and a half as MCI non-converters. AD was 

not improved in 134 patients using a diagnosis of MCI over a year and a half . In addition, 509 

individuals were considered from 41 radiological groups. The methodology involved extracting 

features and selecting them from the MR images, then selecting the most unequal features by using 

a PCA in accordance with the FDR criterion. A single topic classification was then carried out with 

an SVM-based machine learning method. Classification algorithm output was assessed with the 

nested 20-fold CV, with 0.76 for AD versus CN, 0.72 for MCIc versus CN, and 0.66 for MCIc 

versus MCInc. The results were superior to those of the 27 of the 28 algorithm configurations of 

the 3 classifications, as the 27 algorithms had an accuracy of 0.66 for the contrast between the 

MCIc and the MCInc. Khedher et al. [66] used 188 AD, 401 MCI, and 229 ADNI database 

command subjects. Their methodology implemented an early AD diagnosis CAD system using 

tissue-segmented brain images. The approach is based on multiple multivariate methodologies, 

such as PLS and PCA, between AD, MCI, and elderly NC subjects. The CAD frame demonstrated 

85.11% sensitivity, 91.27% specificity, and 88.49% precision. In order to introduce a structured 

CAD template based on function ratings for the detection of AD using sMRI data, Beheshti et al. 

[67] used ADNI database, including 130 AD subjects and 130 HC subjects. Four phases were 

included in the approach. First, a voxel-based morphometrical technology analyzed the GM 

variations of AD patients compared to HC GMs, where the GM volume is known as a VOI. 

Second, the VOIs were extracted as raw characteristics by voxel intensity. The raw features from 

which higher scores were derived were the more discriminatory features, rated by 7 rankings, 

namely Statistical Dependency (SD), MI, IG, Pearson's Correlation Coefficient (PCC), Test Score 

(TS), Fisher's Criterion (FC) and Gini Index (GI). Third, the estimated classification error on the 

basis of the training set of the AD and HC classes was calculated with the vector size to determine 

the number of tops features the minimizes which error has been selected as the top discrimination 

function. Fourth, the evaluation was carried out by an SVM. A data fusion approach was also 

introduced to improve classification performance in the feature ranking methods. The score 

accuracy of the proposed automated AD diagnostic system was 92.48% with the sMRI results. 

Schouten et al. [68] had a group of participants containing only subjects screened at the University 

of Medicine in Graz. They used the voxel tensor measurements, which were skeletonized using 

spatial calculation on the tract. After that, by means of an Independent Component Analysis (ICA), 

they clustered vox-based diffusion interventions and separated the weights. Finally, they agreed on 

the structural availability of probabilistic tractography between Harvard Oxford Atlas regions and 

on the graphical measures that rely on those basic network charts. Vocal performance scores were 

obtained between 0.888 and 0.902 for the AUC rating of the measurements. The measures 

clustered by the ICA ranged 0.893 - 0.920 AUC. For the structural connectivity diagram, AUC was 

0.900, while the graph measurements accordingly ranged 0.531 - 0.840 AUC. An AUC of 0.896 

resulted in both measures along with insufficient lasso groups. The first group comprised 68 AD 

patients and 68 HCs and the second group comprised 92 AD, 94 HC, 65 sMCI and 71 pMCI 

subjects. Beheshti et al. [69] tested two groups. ADRNI was created as a new system to predict the 

transition of MCI into AD, one to three years before the clinical diagnosis, to assess the quality of 

their proposed CAD model for 458 subjects. The technique used the Fisher criterion to test the 

functional sub-sets, chosen from the best discrimination, which decreases the dimensionality of the 

vectors. Finally, an SVM with reliable results of 93.01% for AD vs. HC, relative to other recent 

classification studies to differentiate these two groups based on MRI data, was performed. 
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In the early stages of methodology development, Çevik et al. [70] analyzed data collected from the 

