
Mnkash and Abdulmunem Iraqi Journal of Science, 2020, Vol. 61, No. 10, pp: 2740-2750
 DOI: 10.24996/ijs.2020.61.10.30

*Email: cs.19.58@grad.uotecnology.edu.iq

2740

A Review of Software Watermarking

Sarah H. Mnkash*, Matheel E. Abdulmunem
Department of Computer Science, University of Technology, Baghdad, Iraq

Received: 8/12/2019 Accepted: 12/5/2020

Abstract
 The Internet is the hallmark of the age of technology and this technology is

complemented by the presence of software which is one of the basic

components of the operation of the network and it is used in almost all daily

life aspects such as industry, commerce and others. Because the digital

documents and objects can be easily replicated and distributed at an

economically low cost and as the software is a type of digital object, the

problem of software watermarking risen as related to how to protect data from

piracy. Therefore, various techniques have been developed to protect codes

from misusing and unauthorized alteration. Each of them is known as

watermarking technology that protects data by inserting secret information into

software, as an indicator of copyright ownership for this software. In this

paper, the watermarked software will be explained in detail by defining the

classification of watermarks software, models of attack, and methods used in

software watermarking carried out by several researchers. It seems clearly that

the method of ROP algorithm has given the highest accuracy results up to

100%

Keywords: Software Watermarking, Attack of software watermarking, ROP

algorithm

 مسح للعلامة المائية للبرمجيات

عبدالمنعم, مثيل عمادالدين *حسين منكاش هسار

, العراقالتكشهلهجية, بغدادقدم عمهم حاسهب, الكمية العمهم, الجامعة

 الخلاصة
الإنترنت ىه عرر التكشهلهجيا وىذه التكشهلهجيا تكسميا وجهد البرمجيات التي تعد أحد السكهنات

مثل الرشاعة والتجارة الأساسية لتذغيل الذبكة ، والتي تدتخدم في جسيع جهانب الحياة اليهمية تقريبًا
وغيرىا. نعرًا لأنو يسكن ندخ السدتشدات والكائشات الرقسية بديهلة وتهزيعيا بتكمفة مشخفزة اقتراديًا ،
وبسا أن البرنامج ىه نهع من الكائشات الرقسية ، فإن مذكمة وضع العلامات السائية عمى البرامج حهل

م تطهير تقشيات مختمفة لحساية التعميسات البرمجية من ، وبالتالي ت كيفية حساية البيانات من القرصشة
إساءة الاستخدام والتغيير غير السررح بو. كل واحد مشيم عبارة عن تقشية لمعلامات السائية تحسي
البيانات عن طريق إدراج ىذه السعمهمات الدرية في البرنامج كسؤشر لسمكية حقهق الطبع والشذر ليذا

، سيتم شرح برنامج العلامة السائية بالتفريل من خلال تحديد ترشيف برنامج البرنامج. في ىذه الهرقة
العلامات السائية ، ونساذج اليجهم ، والأساليب السدتخدمة في العلامة السائية لمبرنامج التي تم

 ISSN: 0067-2904

Mnkash and Abdulmunem Iraqi Journal of Science, 2020, Vol. 61, No. 10, pp: 2740-2750

2741

أعطت عالية نتائج ROPتخريريا من قبل الباحثين وأظيرت استشتاجاتيم أن ىشاك طريقة خهارزمية
 ٪.011إلى دقة ترل

1. Introduction
 For many software companies and information technology industries, piracy of software has

become a major issue, which was associated with the rapid evolution of these industries. Losses

form piracy of software are rising each year, reaching $51 billion in the economic value [1]. The

developers of software are interested in protecting their products' intellectual property from

software piracy, i.e. preventing their code from being illegally reused [1]. A solution to these

problems appeared in software watermarking as a technique used for integrating confidential

information into the software text [2]. Such data may decide software ownership, so if the

unauthorized utilization of the technology occurs, software copyright holders may have proof of

infringement by deleting such confidential messages from an unauthorized copy [3]. Software's

watermarking is a method of embedding a signature, meaning that it represents the owner reliably

in the cover software. This allows developers of software to verify their copyright through

extracting their signature from illegal copies. Researchers have developed a number of

watermarking techniques over the past two decades that can be categorized into three major

classes according to the extraction method, namely abstract, static and dynamic watermarking [4].

