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Abstract

The aim of this paper is to investigate the theoretical approach for solvability of
impulsive abstract Cauchy problem for impulsive nonlinear fractional order partial
differential equations with nonlocal conditions, where the nonlinear extensible beam
equation is a particular application case of this problem.
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1. Introduction

The fractional differential equations are models of many applications, such as medicine,
engineering, physics and other sciences. They are becoming more important tools among researchers
and have been attracting many authors in recent years [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Furthermore,
fractional impulsive differential equations played a main role in the modeling phenomena, for example
in describing population dynamics which are subject to abrupt changes, as well as other phenomena
such as diseases, harvesting, and so forth. From this reason, there are many researchers who discussed
the existence of a mild solution of impulsive fractional differential equations [11, 12, 13, 14, 15, 16,
17]. There are some authors who also studied impulsive fractional differential equations with delay
[18, 19, 20]. However, there are few authors who discussed the existence of mild solutions of the
impulsive fractional integro-differential equations of order 1 < a < 2.

In this work, we will study the existence of mild solutions for considered an abstract Cauchy
problem, which is entitled the impulsive nonlinear fractional order partial differential equations with
nonlocal conditions, as follows:
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9z(y,s)
oy

CDE[z(t, %) — h(t, z,(t, x))] + “D2%z(t, x) — (ﬁl +8, : dy) Cpay(t, x)

= fotf(s, zs(s,x), I;/Z) ds,
forte ] =[0,T], t#t, k=12,...m, 1<ay<2,

] Az(t, Ole=e, = Ik(2(t5)), (1.1)
Azr(t, x)|t:tk = I_k(z(t,;)) ,
zo(t,x) + g(t,z) = p(t) € E,, t € (—x,0],

z'(0,x) =2z, €E,.
Now, consider the following A%z(t,x) = “DZz(t,x) . We have
“DE[z(t, x) — h(t, z,(t,x))] = A%z(¢t, x) + fotf(s, zs(s,x), 11 z) ds,
forteJ=[0,T], t#t, k=12....m, 1<ay<2,
AZ(t, x)ltztk = Ik(Z(t]:)) )]

AZ'(t‘ x)|t=tk = I_k(Z(t];)) ,

z(t,x) + g(t,z) = @(t) €EE,, for t e (—x,0],
z'(0,x) = z,, h'(O, z:(0, x)) = Z,.

where A% = ([)’1 + oM [||A“/zz||2])A“ — A%@ s a linear operator in the Banach space X, ‘D% ,
1V are the Caputo fractional derivative and fractional integration of 1 < a,y < 2, respectively, z(t, x)
belongs to Banach space X, and Az(t,x)|¢, is defined by Az(t,x)|¢=, = z(t{) — z(ty). Also,
Az'(t,x)|=¢, js defined by Az'(t,x)|i=¢, = 2'(t) — 2z'(ty) for all k=1,2...,m, 0<ty<t; <
ty < <ty <tmer =T, with  z(tf),z(t;) representing the right and left limits of z at ¢t
respectively, z'(t;), z'(t;;) representing the right and left limits of z' at ¢, respectively, and g: E,, —» X
is a given function. Let z,(.) denoted by z,(6) = z(t + 6), 6 € (—x,0].

Many scientific problem of the impulsive nonlinear fractional order partial differential equations with
nonlocal conditions can be expressed as in the above systems (1.1) and (1.2). Some of them do not
have easy solvability. They are even difficult to study sometimes. Also their behaviors for their
solutions is not appearing in general and, thus, we need more effort and practices. Therefore, these
problems have taken our interest.

The aim of this article is to study and present all the results of the solvability for the proposal class
impulsive nonlinear fractional order partial differential equations with nonlocal conditions. Some of
special types of cases of the proposed problem have been approached, using nonlinear functional
analysis theorems and abstract Cauchy problem involving semigroup operators with Krasnoselskii's
fixed point theorem, to show the solvability with some recent sufficient and necessary conditions.

2. Preliminaries

In this section, we present some assumptions, notation and results needed in our proofs later.
Assumptions (2.1)

The following Assumptions of E, are needed in the description of piecewise continuous space
PC((—o0,0],X).

1. The continuous function v:(—o0,0] - (0,4) is satisfying [ = f_ooov(t)dt < +o0:, and
(Ev B ||Ev) by a Banach space induced by the function v is defined as follows:

E, = {w: (—x,0] - X: forany ¢ > 0, w(#) is a bounded and measurable function on
[—¢, 0], and [°, v(s)supsspsoll(8) | ds < +e0}

with the norm [|wl|z, = [, v(s) sups<g<ollw(®)]l ds.

2. Let the space E, = {w, 0" (—0,T] = X; wy, 0 € CJr, X),k =0,1,2,...,m and there exist
w(tf), w(ty) and w'(t}), w'(ty) withw(ty) = w(ty) and w'(ty) = w'(ty) , we = w(0)+
g(w) = w € E,} where w,, w;'are the restrictions of w, w’to J,, where Jo = [0,t1], Jx = (tk, tres1]
k = 0,1,2, ..., m. Define the seminorm in the space E,, by lwllg, = llwllg, + sup{llw(s)|l : s € [0,T]}
for w € E,, and |lw'l|z, = sup{llw'(s)I| : s € [0,T]} for w' € E,.