ADNI database of 508 subjects to establish a fully computerized voxel-based technique known as 

the Voxel-MARS for an order to identify AD and MCI. By means of a new three-step extraction 

process, the data were changed into a high-dimension space. The Multivariate Adaptive Regression 

Splines (MARS) technique was used for the first time to classify CN subjects from those diagnosed 

with AD and MCI in the area of brain RI. The results were comparable to those of the previously 

presented 28-voxel strategy studies. The technique was more sensitive than most other techniques, 

with 83.58% for AD vs CN and 78.38% for MCI vs CN. Lee, et al. used a voxel approach [71] 

focused on major structural adjustments that would subsequently have substantial limitations, for 

example, difficulties in representing the scanning's local data. In their study, 45 patients from 

ADNIas well as 52 NC and 58 MCI subjects were tested with a subset of ADNI. The approach 

included the extraction from DTI and sMRI of local image-based biomarkers to create multimodal 

AD signatures and the incorporation of complementary information using an AD recognition MKL 

model. The results showed that the accuracy of the classification for AD vs NC was 90.2%, MCI vs 

NC was 79.42, AD was 76.63% and MCI differential classification problems was 76.63%. 

12. Small Samples Size 

     Eighty-four Diffusion Tensor Imaging (DTI) records from LONI photo collections were 

aggregated by Lee et al. [72]. Forty of these records were used for cross-validation and the creation 

of a prediction model, with 20 MCI and 20 NC. Early detection of AD is important because the use 

of drugs towards the start of the disease is more effective. The MCI is an intermediate disorder 

between usual olding and AD, so the early diagnosis of MCI is important. Their methodology 

developed an MCI and normal control subject classification model using probabilistic and TBSS 

analysis of the DTI data, which was randomly chosen from a fixed number of voxels. The SVM 

model used the FA of the voxels selected, the mean FA value, and the fiber path volume, to predict 

MCI. The results showed a 100 % reliability and precision and 10-fold cross-validation of 100 % 

sensitivity for an independent data set of 38 subjects, excluding the 40 subjects used to train the 

prediction models. In order to present a new ADNI diagnostic tool for AD by using MRIs, Ortiz et 

al. [73] used images collected from an ADNI containing 50 T1 weighted MR images, 25 of whom 

were normal and 25 AD. Their technique used data obtained through a non-supervised 

segmentation approach based on the distribution of GM and WM in the brain. The tissue 

distribution of the control (normal) and the AD pictures to generate a setup of representative 

models for each class were displayed using the Learning Vector Quantization (LVQ). The proposed 

technique included new images in the space for additional classification using SVM on the model 

vectors. The approach resulted in an accuracy of over 90% and a sensitivity of up to 95% for the 

tests of the normal subjects and AD patients. 

     Li et al. [74] used, together with 15 healthier people with no history of neurological or mental 

problems enrolled in Tongji clinic, 21 patients diagnosed with AD under Alzheimer's guidelines 

from the National Institute for Neurological and Communicative Stroke and Alzheimer's Disease 

and Related Disorders Association (NINCDS–ADRDA). DTI's and T1 images from 36 subjects 

were examined based on four forms of AD characteristics, including WM atlas, tract-based FA, 

voxel-based FA, and GM volume. LOO technique was utilized to analyze and compared the 

characteristics of different markers with each other. The combined characteristics resulted in 

classification results with a precision of 94.3 %, sensitivity of 95.0%, specialty of 93.3 %, and a 

ROC area of 0.96. In the OASIS list of Chyzhyk et al. [75], there are 49 subjects diagnosed with 

moderate to medium DA and 49 unconscious to be selected. They proposed an evolutionary 

wrapper selection using Extreme Learning Machines (ELM) to explore the space of feature 

combinations in their basic classifier training algorithm, which consisted of a Genetic Algorithm 

(GA). The results of an AD database on the construction and location of CAD systems in the 

classification accuracy, sensitivity, and specificity of the features selected, were shown to be 

strong. By utilizing a dataset based on OASIS MRI scans Farhan et al. [76] used 37 AD and 48 