Most current watermarking methods attack a feature of the program that can assume many

connections but, however, only hiding the watermark in one connection. Consider, for example,

the technique of watermarks presented by an earlier work [5]. This technique changes the

allocation of the record; although there are many customizations that fit the data of the program,

only one is set to be the signature and is therefore utilized in the software selected. This method is

similar to that suggested in another article [6], where the characteristic flipping of the base blocks

is chosen among the many possible blocks. Both of the above-mentioned techniques are static due

to only affecting program planning. Note that a static watermarking program only displays the

watermark and excludes all other programs; this may help attackers rather than blocking them,

not to mention the ease of planning the scheme while maintaining the functionality. Dynamic

watermarking technologies exploit the links assumed by programs at the runtime, allowing many

candidate organizations to coexist in the same program. Path-based technology, for instance,

addresses the actions of branching programs at the runtime; the code executes various routes on

various inputs, but only the particular inputs provide the route defining the signature outline [7].

Similarly, the bonding method gives multiple threaded software so that various correlations arise

on how to solve the thread race conditions; it provides special inputs [8].

2. Literature Review
 In this paragraph, we will review the range of research that has addressed Survey Software

Watermarking.

 A new string was included in individual parts of the program so that the dynamic behaviour of

the string is distinct when given the correct input, and the watermark is encoded. This strategy is

effective for an attacker against static analysis who has the capacity to implement the software,

but it can very easily fail. Moreover, it is not appropriate for software wherever speed is critical

[9].

 Database watermark's goal creates powerful and continuous database watermarks. An image-

based method is suggested as a watermark and this watermark is included in the database in two

different attributes, one in the numeric attribute of the value and the other in the attribute time

field in seconds. This approach can be applied to the numerical and categorical databases [10]

 A new design of dynamic software is water-based on Return Oriented Programming (ROP).

Software watermarks have design formats with watermark icon in well-structured data

arrangements that look like normal data but it can be executed even the data almost similar

normal data. Once it runs, the execution of the previously created ROP will retrieve the hidden

watermark message. The ROP-based watermark technology is stealthier and flexible compared to

technologies that have existed, since the watermark symbol is dynamically allocated in attacked

data area, therefore the code is analysed based on these attacks. Ratings showed that this design

not only achieves satisfactory performance and flexibility but also significantly reduces overhead

watermark software [11].

Mnkash and Abdulmunem Iraqi Journal of Science, 2020, Vol. 61, No. 10, pp: 2740-2750

2742

 An attacker's ability to identify a signature under abstract interpretation can be modelled as a

property of completeness. It is considered that the attackers are abstract translators who can

accurately monitor the characteristics they complete. Hiding a signature in the code matches its

inclusion in terms of a semantic feature that can only be retrieved by attackers who complete it. In

fact, no incomplete translator for a property that specifies the signature can detect, tamper with, or

remove it. To provide a formal framework for modelling, at the semantic level, for software

watermark methods and feature quality [12].

 A novel dynamic watermarking method, Xmark, which is known unsolved mathematical

problem referred to as the Collatz conjecture. This method has worked by transforming the

selected conditional constructs (related to the software to be watermarked) with a control flow

obfuscation technique based 0n Collatz conjecture. These obfuscation routines were built in a

particular way such that they were able to express a watermark in the form of iteratively executed

branching activities occurred during computing the aforementioned conjecture. Exploiting the

one-to-one correspondence between natural numbers and their orbits computed by the conjecture

(also known as the “Hailstone sequences”), Xmark's watermark-related activities were designed

to be insignificant without the pre-defined secret input. It was shown that this method could

remain robust even if a watermarked software was compromised via re-obfuscation using

approaches like control flow flattening [13].