(1.2)
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3. By the space E,, we can define the space (E,, II. 1, ) as:
E,={w€E,:0=w,€E,}with norm lwllg, = sup{llw(s)Il : s € [0, T]}.
4. Let the space E, = {w €E,: lollg, < r} for r > 0, then E, for each r, is a closed convex,
bounded subset in X.
Definition (2.1), [21]
The fractional integral of order a > 0 with the lower limit O for a function h is defined as:

a _ 1 t h(s)
19 h(t) = @ Jo tosyia ds, t>0, a>0

where I'(u) = ["e™s"" ds, u > 0 (gamma function).
Definition (2.2), [21]

The Caputo fractional derivative of order o > 0 with lower limit 0 for a function h can be written

as:
c 1 t
D% h(t) = e Jo
Definition (2.3), [21]
The Laplace transform, of the Caputo fractional derivative of order . > 0 is given as:
L{DE h() J(A) = 2% LWDA) = ZR25 A% DF h(®)]le=0, n—1< @ <n.
Lemma (2.1), [22]
Let€ E,, fort €/, then 2z, € E,, and l||z(O)]| < l|zllg, < l@llg, + Lsuposs<ellz(s)Il.
Definition (2.4), [10]

Let A:D € X — X be a closed linear operator. Then A is the sectorial operator of type (M, 6, a, 1)
if there exist 0 < 0 < g ,M > 0and u € R such that the a-resolvent of A exists outside the secto
u+Sg={u+21%: 1€C,|Arg(—1%)| < 6}
and l(A%1 — A7 < AY¢u+Sy.

Lemma (2.2), [10]

Let M # @ be a closed convex subset of a Banach space X. Let Y and ¥ be two operators which
satisfy
1. Yu+ Yv € M whenever u,v € M;

2. ¥ is continuous and compact;

3. Y is acontraction.

Then there exists z € M suchthat z = Yz + ¥z.

Lemma (2.3), [23]

Let A be a densely defined operator in X satisfying the following conditions ;
(i) For some 0 < 6 <§,u+sg ={u+1: 1€C,|Arg(-1)| < 6}.

(if)  There exists a constant M such that
M

[l(AI — A)~1| Sk Agu+Sy.
Then, A is the infinitesimal generator of a semigroup T (t) satisfying ||T(t)|| < C. Moreover,
T(t) = %fe e* R(4, A)dA with c being a suitable path A ¢ u + S, for 1 € c.
Lem[na (2.4) )
If A% is a densely defined sectorial operator of type (M,0,a,u) , then A% is the infinitesimal
generator of a a-resolvent family {T,(t)};s, in Banach space X, where

T,(t) = % J, e™R@A%, A%)dA .
Proof

Since A% is sectorial operator then, form definition (2.4), we get A% is closed linear operator and
satisfies

(i) Forsome0 <@ <§,y+59 ={u+1%: 1€C,|Arg(—1%)| < 6}.
(i) There exists a constant M such that

(AT — A)~1|| < Wﬁ”ﬁm LAY g u+Sy.

h(")(s)
(t_s)a+1—n

ds,t>0, n—1<a<n.

|A%—p|’
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Also, A% is densely defined operator. By lemma (2.3), then A% is the infinitesimal generator of a a-
resolvent family {T, (¢t)};so in Banach space, where

T,(t) = ﬁ J, e RA% A%)dA .
Lemma (2.5), [10]

If the sectorial operator A% is of type (M, 8, a, 1) in definition (2.4), then we have the following:
0] If u>0and ¢ € (0, m), then we have that

1 1
K1(9,¢)Me["1(9'¢)(1+ﬂf“)]5[(1+Si;$>(fe))a—1]
ISe (I < T (1 + pt)
nsin'ta g
I'la)M
n(1+ut“)|cos—| sin @ sin ¢
1
sing \a
M\ sin-o 1] 1 a1 [Ky(6,)(1+ut®)a
1T < — (1 + pt®)at®=1eKi0.9)1+ut )]
Mtoz 1
n(1+ut°‘)|cos | sin 6 sin ¢
1
M (1+ sing )“—1 FACED) )
in(¢p-0) a—1 1
1K (Ol < —— (1 4 pt®) 7 ta- 1ol O.P A+
msing a
MaF(a)
n(1+ut“)|cos—| sin @ sin ¢
sin¢
fort > 0, where K; (0, ) = max {1,Sin(¢_9)}.
(i) If u<0and ¢ € (0, m), then we have that
1
eM|(1+sin¢)a—1
IS ()1l < : L L
wlcosp| T n'|cos¢||cos” ¢’| 1+|ult
eM|(1+sin ¢>)%—1 M pa-1
T, (O] < -
ITe Ol = m|cos ¢| +7t|cos¢||cos ¢| 1+|plte
1
M| (1+sin ¢>)E—1]t
1K ()] < ’ ML fore>0.
lcos ¢t nlcos¢||cos | 1+|ult

3. Main results
To investigate the existence of the mild solution of the impulsive abstract Cauchy problem (1.2),
we assume the following conditions:

(A1) The semigroups S, (t), K, (t), P,(t) and T,(t) generated by the operator A% are compact in
D(A%) whent > 0 and
supse;[[Se (Ol < M, supes Ko (DIl < M, supse; [P (DIl < M, supse; [T (O] < M.
(A;) The h:J X E,, = X and there exist constants L, , L, > 0 satisfying
lh(t1, 1) — h(tz, @) < Li(llor — @2llg, + [1t1 — t21)
supee; 1R (t, 0|l = Ly, h'(orzt(olx)) =2z.
(Az) The f:] X E, X X — X and there exist constants K; , K, > 0 satisfying
If (t1, 01, ¥1) — f(E2, 92, ¥ < Ki(llo1 — @2llg, + lyn — yall + 162 — £211)
supee;[lf (¢, 0,0)[| = K.
(Ag) The I: X = X, I: X — X and there exist constants a;, , b, > 0 and ¢ ,d; > 0,
k =1,2,...,m satisfying
i (z1) = I (22l < agellze — 22|l (11 (O] < by
|(49) Tz = (49) '@ || < cillz = zall - [|(A%) (O] < e
(As) The g:] X E,, = X and there exists a constant N; > 0 satisfying

143



Jabbar and Hasan Iragi Journal of Science, 2020, Special Issue, pp: 140-152

lg(t1, @1) — g(t2, @) < Ni(llor — @2llg, + It — t211)

(Ae) Let

p1 = Ml + lg(0,u + D) + || (0, <P(0) —90,u+9))||] + Mz, — 2|
+Mt,(Lyr'+ Ly) + Mt,T (K1 (r +15 +1) ) + Kz) :

p2 = 2k_y 2M (M||@(0) — g(0,u + @) — h(0,9(0) — g(0,u + @) || + M|z, — z||)
1‘21}::1 M(a;(r") + b; — ||z, — z,]1)

+ X M (c;(r") + di+||9(0) — g(0,u + @) — h(0,9(0) — g(0,u + @))II)

+ 20, 2M ((t; — ;)M (L, () + Lz) + (t; = ti))MT (K, (r' + e +1) (") + K;)

+MT (L (r") + Lp) + MT?(K,(r' + e +1) (r") +K;) fort € (ty, tysal-

where 7' = [lp(0)llg, + Ir + M||[9(0) — g(0,u + ®)]|l and r" = r + M||[9(0) — g(0,u + P)]||
then we can get p;, p, > 0, such that

< {pl.tE[o,tll <r.
- pz,te[tk,tk+1],k=1,2,...,m -

(A) 1) M(1L+L)N, <1, B
2) [ZE 2M Ny (M(1 + L)+ Xk Md; + X M (d; + Ny + Ly (V)] < 1.
Lemma (3.6)

If the sectorial operator A% of type (M, 0, a, ) and f:] x E, x X — X is a map that satisfies (As),
then the impulsive abstract Cauchy problem (1.2) is equivalent to the integral equation given by the
following:

z(t, x)
@(t), ift € (—o0,0].
Sa®[@(0) = g(0,2) = h(0,9(0) = g(0,2))] + Ko ()[21 — 2,]
+ fot Py (t — s) h(s, zs(s,x))ds

+f0t f; Ta(t — )f (¢, 2c(c,x), 1l z) dcds, ift € (0,t,]

11[Sa (t = ) + Ko (¢ — )] (Sa (t) [0(0) — g(0,2) — h(0, p(0) — g(0,2))]
+K,(t)[z, — z,] + fttii_l P (t; — s) h(s, zs(s, x))ds

+ fttii_l fos To(ti — $)f(c,z:(c, x), 1Y 2) dcds) +3F S (t—t) (Il- (Z(ti_)) — [z, — Zz])
+ 30 Ka(t — ) ((A%) " (2(tD)) = [0(0) = 9(0,2) = h(0,0(0) — (0,2))])
+ fti Py (t — s) h(s, zs(s,x))ds + fttk fos To(t — )f(c,zc(c,x), 1Y z) dcds,

\ ift € (ty, tyes1l, k=1,2,...,m

where, S, (t) = [*e* 2971 (2%1 — A%) " da

Ko(t) = = [ e* 2972(2%1 — Aa)‘l da

P,(t) = zi J7 e A% (%1 - A"‘) Yaa

T,(t) = ﬁf:’ e (291 — A“) da

Such that A* & u + Sg for 1 € C.