NCs, with chosen distance, WM, CSF and hippocampus size features. The identification of the 

patients and controls was conducted using three different classification models, namely SVM, 

MLP, and J48. In addition, to resolve the error of an independent base classifier, an ensemble of 

classifiers based on majority voting was been included. The data showed 93.75% accuracy, 100% 

specificity and 87.5% sensitivity of the ensemble of classifiers. 
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Challis et al. [77] tested 77 subjects, 27 with potential AD and 50 with MCI, along with 39 control 

samples. All subjects were checked by 3T to obtain a resting-state scan of seven minutes and 20 

seconds. Their study investigated the efficacy of the Gaussian System Logistic Regression (GP-

LR) template of a particular multi-variate statistical machine learning software to stratify patients 

with functional communication patterns in the rest of the brains. They used covariance for the 

Gaussian period and the AD/MCI-based category of logistic regression as a correlation measure. 

The results showed that the connectivity strength between average structures and the best classified 

temporal and subcortical MCI regions as well as the connectivity strength between the frontal and 

other brain areas, is the best-classified AD. The results also backed the idea that GP-LR prototypes 

can communicate with patients. The model accurately measured 75 % ofthose with a mild amnesia 

cognitive impairment and 97 % of those with Alzheimer's disease, which were tested by screening, 

to disembark on a mild amnesic cognitive impairment. The ADNI dataset of 20 stable control with 

20 AD-associated subjects was used by Khazaee et al. [78]. Their approach combines advanced 

machine learning methods to explore changes in functional brain networks in patients with ED, 

using graph computational methodologies. The capacity of the graph measures for the study of AD 

was investigated with an SVM model by using the fisher score for feature choice and the SV M in 

the AD classification. The combined mixture and isolation steps were analyzed. The system 

reached 100 % reliability.  

     MRI scans of 25 volunteers referred to the Radiology Department, through the Psychiatry, 

Neurology and Geriatrics Departments, Kasturba Medical College, Mangalore, were used by 

Fernandes et al. [79]. Their methods included the use of various techniques for image processing, 

such as K-means clustering, wavelet transforming, watershed algorithm, and a customized case-

specific algorithm. These were introduced on Open CV with Qt open-source platforms which 

promote the production and use of the product without the need for proprietary software. The 

results can be used in detecting AD and linking clinical outcomes to assist clinicians in the early 

detection of AD. Zhang et al. [80] found 90 T2 images from the MRIs that belong to a server 

downloaded from Harvard University Medical School. Their technique was first used to eliminate 

the spectrum from each magnetic resonance image by using the weighted-type fractional Fourier 

Transform (WFRFT). Second, PCA was used to reduce the spectrum characteristics to only 26. 

Thirdly, these characteristics were combined and fed into two SVN variants with generalized own 

meaning proximal SVM and twin SVM. The 5x5-times cross-validation tests demonstrated 

sensitivity of 99.53%, precision of 99.53%, and reliability of 99.11%. is the results were 

comparable to the WFRFT-1PCA1-twin SVM. whereas they were superior to the proposed 

WFRFT1-PCA1-SVM. Their results showed the general self-value generalized proximal SVM of 

WFRFT1-PCA1. In order to study 75 subjects, of which 50 are normal, 17 are MCI, and eight have 

AD, an OASIS database was used by Ben Rabeh et al. [81]. The CAD model was proposed in their 

methodology for the early detection of AD, using three frontal sections to remove the 

Hippocampus (H), the sagittal analysis of the Corpus Callosum (CC), and the axial approach to 

function with a variety of Cortex features. This identification strategy relied on the SVM with the 

proposed structure, and resulted in an early AD diagnosis with accuracy of 90.66%. 

     Rabeh et al. [82] again used the database of the OASIS, which included 100 training subjects 

(50 normal, 25 MCI and 25 AD) and 75 test subjects (25 normal, 25 MCI, and 25 AD). Their work 

introduced another classification method to classify AD using a supervised classification system. 