3. Software Watermarks
 Software watermarking is unique among the techniques that can shield software from piracy,

since it is not intended to avoid the piracy of software, but instead, it seeks to present evidence of

an incidence of piracy [14]. A common aim of multimedia watermarking is to combat media

piracy, for example copyright protection of movies in DVD format [14]. In computer science, it is

indeed a common subject for research. Watermarking programs remain a relatively recent field.

Although the objectives of watermarking multimedia and watermarking technology are similar in

that they inject some additional information into items that are digitally encoded, watermarking

methodologies are included in the program in order to preserve the operational implications of the

program.

 In most watermarking media, the watermark is not embedded in a simple microlayer. Rather,

the only location where a watermark can be obscured is in the presence of a multimedia artefact

[14]. In the program watermark, such modified watermarks are possible and are called Easter

eggs [14]. Figure 1 shows software watermarking for embedding and detection algorithm.

Figure 1: Software watermarking for embedding and detection algorithm. (a) watermark

embedding algorithm (b) watermark detection algorithm [51].

Mnkash and Abdulmunem Iraqi Journal of Science, 2020, Vol. 61, No. 10, pp: 2740-2750

2743

3.1 Classification of Software Watermarks
 There are different ways to classify software watermarks according to their tasks and

characteristics. Below are several schemes of classification in the published literature. Software

watermarks are categorized according to their functional objectives [16] as prevention signs,

confirmation marks, permission marks, and confirmation marks. Blocking prevents the use of

unauthorized marks of the software. Confirmation marks make a public statement to the program.

Permission marks allow limited change or copying of the driver. Confirmation marks ensure that

there is an end-user to authenticate the program. The watermarks of software can also be marked

as static or dynamic by their extraction techniques [16]. The static watermark code is put in the

symbols data area or text. Extracting this watermark does not require running the program. A

dynamic software watermarking is inserted if the program object is executed. More precisely, in

the dynamic watermark of the program,

 However, certain symbols may be included rather than the watermark itself [16], because the

watermark is expressed or extracted in case of running the program. Both robust and fragile

software watermarking types exist. Robust watermarking may be extracted for programs even if

they have been interpreted as hostile, accidental or semantic. To prevent unauthorized uses,

watermarks have been utilized in systems and also in systems that make software public claims.

Fragile watermark software is always to be decimated when the software is changed. These

watermarks are used to verify the integrity of programs and systems, allowing for limited

modification and copying [16]. Based on the features that a user can try; the software

watermarking can be classified as invisible or visible for the software. If a watermark is included

for a visual program, the watermarked program will generate some readable images, such as those

of the logo and others. An invisible watermark is a software that can not appear to the end-user as

a legible image but some algorithm can extract it, not being directly controlled by end-users.

Based on whether the original software or watermarking is a watermark extractor input, a

watermark software can be classified as either informed or blind [17].

A.Static and Dynamic Software Watermarking
The software watermarks are divided into two categories depending on the extraction technique

[17].

1. A static software watermarking is included into the data area or text symbols. Extracting

these watermarks do not require running the program. There are generally two kinds for static

watermarks [17]; code and data watermarks. A data watermark is entered directly into the

program's data area, while a watermark with an icon is entered in the program's code area. A

simple code watermark flipping involves arranging some instructions in the program. Figure (2)

illustrates a simple static watermarking system [17].

Figure 2-A simple static watermarking system. [58].