Proof
By integrating the both sides of impulsive abstract Cauchy problem (1.2) of order 1 < a < 2, we get
the equivalent equation
2(t,2) = [p(0) = 9(0,2) ~h(0,0(0) = g(O, D] + [z3 — 7]t + h(t, 2 (t, x))
F(a)f (t —s)*1A%(s, x)ds + mf f (t — )% f(c zc(c,x),1¥ z) deds (3.3)
Now, by taking a Laplace transform of both sides of (3.3), we have

L{z(t, )} = 7 [0(0) = g(0,2) — h(0,0(0) — g(0,2))] + 53 [21 — 251 + L{h(t 2:(t, 1)) }(A)
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+ 22 A%L{z(t, 0)}YA) + 2z £{J; f(c ze(c, ), 1Y z)dc} (D)
L{z(t,0}Q) = 2471(A%1 = A%) " [p(0) — g(2) — h(0,9(0) — g(2))]
+2972(A9] — A%) 7z, — 2,]
+2% (291 — A7) L{h(t, z:(t, )} + (221 — 49) " L{f? f (e 2, %), 17 2)de} (D (3.2)
Now, by taking inverse transform of Laplace, we get
0 _ AoN—1
2(t,%) = = J" e 2%71(A%1 — 4%) " [(0) — g(0,2) — h(0,(0) — g(0,2))]dA
© _ AoN—1 © AoN—1
+— [ et %2 (%1 — A7) [fl — 2,)dA + 5= [" e A%(2%1 — A7) L{h(t, 2. (¢, x)) }dA
1 0 AN\
+—fo e (A1 = A%) L] £ e,z (e, x), I z)dc}dA (3.4)
By Laplace transform of the last term of (3.4), we have
2(t,x) = —— [ A 2971 (21 — A“)_ll[(p(O) — 9(0,2) — h(0,0(0) — g(0,2))]dA
1 0 _ AN
+—1, e A92(29] — A%) [le— z,]dA
1 o ~t — ~a\"
+%f0 fote’l(t s) /1“(/1“1 - A“) 1h(s, Zs (s, x))dsdl
© S _ A\
o Jo Iy e* 0 (A1 =A%) f (e, 2(c, ), I{ z) dedsdA (3.5)
We can rewrite the equation (3.5) as follows:
2(t,x) = Sa(O)[@(0) — g(0,2) — h(0,p(0) — g(0,2))] + K ()21 — 2,]

+ fot Py (t — s) h(s, zs(s,x))ds + fot fos To(t — $)f(c,zc(c,x), 1Y z) dcds
where

Salt) = == [ e? 291 (291 = A%) " da
Ko(t) = = [ e* 2972(2%1 — 4%) ™" da
Po(t) = = [ e 29(291 — A%) " da
To(t) = = [ eX(291 - A0 da
If t € (t4,¢t;], then
z(t,x) = So(t — t)[9(0) — g(0,2) — h(0,(0) — g(0,2))] + Ko (t — t;)[2, — 2]
+ fttl Py (t — s) h(s, zs(s, x))ds + fttl fos Ta(t — $)f (¢, 2c(c, %), 1} z) dcds (3.6)
Az(t, %) |e=¢, = 2(tF) — 2(t7) = L(2(t7))
= [@(0) = g(0,2) — h(0,9(0) — g(0,2))] + [z, — 2,]
—(Se(t)[@(0) = g(0,2) — h(0,9(0) — g(0,2))]
+Ko(t)[21 — 2] + [, Po(ty — 5) h(s, 25(s, %) )ds
+ fotl fos Ta(ts — $)f (¢, 2.(c, x), 1} 2) dcds) =1 (z(t]))
[¢(0) — g(0,2) — h(0,0(0) — g(0,2))] = —[2; — 2,]
+(Sa(t)[9(0) — g(0,2) — h(0,9(0) — g(0,2))]
+K,(t)[z1 — z2] + fotl Py(t; — s) h(s, zs(s,x))ds
+ fotl Jy Ta(ts = $)f (¢, 2c(c, %), 1 z) dcds) + I (z(tD)) (3.7)
Az'(t, X)|e=e, = 2'(t7) — 2'(t7) = 1_1(Z(t1_))
Z(tH) -z (t)) = f‘“ [9(0) — g(0,2) — h(0,9(0) — g(0,2))] + A%[z, — z,]
— (4254 (t)[9(0) — g(0,2) — h(0,9(0) — g(0,2))]
+A%K, (t)[z, — z;] + fotl AP, (t; — s) h(s, zs(s,x))ds
+ [ fs AT, (ty — $)f (c,20(c, ), 1} 2) dcds) = L(z(tD))
[21 — 2,] = —[9(0) — g(0,2) — h(0,9(0) — g(0,2))]
+(Sa(t)[@(0) — g(0,2) — h(0,9(0) — g(0,2))]
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+K,(t)[z, — z,] + fotl Py (t; — s) h(s, zs(s,x))ds
+ fotl fos Ta(ty — 5)f (¢, 2.(c,x), 1! z) dcds) + (A“)_ll_l(z(tl')) (3.8)
By (3.6), (3.7) and (3.8), we get that
2(t, %) = [Sa(t — t;) + Ky (¢ — t)](Sa (t)[9(0) — g(0,2) — (0,9 (0) — g(0,2))]
+K,(t)[z, — z,] + fotl Py (ty — s) h(s, zs(s, x))ds
+ fotl fos T,(t; — s)f(c, z.(c,x), IZZ) dcds)
=Sa(t —t)[z1 — 2] + S, (t — t1)11(Z(t1_))
—Ka(t = t1)[0(0) = g(0,2) — h(0,9(0) — g(0,2))] + Kot — t)(A%) "I, (2(¢1))
+ fttl Py(t — s) h(s, zs(s,x))ds + fttl fos Ta(t — 5)f (¢, zc(c,x), 1l z) dcds
fort € (tq,t,], if t € (ty, tx41], then we get

z(t, x)
@(t), ift € (—,0].

