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Abstract

The effect of the optical feedback on the polarization flipping point and
hysteresis loop was studied. The polarization flipping occurred at all angles between
the polarizer axis and the laser polarization. The polarization flipping point changed
by an optical feedback occurred at angles from 0° to 90°. Ability of choosing or
controlling the laser polarization was determined by changing the direction of
vertical and horizontal polarization by polarizer rotation in the external cavity from
0° to 90°.
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1. Introduction
Polarization is a very fundamental property of light that is necessary to consider for the vertical
characteristics of electromagnetic waves. Many approaches in optics are decided through the
polarization states of the considered beams. Recently, studies on the polarization of light in lasers
with optical feedback have attracted remarkable attention [1-4]. Floch et al. observed polarization
switches and a hysteresis effect via changing the intracavity anisotropy values of the laser [1, 5].
Stephan et al. experimentally and theoretically studied the polarization adjustments brought about by
means of optical feedback from a polarizer that is external to the cavity [6].
With the aid of the reflecting part of the laser output back into the resonant cavity, the conduct of the

laser, in particular the static and dynamic residences, can be appreciably affected. This is called the
optical feedback effect, or self-mixing interference, which was first suggested by king and Steward
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[7]. Theoretically, and to verify experimentally the polarization switching techniques happening in a
gas laser when an internal parameter along with the laser frequency as an example turned into various
[8].
This paper includes the following steps:
1. The polarization flipping point leads to the production of the hysteresis loop (HL) between the
horizontal (//) and vertical (L) polarization for the He-Ne laser. The HL leads to a decrease in the two
components of intensity (I, and 1.).
2. This problem is treated by optical feedback from the external cavity or reflector (Ms).
3. In previous investigations, researchers took few angles for optical feedback by polarizer rotation in
the external cavity for the treatment of this problem.
4. In our paper, we took multiple angles for optical feedback by polarizer rotation in the external
cavity. Therefore, the two components intensity values (I, and 1,) became high and the HL size
became small. The results in our research are remarkably different from those in previous studies.
2. Experimental setup

Figure-1 shows the layout of experimental setup. The setup consists of three elements, namely the
feedback, laser, and detection elements.

Laser element Feedback element Detection element
A A
Laser Ch BS BSP D,

M
[ }@g& : D
Ny M3
P —
L/
M DF— oS

Figure 1-The Layout of experimental setup and unique coordinates. M;, M, cavity mirrors; Ch,
chopper; BS, beam splitter; P, rotating polarizer; Ms, feedback mirror; PBS, polarizing beam splitter ;
D,, D,, photo detectors; OS, digital storage oscilloscope.

The intra-cavity He-Ne laser generates a linear polarization with a single longitudinal mode
oscillating in the resonant cavity. The working wavelength is 632.8 nm. The gaseous pressure ratios in
the laser tube are He: Ne = 9:1 and Ne20: Ne22 = 1: 1. The reflectivity values of the cavity mirrors M,
and M, are 99.99% and 99%, respectively. The length of the resonant cavity formed by the mirrors M1
and M2 is 40 cm [9].

The feedback element is made of a chopper Ch., a feedback mirror Ms, and a polarizer P. The
feedback cavity length is about 60 cm. The reflectivity of M3 is 99.99%. The angle between the X axis
and the optical axis of the polarizer is denoted by 6. The light whose polarization is parallel to the X
axis is denoted by //-polarization, and the other one is denoted by L-polarization.

The detection element consists of a polarizing beam splitter PBS, photo detectors D;, D,, and a digital
storage oscilloscope OS. The L-polarization and //-polarization are separated by the PBS, and their
intensities (1, and 1) are detected by D,, D,, and OS, respectively.

3. Theoretical analysis

A theoretical version based totally on self-consistency of the laser became available. Helium-neon
(He-Ne) laser oscillates in two orthogonally polarized modes in the resonant cavity. The two modes
transmit through M, and are reflected by the beam splitter to the polarizer. Firstly, the //-mode
transmits through the polarizer to the feedback mirror M3 and then it reflects by M; into the resonant
cavity again. From the intra cavity, the electric vector E,/,(t), and from the external cavity, the
electric vector E,/,(t), combine together into the intra cavity to obtain E,,(t) and, hence, the

feedback effect is generated [9].
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E//(t) = E//l(t) + E//z(t) U ) |
E e =12 exp(i47w// L/c+ Zg//L)E//O(t) TR (7)) |
E/jaty = TenTosTpr2rsTEM) jexp [idmv) (L + D /c + 2g//L) Ejo(8) v v v e vee . (3)

According to the self-consistency of the laser, the following equation is produced

Epj(£) = Eyjo() oeve o evs e e (4)

E//(t) =11y exp(i4ﬂv// L/c+ Zg//L)E//O(t) + TenTps Tp r1r3t%M//exp [i4n vyL+D/c+
Zg//L] E//O(t) ......... (5)

where ry, r,, r; and r, are the reflection coefficient of My, M,, Ms;, and the beam splitter,
respectively, t, is the transmission coefficient of M,, and T, and T, are the transmissivity values of the
polarizer and chopper, respectively. M, is the factor brought about through Jones matrix for polarizers
[7]

M, = cos*6 + sin®208/4 ... (6)

v is the frequency of horizontal polarization (//-polarization). L and I are the laser cavity and the
feedback cavity lengths, respectively. g is the linear gain per unit length due to the simulated
emission inside the resonant cavity with the availability of the external feedback.
Equations (4) and (5) can be solved to obtain [10-12]