2. A dynamic software watermark is included in state to execute the software object. More

specifically, in the dynamic watermark of the program, what is included is not the watermark

Mnkash and Abdulmunem Iraqi Journal of Science, 2020, Vol. 61, No. 10, pp: 2740-2750

2744

itself but some symbols. When running the program, they trigger the watermark to be expressed

or extracted, as in the watermark of the dynamic data structure. There are three types of dynamic

software watermark; white Easter watermarks, implementation dynamic watermarks, and the

watermark of the dynamic data structure [19]. Figure-3 shows a system of simple dynamic

watermarking.

Figure 3-System of simple dynamic watermarking [02].

B. Robust and Fragile Software Watermarks
1. Robust software watermarks. It can also be obtained if they are interpreted as hostile,

undesirable or indicative. Watermarks of this type have been utilized in preventive systems of

untrusted or unauthorized uses for prevention, as well as systems that claiming ownership of the

publicity of the program (confirmation) [05].

2. Fragile software watermarks. When the software has been changed, it will always be

destroyed. Such watermarks are used in software integrity verification (affirmations) and in

systems allowing limited modification and copying (permission) [05].

C.Visible and Invisible Software Watermarks
Software watermarks can be classified as visible and invisible [00], depending on characteristics

that a software user can experience.

1.Visible Software Watermark. Any special input may trigger code to create a legible image such

as a logo,.. etc., such watermarks are visible in the program (confirmation) or believing validity

(affirmation) users [00].

2.Invisible Software Watermark. It appears to the end-user, not as a legible image, but can be

extracted through some method that are not directly controlled by end-users. These are utilized

for licenses and preventive measures [00].

3.2 Attacks on Software Watermarks
 There are two ways to attack programs, namely malicious client attacks or malicious host

attacks. Overall, the watermark of the program is designed to protect programs against malicious

host attacks. There are four primary ways in the software to attack the watermark, defined as

added attacks, subtraction attacks, malformed attacks, and attacks on recognition. In additional

attacks, adversaries include a new watermark in the watermarked software, so that the original

technology copyright owners cannot check the original watermarks ownership [02].

 Opponents delete the watermark of the watermarked system by repelling attacks without

disrupting the watermarked program's usability. The opponents ' goal in skewed attacks is to

change the watermarks to stop copyright owners from reproducing them while preserving the

software's usability [02].

1.AdditiveasAttacks: In the watermark, a new watermark code is added, so that the software's

original copyright holders cannot assert their rights by adding their original watermark into the

software [02].

Mnkash and Abdulmunem Iraqi Journal of Science, 2020, Vol. 61, No. 10, pp: 2740-2750

2745

2.Subtractiveas Attacks: Watermark code is disabled without influencing watermarked software's

usability. Distortive attacks change the watermark to stop the copyright owners from removing it

and still preserve the software's usability [02].

3.Recognitionas Attacks: The watermark detector or its inputs are updated or disabled to give a

misleading result. An opponent, for instance, may say that "his" watermark detector is the one

that should be used in a court check to prove ownership [02].

3.3 Software Watermarking Algorithms
The main watermarking algorithms currently available in the program will be listed in this

paragraph.

1.Basic block reordering algorithm: It is the first algorithm for software watermark. The idea of

this algorithm was to rearrange its basic blocks [24].

2.Register Allocation Algorithm: This method inserts a watermark in the program's interference

graph [21].

3.Opaque predicate algorithms: The watermark and the opaque predicate are inserted in the

dummy process [26].

4.Threading Algorithm: This algorithm depends on the inherent complexity of a multi-threaded

program thread during the run [27].

5.Abstract interpretation algorithm: The watermark is embedded in values allocated to local

integer variables during the execution of the program. These values can be determined by

analysing the program within an abstract interpretation framework that allows the detection of the

watermark even if only a part of the watermarked program is present [28].

6.Dynamic path algorithm: A watermark is placed during program operation by inserting a

watermark in the branch structure. It depends on the fact that the branch structure is a primary

part of the software and that it is difficult to analyse such a structure entirely because it has many

program implications [29].