S«(®O[(0) — g(0,2) = h(0,9(0) — g(0,2))] + Ko (O)[z1 — 2,]
+ Jy Pu(t = 5) A5, 25(s, %)) ds
+ fot f; Ta(t — $)f (¢, 2c(c,x), 11 z) dcds, ift € (0,¢4]

121 [Sa (t — t) + Ko (¢ = t)] (S (t)[9(0) = g(0,2) — h(0, p(0) — g(0,2))]
+K,o (t)[z, — z,] + fttii_l P (t; — s) h(s, zs(s,x))ds

+ fttii_l fos To(t; — $)f (¢, z:(c, x), 1Y 2) dcds) + 3K St — &) (Il- (Z(ti_)) — [z, — Zz])
+ 2 Kot = ) (A7) " (2(D) = [9(0) = 9(0,2) = h(0,0(0) — g(0,2))])

+ fti P, (t — ) h(s, zs(s,x))ds + fttk fos To(t — $)f(c,zc(c,x), 1Y z) dcds,
\ ift € (ty, tys1l, k=12,...,m.
Now, we define the mild solution of impulsive abstract Cauchy problem (1.2) for every z € E,..
Definition (3.5)

A function z: (—oo, T] — X is called a mild solution of the impulsive abstract Cauchy problem (1.2),
if z(t,x) + g(t,2) = @(t) € E,, the impulsive conditions Az(t, x)|¢=¢, = Ik (2(ty)), Az (¢, x)|t=tk =
L(z(t)) k=12...,m are verified, the restriction of z(-) to the interval [, = [tx, tr41] IS
continuous and the following integral equation holds for t € J.

z(t, x)
(1), ift € (—oo,0].
Sa(®)[@(0) — g(0,2) = h(0,9(0) — g(0,2))] + Ko (t)[21 — 2,]
+ fot Py (t — s) h(s, zs(s,x))ds

+ [ [ To(t = )f (c,20(c, ), 1} 2) deds ift € (0,t,].

121 [Sa (t = £) + Ko (t = )] (So (t)[9(0) = g(0,2) — h(0,9(0) — g(0,2))]
+K,(t)[z, — z,] + fttii_l P (t; — s) h(s, zs(s, x))ds

+ fttii_l f; To(ti — $)f (¢, 2.(c, x), I} 2) dcds) + 3K S (t—t) (Il- (z(ti‘)) — [z, — 22])
+ 2l Kot — 1) (A9) 7 T(2D) = [0(0) = 9(0,2) — h(0,0(0) — (0, ))])

+ fti P, (t — s) h(s, zs(s,x))ds + fttk fos To(t — $)f(c,zc(c,x), 1Y z) dcds,
\ ift € (ty, tys1l, k=12,...,m.
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Definition (3.6):
Let z(t,x) = y(t,x) + 0(t,x) and for € E,, . To introduce the following main theorem, we define
the function @ as follows:

_(@(t,x) for t€ (—x,0],
06 ={J o) 93] for te).
Lemma (3.7)

If the assumptions (A;)-(As) hold, then the Y(E,) is equicontinuous, where the operator Y on E,
defined by

0, ifte(—x,0]

f(f Pa(t—s)h(s,ys+®s)ds+fot fos Ta(t—s)f(c,yc+®c,IZ(y+(Z)))dcds, ifte(o,t4]

(T (6) ={ EEalSalt-td+Ka(t=t)I( ;1 Palti=s)h(sys+85)ds (3.9)
+fttii—1 fos Ta(ti—s)f(c,yc+QC,IZ(yHZ)))dcds)+fttk P, (t—s)h(s,ys+Bs)ds

+ ffk Iy Ta(t=$)f(cyc+0c1Y (r+0))deds,  if te(titisalk=1,2,.m

Proof
For y € Ey, if 1,5, € Jand 0 < sy < s, < t;, then we have
I(Yy)(s2) — (SY}’)(SOII )
< Jo WPa(sz = 8) = Pu(s1 = I (s, ys + @) llds + [ 2N Pu(s1 = SRS, ys + B)llds
[ T, = 8) = Tulsy = I ||f (e3¢ + 00, 1L (v + ) | deds
+ 152 1T = N || £ (6.3 + 8 12 5+ 9)) || deds
< 5qllPe(sz = ) = Pe(s1y — )L () + L) ‘|; (s2—=s)M(L;(r) + L)
+51T||Te (52 = 5) — T (51 — DI K (' + r(;+1) (7"")) + Kz) + (s3—s)TM (Ky (r' +
ty n
o ) + K3) (3.10)
Also, if t;, < sy < s, < tyy4q1, then we get

1(Yy)(s2) — (Yy) (sl
< ||IZEL[Sa(sy — &) + Ka(sy — t)] — 21 [Sa(s1 — ;) + Ko (s — ]|