Their approach took into account the four training samples of parts similar to the current passage 

X, as shown by the four divides between Euclidean, Manhattan, Hausdorff, and AMED, in which 

92 % of AD detection was shown to be correct. The main disadvantage in their work was the use of 

small datasets. 

13. Early and Late Fusion Methods 

     MNRIs were used by Ben et al. [83] for 218 subjects tested in a 3T-weighted contrast database 

called "Bordeaux Dataset". Their main contribution is the consideration of the visual features of the 

AD hippocampal area and the use of late fusion for enhanced precision results. In a sub-sample of a 

large French Epidemiological Study called "Bordeaux Dataset", the visual signatures based on 

CHF were first classified among two-by-two categories using the cutting-edge SVM approach and 

the Radial Basic (RBF) kernel. The results showed that the classification accuracies of ADNI 

subsets and the Bordeaux dataset reached 87% and 85% precision in classifying patients with AD 
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versus NC subjects. While, accuracies for MCI versus NC and MCI versus AD on reached 78.22% 

and 72.23%, respectively. Ben et al. [84] re-chosen ADNI sample subjects from data that included 

137 patients with AD, 162 subjects with NCs, and 210 subjects with MCI. Their approach utilized 

the structural RIM information-dependent visual indexing framework and pattern identification to 

separate the three classes of NC, MCI, and AD subjects. This technique was used to derive local 

traits from the hippocampus and post-cingulate cortex (PCC) by circular harmonic functions 

(CHFs) [85]. The PCA method was also used to minimize dimensionality and then to classify the 

classes using SVM classifiers. Their findings demonstrated values of 83.77 and 78 % for the AD vs 

NC group, 88.2 and 80.4 % for organisms and 79.09 and 74.7 % for sensitivities. Their system also 

achieved 69.45% accuracy for NC versus MCI classification, a species of 74.8% and a sensitivity 

of 62.52%. The accuracy of AD versus MCI was 62.07%, the precision was 75.15%, and the 

sensitivity was 49.02% [86]. 

     Dimitriadis et al. [87] selected ADNI MRIs that included an overall dataset of 400 subjects, 

divided into a 240-subject training dataset (60 of each of the four groups) and 160 testing subjects 

(40 of each of the four groups). This technique was based on a random forest algorithm of subsets 

of a complete set of characteristics (i.e., the whole set or the left/right hemispheric), as well as a 

random forest classification with an approach of fusion and a majority vote assembly. The results 

of these surveys were positive in the 61,9% four-class category by combining the MRI-based 

features with the random ensemble strategy for forests. The most detailed classification of all 

research groups participating in a neuroimaging competition was also achieved. However, features 

that have a low contribution and problems with dimensionality may affect early fusion efficiency. 

The correlations between the different modalities can not be used with late fusion methods because 

each modality is handled independently [88].  

14. Conclusions    

     The literature progressively focused, over the previous decade, on the neuroimaging-based 

diagnosis of AD as a way to identify common biomarkers for these conditions. The ultimate aim of 

the AD group is to produce an individual diagnosed with a single MRI by using previously trained 

classification system models on a large pool of ill and healthy people. Many types of 

neuroimaging, including structural and MRI, were explored in this analysis and revealed typical 

changes in the brains of AD patients. No single modality of neuroimaging is adequate, because 

each of these has additional benefits and limitations. All works have seen improved classification 

performance for AD detection by incorporating information from various methods. However, the 

combination of neuroimaging features with population data, cognitive test results, CSF biomarkers, 

and genetic data was successful in obtaining correct classifications. Nevertheless, validation in a 

clinical environment and in databases that consist of extremely pre-selected subjects is important, 

that differ significantly from those seen in the clinical environment. Researchers in the field of AD 

classification face growing challenges, which make it difficult draw precision in classification, 

including the high dimensions of raw neuro-imaging data, the reduction of sample sizes, 

generalizability, and heterogeneity in AD. Neuroimaging remains, however, very promising for AD 

diagnosis as many of these problems can be solved. 
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