7.Graph-based algorithms: It is the first software watermarking based on graph application and it

is known as the algorithm of VVS. It is a static watermarking algorithm for software. The first

method of the dynamic graph is the CT algorithm. It embeds the watermark in graph data

structure which is built during the execution of the program so it is a dynamic software

watermarking algorithm [22].

8.Spread-spectrum algorithms: It is a vector program which changes each component of the

vector by adding a small random amount [25].

4. Summary of Software Watermarking
 In this paragraph, the methods used are briefly illustrated and the most comprehensive

contributions of watermark software are shown in the Table (1) below.

Table 1-Summary of Software Watermarking Findings from Literature

Referewnce Algorithm

Year of

Publicatio

n

Outcomes

Christian and

Thomborson

[20]

Dynamic

graphic

watermark
1999

The classification of software watermark

techniques depends on how the tags are

merged, retrieved, and attacked. In

addition, it has introduced the watermark

conceptual model for programs. However,

the most interesting result is the new

watermarking techniques family for

software that includes tags within the

dynamic data structures of the topology

heap.

Palsberg et al

[32]

Embed a

watermark in

dynamic data

2000

The experimental result shows that the

watermark may be effectively achieved

with modest increases in the size of code,

execution times and use of heap space

while keeping the watermark code robust

Mnkash and Abdulmunem Iraqi Journal of Science, 2020, Vol. 61, No. 10, pp: 2740-2750

2746

structures for different conversion attacks. To obtain

a specific representation of watermarks,

the retrieval time of the watermark is one

minute per megabyte of heap space. The

application is not designed to resist all

possible attacks; to do this, it should be

combined with other protection methods,

such as jamming and tampering.

Agrawal and

Kiernan [34]

Relational

databases for

Watermark

2002

This algorithm assumes that numeric

attributes can withstand modifications of

some less significant bits. Therefore,

Tuples were first chosen to include the

watermark. Then, certain parts of some of

the selected group attributes were

modified to include watermarks.

Collberg et al

[6]

Encode the

watermark in

forwarding

branches.

2004

There are two ways to encode watermark

bits, as a string, if-statement and as a loop.

Debugging code is used to ensure that

only a subset of watermark pieces is

necessary to restore the tag.

Zhao-Hong, and

Jian-jun [31]

Software

watermarking

algorithm

based on

chaos

2006

The algorithm incorporates the

methodology of anti-reverse engineering,

the chaotic process and the concept of

watermarks in the Easter Egg code.

Analysis indicates that the algorithm

resists various semiconductor

transformation and has reasonable reverse

engineering.

Nagra and Clark

[9]

Threading

software

watermarks

 2007

A new string is included in individual

parts of the program so that the dynamic

behaviour of the string is distinct when

given the correct input, and it encodes the

watermark. This technique is safe against

static analysis, but for an attacker who has

the capacity to implement the software, it

can very easy to fail. Moreover, it is not

appropriate for software wherever speed is

critical.

Kamel and

Albuwi

[36]

Rtree data

structure
2009

A system for watermarking Rtree data

structure and its variants utilized by

program execution. A thorough safety

assessment and performance evaluation

demonstrated the robustness of the

embedded watermarks.

Brijesh and

Udai

[10]

Multi_

place

watermarking

in

database

security

2014

Database watermark's goal is creating

powerful and continuous database

watermarks. An image-based method is

suggested as a watermark which contains

two different attributes of one in the

database, one in the meaning numeric

attribute and the other in the time field of

the attribute in seconds. The quantitative

and categorical structures can be applied .