X || ftii_l P, (t; — s) h(s,ys + B5)ds + fttii—l fos T,(t; — s)f (c, Ve + 0, 1Y (v + (Z))) dcds) ”
+ [P sz = ) = Palsy = S)IIAC, s + 0)lds + [21Pa(s2 = I A, 5 + 95)llds
[ (o2 = ) = Tals = I || (€76 + 0,11 & + 9)) | deds
[ S WTaCsz = I |[f (€36 + 0 11O + 9)) || deds
< BhllSalsz = 1) = Sals1 — Il + ZhallKa(s2 = ) = Ka(sy — )]
X ((ti — i DM (Ly () + L) +(t — 6 DMT Ky (' + ——— () + Kz))

I'(y+1)
+(s1 = tlIPy (s = 8) = Py (s1 = L1 () + L) + (s — s)M (L1 (") + Ly)

’ tY ' Vi '
+(s1 — )T ||Te(s2 — 5) — To(sy — DK (' + T+ (r ')) + Kz) + (52 — s )MT (K, (r' +
tY

01D (r) +K,) (3.11)

From Assumption (A;), the compactness of S, (t), K,(t), P,(t) and T,(t) for t > 0 satisfy the
continuity in the uniform operator topology. Then the right-hand sides of (3.10) and (3.11) tend to zero
as s, — s; . Therefore, the family {(Yy)(t):y € E,} satisfies the equicontinuous functions. Since the
proof of equicontinuities to the case s; < s, < 0 and s; < 0 < s, is simple, then the proof is omitted.
Lemma (3.8)

If the assumptions (A;)-(As) hold, then the W (t) = {(Yy)(t):y € E,.} is relatively compact for
any t € J \ {t, ..., t;,}, Where the operator Y on E, is defined in (3.9).
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Proof
Let t € (0,t;] be a fixed and ¢ be a real number, implies 0 < ¢ < t;. For € E, , we define
W.(t) = {(Y.y)(t):y € E,} as follows:

(Tgy)(t) _ fot—s Pa(t _ S) h(S, ys + @S)ds + fot_g fos Ta(t — S)f (C, y. + (DC, Ig:/(y + (D)) dcds
= Pa(e) [y " Pu(t = 5 = &) h(s, s + B5)ds
() [ [ Tat =5 = OF (.9, + 8., 1y + 0)) deds (3.12)

Also, for t € (ty, ty+1] to be a fixed and € be a real number, implies t;, < € < tj4+1 , we define the
subset W, (t) = {(Y;y)(t):y € E,}
(Y£Y)(t) = ?:1[501@ - ti) + Ka(t - ti)] (fttll_l Pa(ti - 5) h(s, Vs t Q)s)ds

5 Talti = ) (Y + 0c 1L (v + 8)) deds) + Po(e) f,. “ Pult — s
€) h(s,ys + Dg)ds

+T,(s) ftt:e fos T,(t—s—¢&)f (c, Ve + 0, IV (v + (D)) dcds (3.13)
From assumption (A:)-(As), we have S, (), K4 (t), P,(t) and T, (t) are compact and the right-hand
side of (3.12) and (3.13) are bounded, then the set W, (t) = {(Y.y)(t):y € E,.} is relatively compact in

X, forevery e, t, < &€ < tpyq -
Moreover, fory € E,., t € (0,t;] , we have

1)@ = Ten)O < llPe(t = IlIRCs, 5 + ) + el Tale = I || (€36 + 0 11 + 0))
< el [(Llr’ +Ly) + (K (0 + ——— (") + Kz)]
and for t € (tg, tx41] , We get
I @®) — AP ON < [|[ZE[Sa(t — t) + Ko (t — t)] = XiLa[Sa(t — i — &) + Ko (t — t; — )]
x|t = ti-DIIP (s = G, 75 + BN + (¢ — - )TITalts = I ||f (.3 +
011 +0)|]
+ellPu(t = )RS, ys + B + eTNTe (£ = I || (3 + 0 1L 5 + @) |
< ||IZE [Sa(t— &) + Kot — t)] = T [Sa(t — t; — &) + Ko (6 — £ — &)]||

riy+1)

— ' — , tY '
X [(t = )M Ly () + L) + (6 = ) TR 4 s () + Ko
- , ) , tY '
FeM(Ly(r) + L) + eTM (K (7' + o (r ) +K;)

Therefore, as & — 0 , there are relatively compact sets arbitrarily closed to the set W (t) =
{(Yy)(t):y € E,} for each €]\ {tq,...,t,,} . Hence, the set W(t) = {(Yy)(t):yE€EE,}, t€]\
{t1, ..., t;n} is relatively compact in X.

Theorem (3.1)

If the assumptions (A;)-(A;) hold, then the impulsive abstract Cauchy problem (1.2) has at least

one mild solution z that belongs to E,. .
Proof
It suffices to prove that the operator W defined as follows has a fixed point z(+)
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(P2)(t, x)
(p(t), ift € (—o,0].