Ag = —fMcos (4m2) e en(7)
Ag,) = —Ag, = —BMcos (47tv?l) vrver e e e a2 (8)
Ag, = —BM//cos(4m///l/c) ST (°) |

where B = TprpsTprsts /T,
DGy =911= 90 o _ _ .
where g,, and g,,, represent the gain with and without feedback, respectively. When vertical
polarization (L-polarization) oscillates, the following equation can be obtained
Ag, = BM,cos(4mv,l/c) S G {0)|

AgL =91— 910
where g, and g,, represent the gain with and without feedback, respectively.
M, is the factor brought about through Jones matrix for polarizers
M, = sin*6 + sin?20/4 e (11)

As illustrated in Egs. (9) and (10), Ag,, and Ag, are both modulated by 6 (from the rotating
polarizer) and feedback cavity length I. Furthermore, there is a phase difference between Ag,, and
Ag, due to the frequency difference between v,, and v,. By supposing that v,, is larger than v,
Ag, —Ag, isdenotedas G, which may be expressed as in eq . (12)

Gy = B[M/cos (a + 277:Avl) — M, cosa] veeen e e (12)

C
where a =4mnv,l/c .G, is modulated by I, 6 and Av . The amplitude of G, is denoted as G ,

which is modulated by 6 and Av.
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Fig.2. Ag changes along with 6.(throretically)

Fig.3 G changes along with 0. (theoretically
Figure 2-indicates that Ag changes with 6 from the rotating polarizer. Ag,, for horizontal polarization

increases at 0=0 then decreases at 6=90. Ag, for vertical polarization decreases at 6=0 then increases
at 6=90. The polarization flipping occurs at 8=45. Figure-3 indicates that G changes along with 6.

Also, G increases with the increase of 6. There is no polarization flipping at any angle.
The laser intensity with optical feedback can be expressed as [13]

I1=1,(1-kAg)

-+ (13)

where k is a constant relating to the laser operation parameters and I, is the |n|t|al Iaser |nten5|ty

without optical feedback.

By substituting Eq. (9) and Eq.(10) into Eq.(13), the intensities of the two modes with optical

feedback can be written as

Iy = 1yjo |1+ kyy M) cos (2L0)] N ¢ )

IJ_=IJ_O[1—klﬁMlcos<

4nvll)] (15

where I,,, and I, , are the intensities of the two polarized modes without optical feedback.
1,, and I, are the intensities of the two polarized modes with optical feedback.
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Fig. 5.Intensity changes along with 6(experimentally)

~L with the optical feedback. This theoretical result is identical to the

practical result in Figure- 5, where 1, with the optical feedback is much _greater than the 1, with the
optical feedback at 90°. Also, there is no polarization flipping between,, /1,,, and I, /1,

(theoretically).
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Figure-5 shows that polarization flipping occurs between I, and I, at 8 = 10° and 6 = 60° with
optical feedback. Also, 1. > I, at 8 = 90° with optical feedback (experimentally ).
4. Results and discussion

Figures- 6 to 14 show that the polarization flipping from x-to-y is obtained without and with optical
feedback. Figure-6 shows horizontal(//) and vertical(L) polarization without optical feedback. One can
observe that I, and 1. intensity are stable and that the polarization flipping point does not move
because of the absence of the optical feedback. Figure-7 shows that //- polarization oscillates and 1, is
modulated by optical feedback because of the combination between E;;(t) and E;;,(t) into the intra
cavity. While L-polarization does not oscillate, 1. is stable because of the presence of the polarizer. In
this case, the polarization flipping point moves to the right. When the polarization flipping point
moves to the right, 1, increases and the hysteresis loop decreases.
In Figures- 8 to 11, it is shown that I, increases and the hysteresis loop decreases, while 1, reaches to
saturation state. Figures- 12, 13, and 14 show that L-polarization oscillates and |, increases because of
the combination between E.;(t) and E.,(t) into the intra cavity. Figures- 15 to 25 show that the
polarization flipping from y-to-x is obtained. Figure-15 shows that the polarization flipping point
moves to the left, I, increases, and the hysteresis loop decreases. Figures-16 to 25 show that I,
increases and the hysteresis loop decreases, while I, reaches to the saturation state.
I, is higher than |, and the hysteresis loop does not disappear at //- polarization oscillation, while it
disappears at L-polarization oscillation.
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Figure 8-The intensities of 1, and 1, with
optical feedback at 0=5°
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Figure 20-The intensities of 1, and I, with optical Figure 21 -The intensities of I, and I, with optical
feedback at 6=65° feedback at 6=70°
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Figure 23- The intensities of 1, and I, with optical
feedback at 6=80°
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Figure 24-The intensities of 1, and I, with

Figure 25 -The intensities of 1, and 1, with optical
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optical feedback at 6=90°

5. Conclusions

We have proved that the polarization flipping point moves once to the right and another to the left
by optical feedback. The intensity of the two components (I, and 1.) can be adjusted by polarizer
rotation in the external laser cavity. The control on the vertical and horizontal polarizations is achieved
by the polarizer in the external laser cavity. This is also a simple design that does not need a change in
the structure of the laser or the adoption of complex optical elements. The control on the hysteresis
loop between the vertical and horizontal polarizations can be performed by an optical feedback
technique from the external cavity.
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