 2015 A novel design of dynamic software with

Mnkash and Abdulmunem Iraqi Journal of Science, 2020, Vol. 61, No. 10, pp: 2740-2750

2747

Ma et al

[11]

Return

Oriented

Programming

(ROP)

water-based return Oriented Programming

(ROP). Formats of the watermark icon

were designed in well-structured data

arrangements that look like normal data

but it can be executed even the data almost

similar normal data. Once it runs,

execution of the previously created ROP

will retrieve the hidden watermark

message. The ROP-based watermark

technology is stealthier and flexible

compared to technologies that have

existed, since the watermark symbol the

data area was dynamically allocated and

therefore stopping attacks based on code

analysis. Ratings showed that the design

not only achieves satisfactory results and

flexibility but also significantly reduces

overhead Watermark software

Laftah and
Jalil[37]

Concealment

makes sense

based on the

value of the

dihedral angle

2015

Logical concealment according to the

double layer edge value which is also the

distance between the two planes. The

concealment began in the process of

deciding. The core of the model is similar

to the spider house constructing in terms

of the average starting point, then starting

to create the network to move in the clock

direction and loop forming to follow the

largest loop forming by using the same

method of hiding data and creating more.

The approach showed very good results

with respect to an image update since there

was no update to the original image and

the error.

Dalla Preda and

Pasqua

[12]

A semantics-

based

approach of

Software

watermarking

2017

An attacker's ability to identify a signature

under abstract interpretation can be

modelled as a property of completeness.

Attackers are considered abstract

translators who can accurately monitor the

characteristics they complete. Hiding a

signature in the code matches its inclusion

in terms of a semantic feature that can

only be retrieved by attackers who

complete it. In fact, no incomplete

translator for a property that specifies the

signature can detect, tamper with or

remove it. The aim of this work was to

provide a formal framework for

modelling, at the semantic level, for

software watermark techniques and quality

features [12].

Ma et al

Collatz

2019

A new dynamic watermark scheme named

Xmark, which depends on the collatz-

conjecture utilizing noise control. This

technique utilizes a sequence of Hailstone

Mnkash and Abdulmunem Iraqi Journal of Science, 2020, Vol. 61, No. 10, pp: 2740-2750

2748

[13] Conjecture

to encrypt binary messages generated by

Collatz guess. Though a heavily coded

watermark identifiable through the storage

of various Collatz walking routines

through the same Hailstone sequence.

Ali [38]

3D watermark

model based

on the closest

distance
2019

A 3D watermark model based on the

closest distance. The watermarking path

shifts much further than possible between

several heads in the field before the data

for the inclusion is complete. Based on

latency and reliability, the proposed

algorithm has achieved strong results.

Visibility was calculated in the range of

Square root error (RMSE) and the distance

from Hausdroff (HD) which had good

results. The proposed approach

demonstrated resistance to engineering

attack (translation, scaling and rotation) as

well as appropriate resistance to signal

processing attacks such as noise inclusion

and rationalization.

5. Results and Dissections
 In this research, many previous works that have used many methods of watermarking software

were discussed. All of these methods have given good results, but it was identified a very reliable

method, namely the return of directed programming resulted in 100% efficiency. A novel design

of dynamic software was based on Return Oriented Programming (ROP). Once it runs, it executes

the previously created ROP which will retrieve the hidden watermark message. The ROP-based

watermark technology is stealthier and more flexible compared to technologies that have existed,

since the watermark symbol in the data area is dynamically allocated and then away from attacks

based on code analysis.

6.Conclusions
 As a result of the tremendous development in the field of information technology and the

internet, there has been a wide exposure to a flood of violations to circumvent and steal organized

and unorganized information. Piracy of software is a global issue and has becoming increasingly

important to software developers and suppliers. Software watermarking is one of many

techniques for protecting copyright. From previous studies, it was found that the work proposed

in 2015 gave high accuracy of up to 100% because it has used the ROP algorithm and achieved

the exact code distribution. Through the given analysis, it seems that this paper has provided

different views of software watermarking.

References
1. Collberg, C. and Thomborson, C. 2002. ” Watermarking, tamper-proofing, and obduscation-

tools for software protection”. IEEE Trans. Software Eng., pages 735–746.