Sa®)[9(0) — g(0,2) — h(0,9(0) — g(0,2))] + Ko (t) [z, — 2]
+ fot Py (t — s) h(s, zs(s, x))ds
+ f()t fos Ta (t - S)f(C, ZC(C! X), IZZ) dcds, ift € (0, tl]'

2408 (t = t;) + Ko (t = t)] (Sa(t)[9(0) = g(0,2) — h(0,9(0) — g(0,2))]
+Ro(t)[21 = 22] + [ Poti = ) (5, 25(5, ) )ds

+ fttii_l fos Ta(ti — $)f (¢, z.(c, ), 1} z) dcds) + 3K S (t— 1) (Il- (z(t{)) — [z, — Zz])
+ 2 Ka (e = ) ((A) ' T(2(0) = [0(0) — 9(0,2) = h(0,0(0) — g(0,2))])
+ fttk P, (t — s) h(s, zs(s,x))ds + fti fos To(t — $)f (¢, z:(c,x), 1} z) dcds,

\ ift € (ty, tyes1l, k=12,...,m

We consider the operators ¥ and ¥ on E,. defined as follows:

Yy)(®)
0, ift € (—o0,0]

Sa(O[@(0) = g(0,y +0) = h(0,0(0) — g0,y + B))] + Ko ()z1 — 2] ift € (0, 1]
121 [Sa(t — t) + Ko (t = t))] (Sa(t )[@(0) — g0,y + ) — h(0,0(0) — g(y + )]
Ko (t)z1 — 251) + B Sat — ) (1 (y(67) + 0(¢7)) — 22 — z2])
+ 31 Ko (e = ) ((A) R () + 0D = [9(0) — 9(0,y + 8) — h(0,0(0) — g (0.y + 8))] )

) ift € (tkl tk+1]lk = 112 llll m

(Yy)()
0, ift € (—o0,0]

Jy Pa(t = ) h(s,ys + B)ds + fy f3 Tu(t = $)f (C, 3y + 0e, 1/ (v + 0) ) deds , ift € (0,8,]

= ZEAISa(t—t) + Kot — D] ([ Palt; = $)h(s, Y + B,)ds
i S Talti = 9)f (c.yc + 0.1/ (v + 0)) deds) + J{ Pa(t =) h(s, 5 + B5)ds
I BTt =9)f (Y + 0o 1L+ 0))deds,  ift € (t tgsl k = 12,...,m

\
Now, to find the mild solution of impulsive abstract Cauchy problem (1.2), we need to prove that
Y + Y has a fixed point on E, . For any ,v € E,. , we have

I(Yw) (@) + (YU)V(t)” < M[”(P(g)” +11g(0,u + @)l + ||~(0, 9 (0) — g(0,u + B))]|]
+M||z; — z,|| + Mt1(L1||vs(5) +0 (S)HE,, + Lz)

T <K1<||vc<s)+w (g, + o SuPo<sze, [ (#(5) + 0())| )

< MlleIl + lg(0,u + ®)I + ||h(0,9(0) — g(0,u + ®))||] + Mllz, — 2|
+ ity (Lyr' + Ly) + Mty T (K (v + o +1)r) +K)SN<7, forte(0,t]
and

1YW (@®) + YO
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< TE ISt — eIl + 11K (£ — tDI] (1S DN 0 (0) — g(0,u + @) — h(0, p(0) —
gO,u+0)|
HIK DIz — 2211 + T 11Se (€ — DN (@illu(t?) + @I + b — llz1 — 2, )
+ XK (€ = DI Cegllut) + @D + di+||9(0) — g(0,u + @) — h(0,9(0) —
g u+o)|)
+ 2 11Sa (e = eI + K (£ = T ([ NPuCt; = I (Lyllv 5(5) + B ()1 + Ly)ds
+ 2 Tt = N (Ka(lve + 8l + |1 v + B)]]) + Ky )deds)
+ [3 12 (e = I Ly llv 5(5) + D5 ()] + Lp)dbs
+ ft’; JNTL (E = DN (K (llve + Bell + ||IY w0 + B)|) + K,) deds
< ¥iy 2M (M||@(0) — g(0,u + @) — h(0,0(0) — g(0,u + ©))|| + Ml|z, — z)
+ Zi'c=1 Iq(ai(r”) +b; — llzy — 1)
+ Z?:l M (Ci(T”) + dl+||§0(0) - g(OJu + @) - h(O' (P(O) - g(oru + Q)))”)

tY

+ X1 2M (8 = )M Ly () + Lo) + (6 = t-)MT (K (' + 5 (7)) + Ky)
- - Y
+MT(L, (") + Ly) + MT?(K, (' + F(;H) r") +K,) <N <.

For t € (tx, trxs1], then we can get p;, p, > 0, such that

1@ + O < {ffelal | W SN<T

Which means that Yu + Yv is bounded and thus verified the condition (1) in Lemma (2.2).
Now, we show that Y is compact. For this we start proving that {(Yy)(t):y € E,} is relatively
compact, for t € [0,¢t,], we have

IONON < || 3" Pt = ) G, ys + 03 | + |57 7 Tect = )f (3 + 0,1 (v + 9)) deds|
< Mt,(Li(llollg, + Ir + M| [9(0) — g(0,u + ®)]II) + L)
+1e, T(K; (@ lls, + U + M[[0(0) — g(0,u + B)]|| +——

g0 u+ o)) +K;)
< Wty [(Ly () + Ly) + T(K, O +
and for t € (ty, txs+1] , We get

IO = || ZEolSalt = ) + Kot = e ([ Palti = ) h(s, 5 + B)ds

+ fttii_l fos T,(t; — s)f (c, Ve + @, 1Y (y + (Z))) dcds) + fti P,(t —s) h(s,ys + @)ds
+ fttk fos T, (t —s)f (c, Ve + 0., 1Y (v + (Z))) dcds”
tY