2. Collberg, C., Carter, E., Debray, S., Huntwork, A., Kececioglu, J., Linn, C. and M. Step p.

2003. “Dynamic path-based software watermarking”, ACM SIGPLAN Notices, Proceedings

of the ACM SIGPLAN 2004 conference on Programming language design and

implementation, Vol. 39, Iss. 6, June.

3. Collberg, C., Jha, S., Tomko, D. and Wang, H. 2004. UWStego: A General Architecture for

Software Watermarking, Technical Report), available on http://www.cs.wisc.edu/

hbwang/watermark/TR.ps on Nov. 20.

4. Chen, X.; Fang, D.Y.; Shen,J.; Chen, F. Wang, W. and He. L. 2009. “A dynamic graph

watermark scheme of tamper resistance”. In Proceedings of the 2009 Fifth International

Conference on Information Assurance and Security - Volume 01, pages 3–6. IEEE Computer

Society. ISBN 978-07695-3744-3.

Mnkash and Abdulmunem Iraqi Journal of Science, 2020, Vol. 61, No. 10, pp: 2740-2750

2749

5. Collberg, C.S. and Thomborson, C. 2000. “Watermarking, TamperProofing, and Obfuscation-

Tools for Software Protection. 2003,” Technical Report 2000-03, Universityof Arizona.

6. Collberg, C.; Carter, E.; Debray, S.; Kececioglu, A.; Huntwork, C.L. and Step. M. 2004.

"Dynamic path-based software watermarking." Proceedings of the ACM SIGPLAN 2004

conference on Programming language design and implementation.

7. Patrick C. And Radhia C. 2004. “An Abstract Interpretation based framework for Software

Watermarking,” POPL’ 04, Venice, Italy. ACM.

8. Gaurav G. and Josef P. 2007. “Software watermarking Resilient to Debugging Attacks,”

Journal of multimedia, vol. 2, no. 2. Academy publisher.

9. Nagra, J. and Clark T. 2007. "Threading software watermarks." International Workshop on

Information Hiding. Springer, Berlin, Heidelberg.

10. Brijesh, M. B. and Udai, P. R. 2014. "A Novel approach as Multi-place Watermarking for

Security in Database." arXiv preprint arXiv:1402.7341.

11. Ma, H.; Lu, K.; Ma, X.; Zhang, H.; Jia, C. and Gao, D. 2015. "Software watermarking using

return-oriented programming." Proceedings of the 10th ACM Symposium on Information,

Computer and Communications Security. ACM.

12. Dalla Preda, M. and Pasqua, M. 2017. "Software watermarking: a semantics-based approach."

Electronic Notes in Theoretical Computer Science 331, pp 71-85.

13. Ma, H.; Jia, C.; Li, S.; Zheng, W. and Wu, D. 2019. "Xmark: Dynamic Software

Watermarking using Collatz Conjecture." IEEE Transactions on Information Forensics and

Security.

14. Hachez, G. 2003. “A comparative study of software protection tools suited for ecommerce

with contributions to software watermarking and smart cards,” Ph.D.dissertation, Universite

Catholique de Louvain, Mar.

15. Dey, Ayan, Sukriti Bhattacharya, and Nabendu Chaki. 2019. "Software watermarking:

Progress and challenges." INAE Letters, 4(1): 65-75.

16. Nagra, D.J., Thomborson, C. and Collberg, C. 2002. “A functional taxonomy for software

watermarking”, In Proc. 25th Australasian Computer Science Conference 2002, ed.MJ

Oudshoorn, ACS, pp. 177-186.

17. He, Y. 2002. “Tamperproofing a software watermark by encoding constants,” Master’s thesis,

University of Auckland, Mar

18. HAMILTON, James; DANICIC, Sebastian. An evaluation of the resilience of static java

bytecode watermarks against distortive attacks. IAENG International Journal of Computer

Science, 2011, 38(1): 1-15.

19. Collberg, C. and Thomborson, C. 2004. “Software watermarking: Models and dynamic

embeddings,” in Proceedings of Symposium on Principles of Programming Lan guages,

POPL’99, pp. 311–324.

20. James Hamilton, 2010. "Types of Software Watermark," Software Watermarking, July 2010.

https://jameshamilton.eu/research/types-software-watermark

21. Nagra, J., Thomborson, C. and Collberg, C. 2002. “Software watermarking: Protective

terminology,” in Proceedings of the ACSC 2002.

22. Narayanan, A. and Shmatikov, V. 2005. “Obfuscated databases and group privacy,”in

CCS’05, Alexandria, Virginia, USA, November 7–11, pp. 264–173.

23. Naumovich, G. and Memon, N. 2003. “Preventing piracy, reverse engineering, and

tampering,” Computer, 36(7): 64–71.

24. Nicherson, J., Chow, S. and Johnson, H. 2001. “Tamper resistant software: extending trust

into a hostile environment,” in Proceedings of ACM Multimedia ’01. ACMPress.

25. Van Oorschot, P. 2003. “Revisiting software protection,” in ISC 2003, ser. LNCS, vol.2851,

pp. 1–13.

26. Pal, S. and Mitra, P. 2004. “Case generation using rough sets with fuzzy representation,”

IEEE Trans. On Knowledge and Data Engineering, 16(3): 292–300.

27. Palsberg, J., Krishnaswamy, J.S., Minseok, K., Ma, D., Shao, Q. and Zhang, Y. 2000.

“Experience with software watermarking,” in Proceedings of the 16th Annual Computer

Security Applications Conference, ACSAC ’00. IEEE, pp. 308–316.

https://jameshamilton.eu/research/types-software-watermark

Mnkash and Abdulmunem Iraqi Journal of Science, 2020, Vol. 61, No. 10, pp: 2740-2750

2750

28. Pawlak, Z. 2005. “Some remarks on conflict analysis,” European Journal of Operational

Research, 166: 649–654.

29. Collberg, C., Myles, G. and Huntwork, A. 2003. “Sandmark–a tool for software protection

research,” IEEE Security and Privacy, 1(4): 40–49.

30. Collberg, C., Kobourov, S., Carter, E. and Thomborson, C. 2003. “Errorcorrecting graphs for

software watermarking,” in 29th Workshop on GraphTheoretic Concepts in Computer

Science, July.

31. Collberg, C. and Thomborson, C. 2002. “Watermarking, tamper-proofing, and obfuscation -

tools for software protection,” IEEE Transactions on Software Engineering, 28: 735–746,

Aug.

32. Collberg, Christian, and Clark Thomborson. 1999. "Software watermarking: Models and

dynamic embeddings." Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages.

33. Palsberg, J.; Krishnaswamy, S. ; Kwon, M. ; Ma, D. ; Shao, Q. and Zhang, Y. 2000.

"Experience with software watermarking." Proceedings 16th Annual Computer Security

Applications Conference (ACSAC'00). IEEE.

34. Agrawal, R and Kiernan, J. 2002. "Watermarking relational databases." VLDB'02:

Proceedings of the 28th International Conference on Very Large Databases. Morgan

Kaufmann, 2002.

35. Zhao-Hong, L. and Jian-jun, H. 2006. "DCT-domain fragile watermarking algorithm based on

Logistic maps." Acta Electronica Sinica 34.12: 2134.

36. Kamel, I. and Albuwi, Q. 2009. “A robust software watermarking for copyright protection,”

Computer&Security, vol. 28, no. 6, pp. 395- 409, Sep.

37. Laftah, M. M., & Jalil, L. F. (2015). Watermarking in 3D Model Using Dihedral Angle. Iraqi

Journal of Science, 56(4C), 3546-3553.

38. Ali, N.A. 2019” Watermarking in 3D Models Using Depth Path” Iraqi Journal of Science,

2019, Vol.60, No.11, pp: 2490-2496