< N 2M ((ti = )M ((La7" + Lg)) + (& — £ )MT ((Kl(r’ + o )+ Kz)))

o (7 T Mllp(0) -

tY
r(y+1)

() + K,)|

- — Y

+MT((Ly (") + Ly)) + MT? <(K1 (r' + F(;H) (rM) + K2)> .
Then the set {(Yy)(t): y € E,} is uniformly bounded. Therefore, from lemma (3.7), we have that the
Y(E,) is equicontinuous, and from lemma (3.8), we have that the W (t) = {(Yy)(t):y € E,} is
relatively compact for any t € J \ {t4, ..., t;n}. Then by the Arzela-Ascoli theorem, we get that the
closure of {(Yy)(t): v € E,} is compact . Next, we shall prove that Y is continuous:
Let {y,} be a sequence in E, and y,, —» y for € E,, . From assumptions (A,)-(As), we get f and h are
continuous, i.e. for all € > 0 there is a positive integer N such that forn > N

”f (c,ycn +0c, I (y, + (Dn)) —f (c,yc + 0,1 (y + (D))” <e and ||h(s,ysn + @sn) -

h(s,ys + (Z)S)” <eg.
Now, for € (0,¢t;] , we get

1Py () = DO < [ 1Pt = I |R(s, ¥s,, + Bs,,) — h(s, 35 + B5) | ds
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Iy INTaCe = || f (€ Yen + Py I G+ 02)) = £ (€36 +
Bc 1l (y + (D)) ” dcds
= th”h(s’ysn + ®5n) - h(s’ys + Q)s)”

+6HT || £ (€, Ve + Bep 1 On + 02)) = £ (.3 + 0 1L 7 + 9 |
< t;Me(1+T)
Moreover, for e_(tk,tk+1] , We have
1Yy (&) — (YY) @I
t
< Vi lISa(t — ) + Ko (& = t)] (fti_lllPa(ti — ) ||h(s,ys, + Bs,,) — h(s,y5 +
Q)s)”ds
ti
+ 2 IoITaCts = I || £ (€ Ve + Bep 1 O+ 80)) = £ (€3 + 0c 1L (v +
@)) ” dcds)
t
+ ftk”Pa(t -9l ||h(s, Ysp T ¢sn) — h(s,ys + Q)s)”ds
t
+ 05 IITaE = N[ £ (€ Ve + By 1 G+ 8)) = £ (€3 + 0c 1 (v +
(D)) ” dcds
< Y Me (t; — t;—1)(2M+T)
_ HMe(ty — te) (A +T) B
Hence , Y is continuous. By the analysis above, we can see that Y implies the condition (2) of lemma
(2.2) which means that Y is completely continuous.
For ending the proof, we will show that Y is a contraction. Let,v € E,. , for t € (0,¢t;] , we get
I(Yw) () = Y) O < IS OII]|[9(0) = g(0,u + B) — (0, 9(0) — g(0,u + B))]
~[p(0) — g(0,v + @) — h(0,0(0) — g(0,v + D))]||
< IS NN llu = vl + Ly (N [Ju = vl]))
< M1+ L)Nyllu vl
Therefore, for € (ty, tr4+1] , We get
1) (@®) = O < ZiCy 2M (M(Nqllu = vl + Ly (Ng[lu — vll)))
+ Xy M dllu(t?) — v + 2y M (dillu) — v+ Nyllu — vl +
LNy llu = vID) o . o
_ < [Z?:l 2MN1(M(1 + Ll)) + Z?:l Md; + Z?:lM (di +N; + L1(N1))]||u -l
Since M(1+L;)N; <1, and .
S 2MNy(M(1 + L))+ 3 Mdi+ X5 M (d; + Ny + Ly (ND)| <1, for k=
1,2,...,m.

Then Y is contraction. Therefore, the three conditions of lemma (2.2) are satisfied. Therefore, for this
the operator Y + Y has a fixed point in E,. . Then the impulsive abstract Cauchy problem (1.2) has a mild
solution on J.

Conclusions:

We conclude that the solvability of impulsive nonlinear fractional order partial differential
equations with nonlocal conditions needed to define an approach to use the fractional Laplace
transforms which make important roles for computing the formula of the semigroup family operators.
Hence, we thought that it is an important and basic issue for solvability. The assumptions presented in
this work are needed to prove that our problem, with the specific main results, was never assumed
before for solving other problems. We used this approach to simulate the theoretical approach and gain
solvability results of impulsive nonlinear fractional order partial differential equations with nonlocal
conditions by transforming it to an impulsive abstract Cauchy problem. We also used the nonlinearity

functional analysis as a suitable analytic tool for specific spaces and domains of operators to
generalize the problem of nonlinear extensible beam equations and other problems.
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